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Anomalous transport
• Chiral magnetic effect (CME)

�J = σCME
�B

• Heavy ion collisions

• Early universe

• Weyl semi-metals

Realized (possibly) in:

σab
CME =

dabc

4π2
µc

Anomaly coefficient

[Vilenkin],
[Giovannini,Shaposhnikov]
[Alekseev, Chaianov, Fröhlich] 
[Fukushima, Kharzeev, McLarren] 
[Fukushima, Kharzeev, Warringa]  

3



Anomalous transport
• Chiral vortical effect (CVE) �J = σCVE�ω

• CME and CVE in energy currents �J� = σ�
CVE

�B

�J� = σ�
CVE�ω

σa
CVE =

dabc

8π2
µbµc +

ba
24

T 2

σ�
CVE =

dabc

12π2
µaµbµc +

ba
12

µaT
2

σ�a
CME = σa

CV E

[Vilenkin]
[Megias, K.L.., Pena-Benitez] 

[Vilenkin]
[Batthacharya et al.] 
[Erdmenerg et al.] 
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Anomalous transport
• Non-renormalization:

free fermions = holographic theories

• proof: e.g. hydrodynamics, effective action approach 

• HOWEVER: 2-loop correction found in T^2 term and 
later in all anomalous transport coefficients

• Ingredient: dynamical gauge fields in anomaly

[Yee] [Schmitt,Stricker,Rebhan] 
[Gynther, K.L., Rebhan, Pena-Benitez]
[Megias,, K.L., Pena-Benitez]  

[Son, Surowka], [Neiman, Oz] [Jensen, Loganayagam, Yarom] [DiPietro, Komargodski]

[Hou, Lui, Ren] [Golkar, Son], [Jensen, Kovtun, Ritz] [Gorbar, Miransky, Shovkovy, Wang]
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Anomalous transport
(DµJ

µ)a = �µνρλ
�

dabc

32π2
F b
µνF

c
ρλ +

ba
768π2

Rα
βµνR

β
αρλ

�

• Non-renormalization holds if gauge fields and 
metric are classical fields

• If gauge fields (or metric) are quantum fields: 
current is not a dimension three operator

• Axial anomaly in QED:
anomalous dimension for 
axial current 
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Anomalous transport
A subtlety: covariant anomaly vs. consistent anomaly

δJµ = i[λ, Jµ] Jµ =
δWeff

δAµ
or

In V-A theory (Dirac fermion):

Jµ
cons = Jµ

cov +
1

4π2
�µνρλA5

νFρλ

∂µJ
µ = 0• Only consistent vector current

• Chiral magnetic effect: 

• Chiral separation effect:

�J =

�
µ5

2π2
− A5

0

2π2

�
�B

�J5 =
µ

2π2
�B
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Stückelberg Axion
U(1)A anomaly QCD:

“QED” “QCD”
strongly coupled

external

∂µJ
µ
A = �αβγδ

�
C1FαβFγδ + C2tr(GαβGγδ) + C2F

5
αβF

5
γδ

�

eiWeff =

�
DΨDΨ̄DAq exp

�
i

�
d4x

�
−1

2
tr(G.G) + Ψ̄DΨ+ θOA

��
Path integral:

Weff [A,A5, θ] invariant under: δA5 = dλ , δθ = −λ
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Stückelberg Axion
Bottom up approach: substitute path integral by 
dynamics in AdS-space keeping the symmetries

L =

�
−1

4
F

2 − 1

4
H

2 − m
2

2
(Aµ − ∂µθ)(A

µ − ∂µθ)+

κ

2
�µαβγδ(Aµ − ∂µθ) (FαβFγδ + 3HαβHγδ)

�

• Two gauge symmetries

• One conserved current 

• One non-conserved current = massive vector

• CS term reflects anomalies in weakly coupled sector

• Stückelberg mechanism and anomaly 
more general discussion and model 

[Klebanov, Ouyang, Witten] [Gursoy, Jansen]
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Stückelberg Axion
• Asymptotic expansion:

• Dimension of current:  

• Holographic counterterms (           ): 

 number CTs depends on       ,  for             infinite number of CTs

• Renormalized WI:

• No covariant or consistent current, gauge fields do not allow to 
construct the CS currents of correct dimension

Ai(N.N.) ∼ Ai(0)r
∆ ; Ai(N.) ∼ Ãi(0)r

−2−∆ ; ∆ = −1 +
�

1 +m2 .

dim(Ãi(0)) = [Ji] = 3 +∆ .

SCT =

�

∂
d4x

√
−γ

�
∆

2
BiB

i − 1

4(∆+ 2)
∂iB

i∂jB
j +

1

8∆
FijF

ij

�

∆

∆ < 1/3

∆ = 1

�∂iJ i� = lim
r→∞

√
−gr∆

�
m2∂rθ + r∆∂iA

i − κ

3
�ijklFijFkl + X̃

�

Ren.
= 2(1 +∆)∂iÃ

i
(0)
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Response to magnetic field in AdS-Schwarzschild    
black brane (high T plasma phase), decoupling limit

• Chemical potential becomes source for operator A = Φ(r)dt

Φ�� +
3

r
Φ� − m2

f
Φ = 0

• ”Work” needed to bring unit of charge behind the horizon

”δµ” = lim
r→∞

� r

rH

∂rAtdr → ∞

• Although charge is not conserved, stationary solution (it is sourced)

φ(rH) = 0 , φ(r → ∞) ∼ µ5r
∆ ,

d

dt
J0
5 = 0

Stückelberg Axion
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what happens to charge diffusion?

ω = −iΓ− iDk2

gap opens up in diffusive mode

0.0 0.1 0.2 0.3 0.4 0.5 m20.00

0.05

0.10

0.15

0.20

0.25

0.30
�

Figure 2: The gap Γ versus m2. Black line corresponds to a linear fit.

non-conservation of the charge. Technical details on how to compute QNM can be found in
[31]. Indeed we find that the lowest QNM is no longer massless. The gap Γ depends on the
value of the bulk mass as depicted in figure 2.

This indicates that the charge is no longer conserved. Furthermore a simple phenomeno-
logical model including only the dynamics of the lowest quasinormal mode suggests that the
non-conservation can be modeled by writing ∂µJµ = − 1

τ J
0, where τ is the gap of the lowest

quasinormal mode. Indeed, such a phenomenological decay law together with Fick’s law
�J = −D�∇J

0 suggests a gapped pseudo diffusive mode ω + i/τ + iDk
2 = 0 which indeed is

what we find from the QNM spectrum (see next section).

3 The Stückelberg U(1)xU(1) model

In this section we introduce an extra unbroken abelian symmetry in the bulk. This
allows us to switch on an “honest” external magnetic field in the dual theory and therefore
study not only the axial conductivity but the Chiral Magnetic conductivity and the Chiral
Separation conductivity as well. In addition we will be able to study the effect the mass has
on the Chiral Magnetic Wave and on the electric conductivity. The Lagrangian reads

L =

�
−1

4
F

2 − 1

4
H

2 − m
2

2
(Aµ − ∂µθ)(A

µ − ∂µθ) +
κ

2
�µαβγδ(Aµ − ∂µθ) (FαβFγδ + 3HαβHγδ)

�

(30)

where F = dA and H = dV . The new dynamical U(1) in the bulk is massless and couples
to the Chern-Simons term in the usual way. As in the previous section we work in the
probe limit with Schwarzschild-AdS5 as background metric. The scalar field transforms non-
trivially only under the massive U(1). From now on we will refer to the massless U(1) as

12

Stückelberg Axion
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Axionic magnetoresponse
what happens to Chiral Separation Effect?

�J5 = σCSE
�B
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Figure 3: Left: Plot of the CSC versus the chemical potential µ for: m2
= 1/2 (Blue),

m2
= 1/3 (Green), m2

= 0 (Red). This conductivity is independent of the axial source µ5.

Right: Plot of the CSC coefficient as a function of the anomalous dimension∆ =
√
m2 + 1−1.

The equations to solve are

φ��
+

3

r
φ� − m2

f
φ = 0 , (42)

χ��
+

3

r
χ�

= 0 . (43)

The boundary conditions for the gauge fields at infinity φ(r → ∞) = µAr∆; χ(r → ∞) = µV

determine the value of the sources. As usual, (43) has the analytic solution

χ(r) = µV − µV

r2
. (44)

Expanding the action to second order in the perturbations and differentiating w.r.t. the

sources we obtain the concrete expressions for the renormalized correlators

�JV
i J

V
j �Ren. = 2ηmj

δṽi(0)
δvm(0)

(45)

�JA
i J

A
j �Ren. = (2 + 2∆)ηmj

δãi(0)
δam(0)

(46)

�JA
i J

V
j �Ren. = 2ηmj

δṽi(0)
δam(0)

= (2 + 2∆)ηmj
δãi(0)
δvm(0)

(47)

We compute the above correlators numerically. For a detailed explanation see appendix

C.2. In the following we comment on the outcome.

Axial Conductivity: the conductivity σ55 related to the correlator of two axial currents

behaves identically to section 2.2. Hence, we refer the reader to figure 1 and the corresponding

discussion.

15
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Axionic magnetoresponse
what happens to Chiral Magnetic Effect?

we find: σCME = 0

• Natural generalization of result for A0
5 = µ5

• Natural generalization of consistent current 

Jµ =
δSon−shell

ren

δVµ

• Does this mean CME is absent?           NO!

�J = σCME
�B
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Axionic magnetoresponse
Another manifestation of CME is the Chiral 
Magnetic Wave:

• In constant magnetic field, propagating wave of charge to axial charge 

fluctuation induced by interaction between CME and CSE

jxV =
κρAB

χA
−D∂xρV

jxA =
κρV B

χV
−D∂xρA ∂µJ

µ
A = −ΓρA

∂µJ
µ
V = 0• “Hydrodynamic” model:

• Prediction for QNMs in magnetic field

ω± = − iΓ

2
− iDk2 ±

�
B2k2κ2

χAχV
− Γ2

4

[Kharzeev, Yee] 
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Axionic magnetoresponse
Another manifestation of CME is the Chiral 
Magnetic Wave:
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Figure 4: (Color online) Real and Imaginary parts of the frequency of the lowest QNM as

a function of k. Solid lines correspond to numerical data with κB = 0.05 and two different
values of the mass: m2 = 0 (orange) and m2 = 0.15 (∆ = 0.08) (blue, green). The Massive

case is given two different colors to highlight the regimes k < kc (green) and k > kc (blue).
Dashed lines correspond to the analytic formula (53). The massless case shows the behavior

of the CMW. With a non-vanishing mass such a behavior s recovered for k > kc.

For k > kC we get a propagating mode whose dispersion relation approximates the one of

the CMW13. On the contrary, if k < kC , there is no real part of the frequency (i.e. no Chiral

Magnetic Wave); one of the modes remains massless and the other develops a gap Γ.

With this phenomenological model in mind we look for these modes in our holographic

model. In order to find the CMW we look at the QNM spectrum in presence of a constant

magnetic field B in the z-direction. Since the CMW is present at zero axial and vector charge

densities, we do not switch on any chemical potential in the background. The only non-zero

field in our ansatz for the background is Ax = By. It is easy to check that such an ansatz

satisfies the equations of motion trivially. Subsequently we study the perturbations, with

momentum k aligned with the magnetic field. Applying the determinant method of [31] we

are able to obtain the dispersion relation of the CMW as depicted in figure 4; we show the

dispersion relation of the lowest QNMs for both m = 0 (orange) and m > 0 (green, blue) in

presence of B. On top of this we plot (dashed lines) we show a fit to the predictions of the

phenomenological model (53).

The numerical results agree very well with the analytic analysis and we observe the ap-

pearance of a critical momentum kC , induced by the mass term. Below this momentum

the Chiral Magnetic Wave is not really wave-like (i.e. �[ω(k)] = 0 for k < kC); the two

modes decouple, giving rise to a diffusive mode and gapped purely imaginary mode. Such

a spectrum is what one would expect to find in the model if there was no CMW, that is,

the unbroken vector charge exhibits diffusive behavior, with a massless mode protected by

13Observe that for k >> kc the slope �(ω)/k is the same as in the case Γ = 0.

18

CME present for freely fluctuating charges !
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Summary and Outlook

• Non-conserved axial current is consequence of QCD

• At strong coupling: holographic (bottom up) model

• Magnetoresponse still present

• Subtleties consistent vs. covariant need better understanding

• CMV is not a wave anymore (gapped) for small momenta

• Also present: finite negative magneto-resistivity

• More work needed:

• Include backreaction, study energy current

• Include gravitational contribution to anomaly

• Better understanding of dual field theory interpetation
17



HELAU!
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