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We	
  discuss	
  infla7onary	
  models	
  which	
  are	
  flexible	
  enough	
  to	
  fit	
  the	
  data	
  
	
  (Planck	
  2013	
  or	
  BICEP2	
  or	
  in	
  between),	
  which	
  can	
  be	
  implemented	
  in	
  
	
  string	
  theory/supergravity,	
  and	
  which	
  may	
  tell	
  us	
  something	
  interes7ng	
  
	
  and	
  instruc7ve	
  about	
  the	
  fundamental	
  theory	
  from	
  the	
  sky	
  
	
  

We	
  describe	
  new	
  models	
  of	
  infla7on	
  and	
  dark	
  energy/cc.	
  New	
  results	
  
on	
  de	
  SiSer	
  Landscape:	
  how	
  to	
  avoid	
  tachyons	
  in	
  string	
  theory	
  
mo7vated	
  supergravi7es	
  
	
  

Recent	
  new	
  tools	
  have	
  allowed	
  us	
  to	
  construct	
  new	
  simple	
  models	
  of	
  	
  
infla7on	
  with	
  dS	
  upliUing	
  in	
  the	
  context	
  of	
  spontaneously	
  broken	
  
supersymmetry	
  
	
  

A New Toy In Town!	

 A	
  nilpotent	
  chiral	
  mul7plet,	
  Volkov-­‐Akulov	
  golds7no	
  and	
  	
  
D-­‐brane	
  physics	
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Genus	
  Topology	
  and	
  Cross-­‐Correla7on	
  of	
  BICEP2	
  and	
  Planck	
  353	
  GHz	
  B-­‐Modes:	
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  Evidence	
  Favoring	
  Gravity	
  Wave	
  Detec7on	
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Figure 14. At top, the BICEP2 map (as in Fig. 1); in the mid-
dle, our Planck 353 GHz Map V (as in Fig. 7). At bottom is
the correlation of these two maps. All maps are in Mercator pro-
jection in the region |RA| 6 30�, �65� 6 Dec 6 �50�. Red
shows positive-positive correlations; blue shows negative-negative
correlations; green shows anti-correlations (negative-positive or
positive-negative).

degree patches. We can measure the theoretical C
l

for gravi-
tational lensing at l = 119 from Fig. 2 in the BICEP2 paper
(BICEP2 2014a). The theoretical C

l

amplitude is of course
based on lensing data from Planck and elsewhere. Taking
the ratio of the C

l

’s from lensing and noise at l = 119 allows
us to calculate that the ratio z/w = 0.774. The noise and
gravitational lensing power spectra are proportional to each
other (both have C

l

⇠ const over the range 50 < C

l

< 120),
so we can get the ratio z/w from the ratios of the C

l

’s at
l = 119. We will therefore adopt z/w = 0.774. Then, using
w + z = 0.448, we find z = 0.1955. We can now solve the
two equations above for x and y. Substituting we find

C

PB

(�353/�B

) = 0.552 + 0.1955 + 20.3y (12)

We can then solve for y and find x = 0.552�y. The equation
can also be rewritten as

C

PB

(�353/�B

) = 1� w + 20.3y, (13)

which we will find useful later. To estimate the tensor-to-
scalar mode ratio r, we simply utilize the BICEP2 team’s
power spectrum calibration. In our notation, that is simply
r = (x/0.552)·0.2. In other words, if there were no dust (y =

Table 1. Relative contributions to BICEP map, for di↵erent anal-
yses of the dust. The error on each measured correlation, C

PB

,
is estimated to be 0.039. C⇤ refers to the correlation necessary to
imply a r of 0. In all cases, the correlation measured is at least
2.5� below this level (for Maps I–V, these levels are 2.6�, 4.9�,
3.1�, 4.1� and 3.1�).

Map �353(µK) C

PB

C

⇤
x y r

Map I 4.97 0.101 0.202 0.292 0.259 0.106
Map II 3.31 0.112 0.302 0.370 0.181 0.134
Map III 3.12 0.202 0.321 0.219 0.333 0.079
Map IV 2.96 0.181 0.337 0.274 0.278 0.099
Map V 3.03 0.161 0.331 0.301 0.250 0.109

0), x = 0.552 and we would find r = 0.2, as calibrated by
BICEP2’s power spectrum analysis. We present in Table 1
those results for Planck Maps I – V.

The mean value of r from the 5 methods is r = 0.106.
A simple estimate of the uncertainty associated with our
values of r is the direct standard deviation of the above val-
ues from the di↵erent methods; that computes to ±0.020.
This is a reasonable estimate of the error associated with
our varied mapping processes. (For comparison, one could
apply median statistics [c.f. Gott et al. 2001] to our 5 r val-
ues; the median value is r = 0.106, while the chance the true
value is between 0.99 and 0.109 is 62.5%, roughly 1�.) If we
used the independent �353D = 23.1�

BD

estimate from a sim-
ple power-law interpolation between Planck at 353 GHz and
Planck at 143 GHz to estimate the dust amplitude at 150
GHz, we would have gotten a mean value of r = 11.4. Thus
the uncertainty in r to do the uncertainty in this ratio is
±0.008. However, there is still some additional error in the
estimate of z. The BICEP2 team reports that the gravita-
tional lensing power can vary by about 45.5%. As such, we
recomputed our x, y and r values with z increased and de-
creased by 45.5% (z

max

was adjusted by the same resulting
addends on z); this introduces an additional error of 0.016.
Note that Equation (12) shows that adding or subtracting
(0.455⇥0.1955) = 0.089 from z changes y not at all, but adds
or subtracts 0.089 from x with consequent changes of r of
±0.016. We also have the error in r introduced by the 0.039
error in the correlation measurements; this translates to an
error of 0.029 in r. Each individual map has an uncertainty
in its correlation coe�cient C

PB

of ±0.039 determined as we
have described, by cross-correlating BICEP2 with random
Planck 353 fields. We raise and lower C

PB

by this amount to
compute the error bias on r in each of the 5 maps. The rms
value of this 1� error in r is 0.029. So, we take as our best
value r = 0.106 (this is both the mean and the median of the
values from our 5 maps). As our very conservative estimate
of the error in r, we will add in quadrature the standard
deviations of the r values from the 5 di↵erent maps, errors
in the factor 21.3, the errors due to the expected errors in
the correlation coe�cients, and the errors due to the uncer-
tainty in gravitational lensing: r = 0.106± 0.039. Rounding
and keeping significant digits, r = 0.11± 0.04.

It is important to note that these varied methods give
consistent results. Map I, for example, includes ringing in the
50 < l < 120 modes from the Galactic plane. This ringing
just adds noise, which boost the value of �353 and lowers the

c� ???? RAS, MNRAS 000, 1–13

r ⇠ 0.1

Do	
  not	
  take	
  it	
  too	
  seriously	
  as	
  it	
  is	
  based	
  on	
  
redigi7zed	
  plots	
  of	
  both	
  BICEP2	
  and	
  Planck.	
  
	
  
However	
  the	
  basic	
  idea	
  to	
  check	
  Cross-­‐
Correla7on	
  of	
  BICEP2	
  and	
  Planck	
  	
  is	
  a	
  good	
  
one.	
  This	
  is	
  what	
  BICEP2	
  and	
  Planck	
  are	
  doing	
  
now,	
  using	
  the	
  actual	
  combined	
  data.	
  And	
  we	
  
are	
  wai7ng…	
  

r =?



Planck	
  intermediate	
  results.	
  XXX.	
  
The	
  angular	
  power	
  spectrum	
  of	
  polarized	
  dust	
  emission	
  
at	
  intermediate	
  and	
  high	
  Galac7c	
  la7tudes	
  

Today’s	
  paper	
  

Details	
  on	
  dust	
  in	
  the	
  BICEP2	
  patch	
  of	
  the	
  sky.	
  

Current	
  conclusion	
  

Extrapola7on	
  of	
  the	
  Planck	
  353	
  GHz	
  data	
  to	
  150	
  GHz	
  gives	
  a	
  dust	
  power	
  DBB	
  ≡	
  l(l	
  +	
  
1)CBB/(2π)	
  of	
  1.32	
  ×	
  10−2	
  μK2	
  over	
  the	
  mul7pole	
  range	
  of	
  the	
  primordial	
  
recombina7on	
  bump	
  (40	
  <	
  l	
  <	
  120);	
  l	
  l	
  CMB	
  the	
  sta7s7cal	
  uncertainty	
  is	
  ±0.29	
  ×	
  10−2	
  
μK2CMB	
  and	
  there	
  is	
  an	
  addi7onal	
  uncertainty	
  (+0.28,	
  −0.24)	
  ×	
  10−2	
  μK2CMB	
  from	
  the	
  
extrapola7on.	
  This	
  level	
  is	
  the	
  same	
  magnitude	
  as	
  reported	
  by	
  BICEP2	
  over	
  this	
  l	
  range,	
  
which	
  highlights	
  the	
  need	
  for	
  assessment	
  of	
  the	
  polarized	
  dust	
  signal	
  even	
  in	
  the	
  
cleanest	
  windows	
  of	
  the	
  sky.	
  The	
  present	
  uncertain7es	
  are	
  large	
  and	
  will	
  be	
  reduced	
  
through	
  an	
  ongoing,	
  joint	
  analysis	
  of	
  the	
  Planck	
  and	
  BICEP2	
  data	
  sets.	
  



	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Chaotic Inflation in Supergravity:   

shift symmetry	
  
Kawasaki,	
  Yamaguchi,	
  Yanagida	
  2000	
  

Kahler	
  poten7al	
  	
  

and	
  superpoten7al	
  
The	
  poten7al	
  is	
  very	
  curved	
  with	
  respect	
  to	
  S	
  and	
  Im	
  Φ, so	
  
these	
  fields	
  vanish.	
  But	
  Kahler	
  poten7al	
  does	
  not	
  depend	
  on	
  
	
  

W = mS�

� =
p
2Re � = (�+ �̄)/

p
2

The	
  poten7al	
  of	
  this	
  field	
  has	
  the	
  simplest	
  form,	
  as	
  in	
  chao7c	
  
infla7on,	
  without	
  any	
  exponen7al	
  terms:	
  



Superpoten7al	
  must	
  be	
  a	
  REAL	
  holomorphic	
  func7on.	
  (We	
  must	
  be	
  sure	
  that	
  
the	
  poten7al	
  is	
  symmetric	
  with	
  respect	
  to	
  Im	
  	
  	
  	
  	
  ,	
  so	
  that	
  Im	
  	
  	
  	
  	
  	
  	
  =	
  0	
  is	
  an	
  
extremum	
  (then	
  we	
  will	
  check	
  that	
  it	
  is	
  a	
  minimum).	
  The	
  Kahler	
  poten7al	
  is	
  
any	
  func7on	
  of	
  the	
  type	
  

The	
  poten7al	
  as	
  a	
  func7on	
  of	
  the	
  real	
  part	
  of	
  	
  	
  	
  	
  	
  	
  at	
  S	
  =	
  0	
  is	
  

�

FUNCTIONAL	
  FREEDOM	
  	
  in	
  choosing	
  infla7onary	
  poten7al	
  

K((�� �̄)2, SS̄)

RK,	
  	
  Linde,	
  Rube	
  2010	
  

W = S f(�)

V = |f(�)|2
� �

Here	
  S	
  is	
  a	
  golds7no	
  mul7plet:	
  supersymmetry	
  is	
  broken	
  only	
  in	
  the	
  golds7no	
  direc7on	
  



FUNCTIONAL	
  FREEDOM	
  	
  in	
  choosing	
  infla7onary	
  
poten7al	
  in	
  supergravity	
  allows	
  us	
  to	
  fit	
  any	
  set	
  
of	
  ns	
  and	
  r.	
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10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-� Planck+WP+BAO

�CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the �CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k� = 0.002 Mpc�1.

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N� < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = �4 exp
�
�� �

Mpl

�
(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) � t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = �4
�
�

Mpl

���
(36)

lead to inflation with a(t) � exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r � �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) � �4
�
1 � �

p

µp + ...

�
, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 � �4M2

pl/µ
2 + 3r/8 and

r � 32�2
�M2

pl/µ
4. This potential leads to predictions in agree-

ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 � �(2/N)(p � 1)/(p � 2)
when r � 0. The hill-top potential with p = 3 lies outside the

Sunday, March 31, 13

FIG. 1: The green area describes observational consequences of
inflation in the Higgs model (10) with v � 1 (a ⌧ 1), for the
inflationary regime when the field rolls down from the maximum of
the potential. The continuation of this area upwards corresponds
to the prediction of inflation which begins when the field � initially
is at the slope of the potential at |v� �| � v. In the limit v ! 1,
which corresponds to a ! 0, the predictions coincide with the
predictions of the simplest chaotic inflation model with a quadratic
potential m2

2 �2.

an inflationary regime when the field � rolls from the
maximum of the potential at � = 0, as in new inflation
scenario. Natural initial conditions for inflation in this
model are easily set by tunneling from nothing into a
universe with spatial topology T 3, see e.g. [24] and the
discussion in [51]. The results of investigation of the ob-
servational consequences of this model [38, 42, 48] are
described by the green area in Figure 1. Predictions of
this model are in good agreement with observational data
for a certain range of values of the parameter a ⌧ 1.

However, this does not mean that absolutely any po-
tential V (�) can be obtained in this simple context, or
that one has a full freedom of choice of the functions
f(�). It is important to understand the significance of
the restrictions on the form of the Kähler potential and
superpotential described above. According to [39], in the
theory with the Kähler potential K = K((� � ¯

�)

2, S ¯S)

the symmetry of the Kähler potential � ! ±¯

�, as well as
the condition that f(�) is a real holomorphic function are
required to ensure that the inflationary trajectory, along
which the Kähler potential vanishes is an extremum of
the potential in the direction orthogonal to the inflati-
onary trajectory S = Im� = 0. After that, the proper
choice of the Kähler potential can make it not only an
extremum, but a minimum, thus stabilizing the inflation-
ary regime [38, 39, 44].

The requirement that f(�) is a real holomorphic func-
tion does not affect much the flexibility of choice of the
inflaton potential: One can take any positively defined

potential V (�), take a square root of it, make its Taylor
series expansion and thus construct a real holomorphic
function which approximate V (�) with great accuracy.
However, one should be careful to obey the rules of the
game as formulated above.

For example, suppose one wants to obtain a fourth de-
gree polynomial potential of the type of V (�) =

m2�2

2

(1+

a� + b�2

) in supergravity. One may try to do it by tak-
ing K = (� +

¯

�)

2/2 + S ¯S) and f(�) = m�(1 + cei✓�)

[52]. For general ✓, this choice violates our conditions for
f(�). In this case, the potential will be a fourth degree
polynomial with respect to Im � if Re � = 0. However,
in this model the flat direction of the potential V (�)

(and, correspondingly, the inflationary trajectory) devi-
ate from Re � = 0. (Also, in addition to the minimum at
� = 0, the potential will develop an extra minimum at
� = �c�1e�i✓.) As a result, the potential along the infla-
tionary trajectory is not exactly polynomial, contrary to
the expectations of [52, 53]. Moreover, the kinetic terms
of the fields will be non-canonical and non-diagonal.

This may not be a big problem, since the potential in
the direction orthogonal to the inflationary trajectory is
exponentially steep. Therefore the deviation of this field
from Re � = 0 will not be large, and for sufficiently large
values of the inflaton field � the potential will be ap-
proximately given by the simple polynomial expression
|f(�/

p
2)|2. But in order to make a full investigation of

inflation in such models one would need to study evo-
lution of all fields numerically, and make sure that all
stability conditions are satisfied. An advantage of the
methods developed in [38, 39] is that all fields but one
vanish during inflation, all kinetic terms are canonical
and diagonal along the inflationary trajectory, and in-
vestigation of stability is straightforward.

Fortunately, one can obtain an exactly polynomial po-
tential V (�) in the theories with K = K((� � ¯

�)

2, S ¯S)

using the methods of [38, 39], if the polynomial can be
represented as a square of a polynomial function f(�)

with real coefficients. As a simplest example, one may
consider f(�) = m�

�
1 � c� + d�

2

�
. The resulting po-

tential of the inflaton field can be represented as

V (�) =

m2�2

2

�
1 � a� + a2b �2

)

�
2

. (11)

Here a = c/
p

2 and a2b = d/2. We use the parametriza-
tion in terms of a and b because it allows us to see what
happens with the potential if one changes a: If one de-
creases a, the overall shape of the potential does not
change, but it becomes stretched. The same potential
can be also obtained in supergravity with vector or ten-
sor multiplets [36].

Inflation in this theory may begin under the same ini-
tial conditions as in the simplest large field chaotic in-
flation models �n. The difference is that in the small a
limit, the last 60 e-foldings of inflation are described by
the theory �2. Meanwhile for large a one has the same

RK,	
  Linde	
  and	
  Westphal,	
  1405.0270	
  

K((�� �̄)2, SS̄) V = |f(�)|2W = S f(�),	
   ,	
  



Natural	
  Infla7on	
  in	
  Supergravity	
  
Natural	
  infla>on	
  in	
  theories	
  with	
  axion	
  poten7als	
  is	
  known	
  for	
  nearly	
  25	
  years	
  
(Freese	
  et	
  al	
  1990),	
  but	
  un>l	
  now	
  it	
  did	
  not	
  have	
  any	
  stable	
  supergravity	
  
generaliza>on.	
  Invariably,	
  there	
  was	
  an	
  instability	
  with	
  respect	
  to	
  some	
  moduli,	
  
or	
  we	
  needed	
  some	
  assump7ons	
  about	
  string	
  theory	
  upliUing.	
  The	
  problem	
  
was	
  solved	
  only	
  recently:	
  RK,	
  Linde,	
  Vercnocke,	
  1404.6204	
  	
  
	
  

All	
  non-­‐inflaton	
  moduli	
  stabilized	
  



Natural	
  infla7on	
  occurs	
  even	
  in	
  theories	
  with	
  a,	
  b	
  >	
  1,	
  as	
  
suggested	
  by	
  string	
  theory.	
  For	
  |a	
  –	
  b|	
  <<	
  1,	
  	
  one	
  can	
  have	
  
natural	
  infla>on	
  even	
  in	
  the	
  theory	
  with	
  a	
  single	
  axion	
  field.	
  	
  

Large	
  field	
  natural	
  infla>on	
  with	
  a	
  single	
  axion	
  

3

and perform the following change of variables T ! iT
and S ! iS. We find

W =
⇤2

p
2
S(e�aT � eaT

⌘
, K = K+ , (18)

where the inflaton is now the imaginary part of a scalar
T . It leads to exactly the same physics as Model 2, and
very similar physics compared to Model 1. The relevant
potential is, therefore, given again (approximately) by
Fig. 1.

Model 4

Finally we give a supergravity model reminiscent of a
potential with a sum of several cosines as in [4, 5]. The
superpotential and Kähler potential are

W =
p
2⇤2S

✓
A sin

aT

2
+B sin

bT

2

◆
, K = K� .

(19)
The inflaton potential is

V = 2⇤4
⇣
A sin

a�

2
p
2
+B sin

b�

2
p
2

⌘2
. (20)

III. IRRATIONAL AXION LANDSCAPE

Now we will make what could seem a minor modifica-
tion of the previous model, but we will find a dramat-
ically di↵erent potential. The Kähler potential now is
K = K+, and the superpotential slightly di↵ers from
(18)

W = ⇤2S(1�Ae�aT �Be�bT ) . (21)

The potential at S = T + T̄ = 0 is

V = ⇤4
⇣
1 +A2 +B2 � 2A cos

a�p
2

+ 2AB cos
(a� b)�p

2
� 2B cos

b�p
2

⌘
. (22)

This potential has an interesting behavior discussed
in [4, 5], but now we have its explicit supergravity im-
plementation without any need for an uplifting. As dis-
cussed long ago by Banks, Dine and Seiberg [18], a par-
ticularly rich behavior is possible if the ratio a

b = q is irra-
tional. This leads to a landscape-type structure of the po-
tential with infinite number of di↵erent stable Minkowski
vacua and metastable dS vacua with di↵erent values of
the cosmological constant, see Fig. 2. If one of the con-
stants a and b in this scenario is irrational, we have an
infinite number of possible dS minima, which allows to
solve the cosmological constant problem using anthropic
considerations.

Moreover, inflationary predictions in this scenario de-
pend on the behavior of the inflaton potential in the

2000 4000 6000 8000 10000f
2

4

6

8

V

FIG. 2. Irrational axion potential for A = B = 1, a = 0.01
p
3,

b = 0.005
p
7. The field is shown in Planck units, from 0 to 10000.

This may create an impression that the potential is very steep, but

in fact the potential is very flat and allows chaotic inflation. Just

as in the string landscape scenario [12–17], inflation may end in any

of the infinitely many metastable dS vacua with di↵erent values of

the cosmological constant [18].

vicinity of each of these dS vacua. As a result, one can
have a broad spectrum of possibilities which allows to fit
a large variety of observational data within the context
of a single model with a small number of parameters.

IV. INFLATION FOR a, b & 1

Until now, we discussed the scenario with a, b ⌧ 1.
However, string theory suggests that the parameters
a, b & 1. Can we still have natural inflation in that case?

Let us consider a model with

W = ⇤2S(e�aT � e�bT ), K = K+ . (23)

We will assume that a, b & 1, a � b ⌧ 1. One can show
that in this case inflation is indeed possible.

The absolute minimum of the potential in this theory
is at T = 0. However, one can show that inflation occurs
in the regime of a slow roll from the saddle point of the
potential with Re T = a/2. Re T remains very close to
a/2 during inflation, and only in the very end it starts
moving towards the global minimum with T = 0. The
inflaton potential in this theory is well approximated by

V = 2⇤4e�a2/2
⇣
1� cos

(a� b)�p
2

⌘
. (24)

This potential allows inflation even for a, b � 1 if the
di↵erence between a and b is small, |a�b| ⌧ 1. A similar
idea, in a di↵erent context, was used in the racetrack
inflation model [19], and then applied to natural inflation
in [4]. In this way, one can bring natural inflation one
step closer towards its implementation in string theory.
Note that we were able to do it in the theory of a single
axion field.
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Models	
  described	
  above	
  can	
  easily	
  explain	
  large	
  r.	
  
Good	
  for	
  BICEP2.	
  They	
  can	
  also	
  describe	
  r	
  <<	
  1,	
  but	
  
not	
  without	
  tuning.	
  Can	
  we	
  do	
  it	
  naturally?	
  
	
  
Let	
  us	
  return	
  to	
  Planck	
  and	
  some	
  mysteries	
  related	
  
to	
  its	
  results.	
  

We	
  found	
  a	
  new	
  class	
  of	
  chao7c	
  infla7on	
  models	
  with	
  
spontaneously	
  broken	
  conformal	
  or	
  superconformal	
  invariance.	
  
Observa7onal	
  consequences	
  of	
  such	
  models	
  are	
  stable	
  with	
  
respect	
  to	
  strong	
  deforma7ons	
  of	
  the	
  scalar	
  poten7al.	
  	
  	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cosmological	
  aMractors	
  
RK,	
  Linde	
  2013	
  



Planck	
  2013	
  

R+	
  R2	
  and	
  	
  �4�
4 � ⇠

2�
2R

Universal	
  T-­‐Model	
  and	
  beyond	
  
	
  



Miracles	
  to	
  be	
  explained:	
  	
  
	
  MANY	
  apparently	
  unrelated	
  theories	
  make	
  same	
  predic>on	
  

This	
  point	
  is	
  at	
  the	
  sweet	
  spot	
  of	
  the	
  Planck	
  allowed	
  region.	
  	
  
	
  
Here	
  N	
  =	
  O(60)	
  is	
  the	
  required	
  number	
  of	
  e-­‐foldings	
  of	
  infla7on	
  
corresponding	
  to	
  perturba7ons	
  on	
  the	
  scale	
  of	
  the	
  observable	
  part	
  
of	
  the	
  universe.	
  
	
  
Why	
  predic7ons	
  of	
  different	
  theories	
  converge	
  at	
  the	
  same	
  point?	
  
Why	
  convergence	
  is	
  so	
  fast?	
  What	
  is	
  the	
  rela7on	
  to	
  non-­‐minimal	
  
coupling	
  to	
  gravity?	
  Anything	
  related	
  to	
  broken	
  conformal	
  
invariance?	
  Any	
  way	
  to	
  explain	
  it	
  or	
  at	
  least	
  account	
  for	
  it	
  in	
  
supergravity?	
  

1� ns =
2

N
, r =

12

N2



Significant	
  sensi7vity	
  of	
  infla7onary	
  models	
  on	
  a	
  choice	
  of	
  the	
  
frame	
  

The	
  superconformal	
  theory	
  underlying	
  supergravity	
  
requires	
  the	
  choice	
  of	
  a	
  Jordan	
  frame	
  	
  	
  

1

2
⌦(z, z̄)R =

1

2
e�

1
3K(z,z̄) R

eN (X, X̄)R

The	
  superconformal	
  theory	
  is	
  defined	
  by	
  the	
  Kahler	
  poten7al	
  
of	
  the	
  embedding	
  manifold,	
  including	
  the	
  conformon.	
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Figure 9. The potential �
4 (�2 � v2)2 as a function of the canonically normalized field ' in the

Einstein frame. (a) ⇠ < 0, 1 � |⇠|v2 ⌧ 1. (b) ⇠ > 0. Notice the similarity between these two
potentials. However, physical interpretation of these two potentials is very di↵erent. The value of the
canonically normalized field ' in the model with ⇠ < 0 typically is very large. Meanwhile the value of
this field for the model with ⇠ > 0 can be very small, which is the basis of the Higgs inflation scenario
[9].

statement, one may compare the potential �
4 (�2 � v2)2 with ⇠ < 0 in the limit |⇠|v2 ! 1

with the potential in the Higgs inflation model [9] with ⇠ > 0 and v < 1, for the same values
of parameters � and |⇠|, see Figs. 9(a) and 9(b). The results of our calculations of the
parameters ns and r and of the amplitude of perturbations of metric in this model coincide
with the corresponding results of Ref. [9].

The relation between the inflationary regime with � < v and ⇠ < 0 in the limit |⇠|v2 ! 1
and Higgs inflation with � > v and ⇠ � 1 is quite interesting and even somewhat mysterious,
as if there is some hidden duality between these two classes of models with opposite signs of ⇠.
Moreover, the same set of the cosmological parameters (ns, r) = (1� 2

N , 12
N2 ) = (0.967, 0.003)

also appears in Starobinsky model [16], see [17, 18].

The value of � can be determined from the observed value of amplitude of density
perturbations �⇢ ⇡ 5 ⇥ 10�5. For the two observationally interesting cases the situation is as
follows: For the large-� case with positive ⇠, � decreases along the constant-⇠ lines. At ⇠ = 0
we have � ⇡ 2 ⇥ 10�13 and for large v we have � ⇡ 4 ⇥ 10�11/v2 (this follows from the fact
that for large v the quartic potential near its minimum looks like a quadratic one with mass
squared m2 = �v2). For large ⇠ we have � ⇡ 5 ⇥ 10�10⇠2 independently of v, as in Ref. [9].
For the small-� case with negative ⇠ the behavior is similar. For small |⇠| and large v (but
not too large to pass the cusp peak) we have � ⇡ 4 ⇥ 10�11/v2. In the limit |⇠|v2 ! 1 the
potential is the same as that of Ref. [9] and hence again we have � ⇡ 5 ⇥ 10�10⇠2. Thus we
see that � can be parametrically large or small.

7 Conclusions

In this paper we studied the simplest chaotic inflation models with potentials m2

2 �2 and
�
4 (�2 � v2)2, with the field � nonminimally coupled to gravity, for arbitrary values of the
parameters v and ⇠. We demonstrated that these models can be implemented in the context
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A universal attractor for inflation at strong coupling
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We introduce a novel non-minimal coupling between gravity and the inflaton sector. Remarkably,

for large values of this coupling all models asymptote to a universal attractor. This behaviour is

independent of the original scalar potential and generalises the attractor of new Higgs inflation to

all models. The attractor is located in the ‘sweet spot’ of Planck’s recent results.

Introduction

The last few years have seen exciting experimental advances,
both in particle physics and in cosmology. The LHC has de-
tected the first scalar field ever, whose characteristics are
compatible with being the Higgs particle. The Planck satel-
lite has measured the CMB temperature anisotropies with
unprecented precision, the results of which are fully con-
sistent with inflation. Remarkably, it has moreover proven
possible to forge a link between these two fields. Whereas
it was previously thought that the self-coupling of the Higgs
field was too large to allow for inflation, the introduction of
a non-minimal coupling ⇠�2R between the inflationary and
gravitational sectors ameliorates this situation [? ]. Inter-
estingly, it was found that for couplings of order one and
higher, new Higgs inflation asymptotes to identical predic-
tions as the Starobinsky model of inflation [? ].

Until presently, it has only been possible to modify the
�2�4 scalar potential of new Higgs inflation in this way. In
this letter we will introduce a similar, but distinct, non-
minimal coupling between the inflationary and gravitational
sector. Schematically it is of the form ⇠

p
V (�)R. For �2�4

theory, this coupling coincides with a non-minimal coupling
⇠R�2 that is more commonly considered, but for di↵erent
scalar potentials the two non-minimal couplings are distinct.
Also note that this operator is dimension-4 for any choice of
the scalar potential, not just for the quartic one; the param-
eter ⇠ is always dimensionless. In an e↵ective field theory
one would thus generically expect such a coupling, if it is
not ruled out by any symmetry arguments. We will find
that this novel non-minimal coupling allows for a interest-
ing modification of all scalar potentials: for su�ciently large
coupling all choices for V (�) asymptote to Starobinsky in-
flation.

Non-minimal coupling

The starting point of many inflationary models is a La-
grangian consisting of the Einstein-Hilbert term for gravity
plus a kinetic term and scalar potential for the inflaton field.
We add a non-minimal coupling between these two sectors
of a form that (to our knowledge) has not been considered
before. The Lagrangian reads

LJ =
p

�g[ 12R + 1
2⇣R

p
V (�) � 1

2 (@�)2 � V (�)] . (1)

Due to the non-minimal coupling, we will refer to this form
of the theory as Jordan frame. In order to transform to the
canonical Einstein frame, one needs to redefine the metric:

gµ⌫ ! ⌦(�)�1gµ⌫ , ⌦(�) = 1 + ⇣
p

V (�) . (2)

This bring the Lagrangian to the following, Einstein-frame
form:

LE =
p

�g


1
2R � 1

2 (⌦(�)�1 + 3
2 (log ⌦(�))02)(@�)2 � V (�)

⌦(�)2

�
.

Note that in the absence of non-minimal coupling, ⇠ = 0,
the distinction between Einstein and Jordan frame vanishes.
In this case the inflationary dynamics is fully determined by
the properties of the scalar potential V (�). In the presence
of a non-minimal coupling, however, one has to analyse the
interplay between the di↵erent contributions to the inflation-
ary dynamics due to V (�) and ⇠. Remarkably, in the strong
coupling limit, we will demonstrate that these dynamics are
solely determined by ⇠ and independent of V (�).

A universal attractor

In this section we consider the strong coupling limit of infla-
tion, where ⇠ becomes very large. We will later quantify how
large ⇠ needs to be for this limit. First we will present two
arguments for a universal attractor behaviour in the limit of
infinite ⇠.

The first, heuristic argument involves a comparison of the
three terms that involve � in the Jordan frame Lagrangian.
Slow-roll inflation always requires the potential energy to
dominate over the kinetic terms. Moreover, in the large-⇠
limit the non-minimal coupling term will also dominate over
the latter. Therefore the kinetic terms plays a subdominant
role in this limit. Neglecting this term, the field equation for
� becomes algebraic and implies

⇠R = 4�2
p

V (�) . (3)

Substituting this back into the Jordan frame Lagrangian
yields

LJ =
p

�g[ 12R +
⇠2

16�2
R2] , (4)

and hence the Starobinsky model of inflation [? ] appears.

2

A second, more robust argument starts from the kinetic
term in Einstein frame. In the large-⇠ limit, the two contri-
butions to the kinetic terms scale di↵erently under ⇠. Re-
taining only the leading term, the Lagrangian becomes

LE =
p

�g


1
2R � 3

4 (@ log(⌦(�)))2 � �2 V (�)

⌦(�)2

�
. (5)

Remarkably, the canonically normalised field ' involves the
function ⌦(�) of the scalar potential itself,

' =
p

3/2 log(⌦(�)) . (6)

Therefore, in terms of ', the theory has lost all reference to
the original scalar potential. It has the universal form

LE =
p

�g
h
1
2R � 1

2 (@')2 � ⇣�2(1 � e�
p

2/3')2
i

, (7)

which coincides with the scalar formulation of the Starobin-
sky model. The spectral index and tensor-to-scalar ratio are

ns = 1 � 2

N
, r =

12

N2
. (8)

in the large-N limit. These are located in the ‘sweet spot’ of
Planck’s recent results.

The crucial assumption in the above derivation was that
the kinetic term is dominated by the second contribution. In
other words, we require

⌦(�) ⌧ 3
2⌦(�)02 . (9)

In terms of our original scalar potential and the associated
slow-roll parameter ✏J , this translates into the following con-
dition

1 + ⇠
p

V (�) ⌧ 3
4⇠2V (�)✏J(�) , ✏J =

1

2

✓
V�

V

◆2

. (10)

Interestingly, this implies that models with a flatter scalar
potential require a stronger coupling in order to reach the
vicinity of the attractor. In contrast, for less fine-tuned mod-
els with larger values of ✏J , the system reaches the attractor
for a lower value of the coupling ⇠. It is important to point
out that even models with a scalar potential that does not
support inflation, e.g. of an exponential form, still asymptote
to the Starobinsky model at strong coupling.

Another remark that we would like to make is that it can
be convenient to make a di↵erent identification of the canon-
ical variable. In the strong coupling limit, one can arbitrarily
choose the constant term a in the definition of the canonical
scalar field, and shift ' to introduce a second constant b:

' =
p

3/2 log(a + b⇠
p

V (�)) . (11)

The resulting scalar potential reads

�2

⇠2
(a � be

p
2/3')2

(1 � a + be
p

2/3')2
. (12)
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FIG. 1. The ⇠-dependence of (ns, r) on a linear and a logarithmic

scale for di↵erent chaotic models with n = (2/3, 1, 3/2, 2, 3, 4)
(in decreasing redshift) for 60 e-folds. The points correspond to

log(⇠) = (�2, . . . , 2).

The leading contributions to the cosmological observables
will therefore be equal to (8); there will however be di↵er-
ences at the subleading level, however. Nevertheless, it may
be preferable to conveniently choose a and b to preserve any
symmetries that the original potential (e.g. parity even or
odd in �) might have. An example is a = b = 1/2, for which
the fraction becomes tanh2('/

p
6).

Examples

In this section we illustrate the universal attractor behaviour
for a number of classes of models. Starting with chaotic
inflation [? ], the scalar potential reads

V (�) = �n . (13)

Without non-minimal couplings, these have the following
cosmological observables:

ns = 1 � 2 + n

2N
, r =

4n

N
, (14)

Just	
  as	
  before,	
  with	
  the	
  same	
  
observa7onal	
  consequences,	
  
independently	
  of	
  V(φ)	
  

But	
  at	
  small	
  ζ it	
  reduces	
  to	
  the	
  original	
  theory	
  V(φ),	
  so	
  by	
  
changing	
  	
  ζ	
  we	
  can	
  interpolate	
  between	
  the	
  original	
  theory	
  
and	
  the	
  universal	
  aSractor	
  point	
  at	
  large	
  ζ.	
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  Porra7	
  

model	
  in	
  supergravity	
  

interpolate between the standard predictions of the chaotic inflation scenario with various

potentials V (�) and ⇠ = 0 [6], and the attractor point (1.1).

Recently we considered models with a large family of potentials V (�) and introduced a

generalized version of non-minimal coupling to gravity, such as ⇠
p
V (�)R, or ⇠�R [12]. For

small ⇠, these models have the same predictions as the usual inflation models with minimal

coupling to gravity, but in the large ⇠ limit their predictions converge to (1.1).

The inflaton potential of the canonically normalized inflaton field ' in all models yielding

the universal result (1.1) can be represented as

V (') = V0

⇣
1� e�

p
2
3' + ...

⌘
(1.2)

in the limit ' ! 1. More general potentials V0(1� e�b'+ ...) have been considered in many

inflationary theories, starting from [21], with di↵erent values of the parameter b. However,

in the context of the cosmological attractors discussed so far, the constant b was always

equal
p
2/3. In this paper we will consider two classes of supergravity models, where the

potentials at large values of the inflaton field ' are given by

V (') = V0

⇣
1� e�

p
2
3↵' + ...

⌘
. (1.3)

A striking feature is that the new parameter ↵ in both classes of models is related in the same

way to the Kähler curvature RK of the inflaton’s scalar manifold: RK = � 2
3↵ . The scalar

curvature thus that plays a crucial role in the generalized attractors that we put forward in

this paper.

One of such models is an SU(1,1)
U(1) ↵-� model found in [2] in a particular version of super-

gravity where the inflaton field is a part of a vector multiplet rather than a chiral multiplet.

The potential of the model is

V ⇠
�
� � ↵e�

p
2
3↵'

�2
. (1.4)

The values of ns and r for this model do not depend on � and in the limit of large N and

small ↵ are given by

ns = 1� 2

N
, r = ↵

12

N2
. (1.5)

In Section 2 of this paper we analyze observational consequences of this model for generic

values of ↵ > 0 and find that in the large ↵ (small curvature) limit, the observational

predictions for ns and r of this class of models coincide with the predictions of the simplest

chaotic inflation model with a quadratic potential, which are given by

ns = 1� 2

N
, r =

8

N
, (1.6)

2

↵� �

In	
  this	
  model,	
  ns	
  and	
  r	
  do	
  not	
  depend	
  on	
  β. For	
  α, β = 1, 
the	
  poten7al	
  is	
  the	
  same	
  as	
  in	
  Starobinsky	
  model.	
  For	
  
small	
  α	
  

ns = 1� 2

N
, r = ↵

12

N2

For	
  large	
  α the	
  predic7ons	
  are	
  the	
  same	
  as	
  in	
  the	
  simplest	
  	
  
chao7c	
  infla7on	
  with	
  a	
  quadra7c	
  poten7al:	
  

ns = 1� 2

N
, r =

8

N

Models	
  with	
  one	
  real	
  scalar	
  from	
  a	
  vector	
  mul7plet	
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ns = 1� 2

N
, r = ↵

12

N2

Another	
  class	
  of	
  cosmological	
  aSractors	
  naturally	
  appears	
  in	
  superconformal	
  
theory	
  and	
  supergravity.	
  This	
  class	
  includes,	
  in	
  par7cular,	
  models	
  

At	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  these	
  models	
  have	
  universal	
  predic7on	
  ↵ . 1

However,	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  predic7ons	
  depend	
  on	
  the	
  choice	
  of	
  F(x).	
  For	
  
the	
  simplest	
  choice	
  F	
  =	
  xn	
  ,	
  the	
  predic7ons	
  coincide	
  with	
  those	
  of	
  the	
  
simplest	
  chao7c	
  infla7on	
  models	
  

↵ � 1
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The	
  curvature	
  of	
  the	
  Kahler	
  manifold	
  is	
  inversely	
  propor7onal	
  to	
  α	
  	
  

Small	
  α means	
  high	
  curvature,	
  small	
  r	
  	
  -­‐	
  good	
  for	
  Planck 	
  	
  

Large	
  α means	
  small	
  curvature,	
  large	
  r	
  	
  -­‐	
  good	
  for	
  BICEP2 	
  	
  

Thus,	
  finding	
  ns	
  and	
  r	
  may	
  tell	
  us	
  something	
  important	
  
about	
  the	
  nature	
  of	
  gravity	
  and	
  geometry	
  of	
  superspace.	
  



L =
p
�g
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1

2
R� 1

2
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µ'� F (tanh
'p
6↵

)

�

What	
  if	
  instead	
  of	
  the	
  monomial	
  func7ons	
  F	
  =	
  xn	
  
one	
  considers	
  F	
  =	
  x	
  +x2	
  +x3+…	
  ?	
  

Then	
  in	
  the	
  large	
  α limit,	
  the	
  predic7ons	
  approach	
  
a	
  single	
  aSractor	
  point:	
  The	
  simplest	
  chao7c	
  
infla7on	
  with	
  a	
  quadra7c	
  poten7al. 	
  	
  

Kallosh,	
  AL,	
  Roest	
  1405.3646	
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By	
  changing	
  the	
  strength	
  of	
  non-­‐minimal	
  coupling	
  to	
  gravity	
  
and	
  the	
  curvature	
  of	
  the	
  Kahler	
  manifold	
  in	
  supergravity,	
  one	
  
can	
  con>nuously	
  interpolate	
  between	
  two	
  aMractor	
  points	
  
for	
  these	
  classes	
  of	
  large	
  field	
  models:	
  the	
  predic7ons	
  of	
  the	
  
simplest	
  chao7c	
  infla7on	
  models	
  with	
  large	
  r,	
  	
  favored	
  by	
  
BICEP2,	
  and	
  the	
  lowest	
  part	
  of	
  the	
  ns-­‐r	
  plane	
  favored	
  by	
  
Planck.	
  	
  



RK,	
  Linde,	
  Vercnocke,	
  Wrase,	
  1406.4866	
  

Analy>c	
  Classes	
  of	
  Metastable	
  de	
  SiMer	
  Vacua	
  

From	
  2003	
  7ll	
  recently:	
  	
  De	
  SiMer	
  hun>ng	
  in	
  the	
  landscape	
  

No	
  underlying	
  principle	
  was	
  known	
  with	
  broken	
  supersymmetry	
  as	
  to	
  how	
  to	
  achieve	
  local	
  
stability	
  for	
  dS	
  vacua:	
  absence	
  of	
  tachyons	
  	
  

We	
  have	
  found	
  how	
  to	
  generate	
  analy7cally	
  mul7ple	
  dS	
  vacua	
  in	
  supergravity	
  	
  which	
  are	
  
locally	
  stable.	
  	
  We	
  use	
  computers	
  only	
  to	
  test	
  the	
  new	
  principle,	
  and	
  to	
  find	
  examples,	
  like	
  the	
  
ones	
  in	
  STU	
  models.	
  

Our	
  new	
  strategy	
  is	
  to	
  use	
  the	
  advantage	
  of	
  one	
  of	
  the	
  fields	
  in	
  supergravity	
  to	
  be	
  a	
  no-­‐
scale	
  one,	
  as	
  in	
  KKLT,	
  	
  and	
  to	
  solve	
  the	
  following	
  equa7ons	
  

Renata: Bert, please, decide if you want to explain this case here and what the limit to
Minkowski is

Solution in Class II in eq. (3.17) clearly admit the Minkowski (AdS) non-supersymmetric limit
at vanishing (negative ) �. Even for � = 0 the limit to ✏ = 0 is singular, therefore here again the
Minkowski and AdS vacua have a rich dependence on ✏ which should not be taken to zero.

There is a solution 2 in the Class II, described in Appendix B.2, for the case with a
3

= 0
choice which corresponds also to W

UUU

= 0, which has a limit to both � as well as ✏ vanishing,
still supersymmetry remains broken and also flat directions are recovered.

The mass eigenvalues at a = 1 expanded near small values of ⇤ and ✏ are:

m2

1,2

=
1

48⇥ 96
, m2

3

=
✏2

192
� 13

2
⇤ , m2

4

=
✏2

192
+ ⇤ , m2

5

=
1 + 3a2

16⇥ 96
, m2

6

=
✏2

8⇥ 96
+

3

8

⇤

✏2
(5.11)

If we first send ⇤ to zero at fixed ✏ we find few small masses

m2

3

=
✏2

192
, m2

4

=
✏2

192
, m2

6

=
✏2

8⇥ 96
(5.12)

If we send now ✏ to zero, we find 3 flat directions in the non-supersymmetric Minkowski minimum.
Thus all our dS examples which we studied agree with the predictions of the no-go theorem in

the beginning of this section.

6 Discussion

In this paper we have given a general recipe for constructing abundant families of de Sitter vacua
in supergravity models that are motivated by compactifications of string theory. The reason there
are many locally stable supersymmetric Minkowski vacua in supergravity is that at D

a

W = 0 and
W = 0 the mass matrix at the minimum is of the form

M2

Minkowski

=

✓
eK |D2W |2

a

¯

b

0
0 eK |D2W |2

āb

◆
, (6.1)

so that all eigenvalues are either positive or zero, but never negative. The arrangement for the de
Sitter vacua made in this paper is to impose a hierarchy for the supersymmetry breaking and use
the no-scale T modulus in such a way that the approximate no-scale condition e↵ectively removes
the negative �3|W |2 term from the potential

|D
T

W |2 � 3|W |2 ⇠ O(✏2) . (6.2)

The remaining part of the potential for the X i fields is positive and small

|D
i

W |2 ⇠ O(✏2) . (6.3)

We evaluate the full mass matrix under the conditions that

V = ⇤ , @
a

V = 0 , D
a

W = F
a

(✏) , @
a

@
b

V = V
ab

(⇤, ✏) , (6.4)

18We	
  have	
  found	
  certain	
  condi7ons	
  when	
  it	
  is	
  possible	
  to	
  prove	
  that	
  all	
  de	
  SiSer	
  solu7ons	
  of	
  
these	
  equa7ons	
  are	
  locally	
  stable!	
  Hence,	
  we	
  can	
  produce	
  analy7c	
  de	
  SiSer	
  vacua	
  in	
  the	
  
landscape	
  in	
  abundance.	
  	
  
Our	
  examples	
  in	
  STU	
  models	
  confirm	
  the	
  generic	
  condi7ons	
  required	
  for	
  the	
  proof	
  of	
  stability.	
  

To	
  relate	
  this	
  new	
  dS	
  supergravity	
  landscape	
  to	
  specific	
  string	
  theory	
  compac7fica7ons	
  
is	
  the	
  next	
  step.	
  	
  



First	
  aMempt:	
  let	
  us	
  deform	
  slightly	
  the	
  locally	
  stable	
  susy	
  Minkowski	
  vacua	
  to	
  get	
  	
  

locally	
  stable	
  de	
  SiSer	
  vacua	
   |DW |2 � 3|W |2 > 0

We	
  proved	
  a	
  no-­‐go	
  theorem	
  that	
  small	
  deforma7on	
  of	
  a	
  W	
  and/or	
  K	
  of	
  a	
  locally	
  	
  
stable	
  susy	
  Minkowski	
  vacua	
  will	
  not	
  produce	
  a	
  locally	
  stable	
  de	
  SiSer	
  vacua	
  	
  

Therefore	
  a	
  part	
  of	
  the	
  supergravity	
  landscape	
  with	
  locally	
  stable	
  de	
  SiSer	
  vacua	
  
	
  must	
  be	
  disconnected	
  from	
  the	
  	
  supersymmetric	
  locally	
  stable	
  Minkowski	
  	
  vacua	
  

The	
  no-­‐go	
  theorem,	
  therefore,	
  predicts,	
  that	
  the	
  limit	
  from	
  a	
  locally	
  stable	
  	
  
de	
  SiSer	
  vacuum	
  cannot	
  be	
  	
  a	
  supersymmetric	
  locally	
  stable	
  Minkowski	
  vacuum	
  	
  

This	
  predic7on	
  is	
  confirmed	
  in	
  our	
  examples:	
  the	
  limits	
  are	
  either	
  stable	
  Minkowski	
  	
  
with	
  broken	
  susy,	
  or	
  have	
  flat	
  direc7ons.	
  

W ! W + �W K ! K + �K

It	
  did	
  not	
  work	
  



A New Toy In Town!	



A	
  nilpotent	
  chiral	
  mul7plet,	
  Volkov-­‐Akulov	
  golds7no	
  and	
  D-­‐brane	
  physics	
  	
  

Observa7on:	
  not	
  a	
  single	
  version	
  of	
  string	
  theory	
  monodromy	
  supergravity	
  model	
  
is	
  known	
  as	
  of	
  today.	
  There	
  is	
  always	
  a	
  problem	
  of	
  non-­‐inflaton	
  moduli	
  
stabiliza7on	
  or	
  a	
  consistency	
  problem.	
  

Meanwhile,	
  numerous	
  well	
  working	
  cosmological	
  supergravity	
  models	
  of	
  infla7on	
  
and/or	
  upliUing	
  involving	
  a	
  golds7no	
  mul7plet	
  have	
  not	
  been	
  associated	
  with	
  
string	
  theory.	
  See	
  examples	
  in	
  earlier	
  part	
  of	
  the	
  talk.	
  

All	
  earlier	
  aSempts	
  to	
  associate	
  string	
  theory	
  models	
  with	
  effec7ve	
  supergravity	
  	
  
are	
  based	
  on	
  standard	
  unconstrained	
  chiral	
  mul7plets:	
  spin	
  0	
  <-­‐>	
  spin	
  1/2	
  	
  

Fermionic	
  VA	
  golds7no	
  live	
  on	
  D-­‐branes,	
  have	
  only	
  spin	
  1/2	
  	
  



Unconstrained	
  chiral	
  superfield	
  

S(x, ✓) = s(x) +
p
2 ✓G(x) + ✓

2
F

S(x)

Nilpotent	
  chiral	
  superfield	
  
S

2(x, ✓) = 0

S =
GG

2FS
+

p
2 ✓G + ✓2FS

s(x) ) G(x)G(x)

2FS(x)



D-­‐p-­‐branes	
  and	
  Volkov-­‐Akulov	
  golds7no	
  

SDBI+WZ = � 1

↵

2

Z
d10x

p
� detGµ⌫ =

1

↵

2

Z
E

m0 ^ ... ^ E

m9
,

E

m = dxm + ↵

2
�̄�md�



Too	
  many	
  fields,	
  some	
  of	
  them	
  do	
  not	
  directly	
  par7cipate	
  in	
  
infla7on.	
  We	
  must	
  add	
  higher	
  correc7ons	
  to	
  the	
  Kahler	
  poten7al	
  
to	
  stabilize	
  these	
  fields	
  near	
  their	
  zero	
  values.	
  

The	
  cure:	
  Volkov-­‐Akulov	
  nonlinear	
  realiza7on	
  of	
  supersymmetry	
  
does	
  not	
  require	
  fundamental	
  scalar	
  degrees	
  of	
  freedom,	
  they	
  are	
  
replaced	
  by	
  bilinear	
  fermionic	
  combina7ons	
  with	
  zero	
  vev.	
  
	
  

Ferrara,	
  RK,	
  Linde	
  	
  1408.4096	
  
RK,	
  Linde	
  1408.5950	
  
Antoniadis,	
  Dudas,	
  Ferrara,	
  Sagno2	
  	
  1403.3269	
  	
  	
  	
  	
  

Procedure:	
  Replace	
  standard	
  unconstrained	
  chiral	
  superfields	
  by	
  
nilpotent	
  superfields,	
  which	
  do	
  not	
  have	
  dynamical	
  scalar	
  
components.	
  
	
  

S

2(x, ✓) = 0



Calculate	
  poten7als	
  as	
  func7ons	
  of	
  all	
  superfields	
  
as	
  usual,	
  and	
  then	
  DECLARE	
  that	
  S	
  =0	
  for	
  the	
  
scalar	
  part	
  of	
  the	
  nilpotent	
  superfield.	
  No	
  need	
  
to	
  stabilize	
  and	
  study	
  evolu7on	
  of	
  the	
  S	
  field.	
  	
  

Supergravity	
  with	
  nilpotent	
  mul7plets	
  is	
  a	
  new	
  theory	
  
requiring	
  a	
  very	
  sophis7cated	
  analysis,	
  especially	
  when	
  
fermion	
  interac7ons	
  are	
  involved.	
  However,	
  the	
  bosonic	
  
sector	
  is	
  much	
  simpler	
  than	
  before.	
  	
  

So	
  much	
  simpler!!!	
  



De	
  SiMer	
  Vacua	
  and	
  Dark	
  Energy	
  

We	
  proposed	
  a	
  systema>c	
  procedure	
  for	
  building	
  locally	
  stable	
  dS	
  vacua	
  without	
  
tachyons	
  in	
  stringy	
  theory	
  STU	
  models,	
  or	
  using	
  the	
  Polonyi	
  type	
  superfield.	
  

Polonyi	
  type	
  superfield	
  was	
  successfully	
  used	
  in	
  the	
  past	
  in	
  supergravity	
  models,	
  
in	
  par7cular	
  to	
  provide	
  a	
  supersymmetric	
  version	
  of	
  an	
  	
  F-­‐term	
  upliUing	
  for	
  the	
  KKLT	
  
De	
  SiSer	
  vacua.	
  	
  	
  However,	
  it	
  was	
  not	
  known	
  how	
  to	
  relate	
  Polonyi	
  to	
  string	
  theory	
  

Nilpotent	
  golds7no	
  superfied	
  S2=0	
  is	
  associated	
  with	
  the	
  D-­‐brane	
  physics	
  in	
  string	
  theory,	
  
via	
  Volkov-­‐Akulov	
  theory.	
  This	
  leads	
  to	
  a	
  supersymmetric	
  KKLT	
  upliUing	
  in	
  string	
  theory.	
  

NEW:	
  replace	
  Polonyi	
  by	
  a	
  nilpotent	
  superfield	
  

Ferrara,	
  RK,	
  Linde	
  	
  1408.4096	
  

W = WKKLT �M2S, K = KKKLT + SS̄

V = VKKLT (⇢, ⇢̄) +
M4

(⇢+ ⇢̄)3



For	
  the	
  first	
  7me	
  using	
  nilpotent	
  superfield	
  S2=0	
  we	
  have	
  simple	
  string	
  theory	
  
mo7vated	
  supergravity	
  models	
  for	
  infla7on	
  with	
  de	
  SiSer	
  vacua	
  exit.	
  
Example	
  

K = � (�� �̄)2

2
+ SS̄, W = SM2(1 + c�2) +W0

The	
  field	
  Im	
  	
  Φ	

 is	
  heavy	
  and	
  quickly	
  vanishes,	
  during	
  infla7on	
  we	
  find	
  a	
  
quadra7c	
  poten7al	
  for	
  Re	
  Φ	


	
  

At	
  the	
  minimum	
  Φ 	
   vanishes	
  and	
  the	
  poten7al	
  is	
  

V0 = M4 � 3W 2
0 ⇠ 10�120

Generaliza7on	
  to	
  generic	
  infla7onary	
  models	
  with	
  V=	
  f2(Φ) during	
  infla7on	
  
is	
  straigh}orward	
  

D�W = 0 DSW = M2

SuperHiggs	
  effect:	
  gravi>no	
  eats	
  golds>no	
  from	
  the	
  S-­‐mul>plet	
  and	
  becomes	
  fat!	
  

RK,	
  Linde	
  1408.5950	
  

No	
  cosmological	
  
Polonyi	
  model	
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LHC 

B-­‐modes	
  from	
  
infla>on	
  

126	
  Gev	
  

r ⇠ 0.15

GUTs 

Vinfl ⇠ E4
Vinfl =

H2

3

Hawking	
  temperature	
  
of	
  gravita7onal	
  radia7on	
  

TH =
H

2⇡
⇠ 1013 GeV

Einfl ⇠ 1016GeV


