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We	  discuss	  infla7onary	  models	  which	  are	  flexible	  enough	  to	  fit	  the	  data	  
	  (Planck	  2013	  or	  BICEP2	  or	  in	  between),	  which	  can	  be	  implemented	  in	  
	  string	  theory/supergravity,	  and	  which	  may	  tell	  us	  something	  interes7ng	  
	  and	  instruc7ve	  about	  the	  fundamental	  theory	  from	  the	  sky	  
	  

We	  describe	  new	  models	  of	  infla7on	  and	  dark	  energy/cc.	  New	  results	  
on	  de	  SiSer	  Landscape:	  how	  to	  avoid	  tachyons	  in	  string	  theory	  
mo7vated	  supergravi7es	  
	  

Recent	  new	  tools	  have	  allowed	  us	  to	  construct	  new	  simple	  models	  of	  	  
infla7on	  with	  dS	  upliUing	  in	  the	  context	  of	  spontaneously	  broken	  
supersymmetry	  
	  

A New Toy In Town!	
 A	  nilpotent	  chiral	  mul7plet,	  Volkov-‐Akulov	  golds7no	  and	  	  
D-‐brane	  physics	  	  
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Is It Dust?Is It Dust?

(Flauger, Hill, & Spergel, arXiv:1405:7351)

  

Is It Dust?Is It Dust?

(Flauger, Hill, & Spergel, arXiv:1405:7351)

r ⇠ 0.2

Flauger,	  Hill,	  Spergel	  
June	  2014	  

r = 0

	  	  	  	  BICEP2	  -‐	  	  Planck	  	  Drama	  



Genus	  Topology	  and	  Cross-‐Correla7on	  of	  BICEP2	  and	  Planck	  353	  GHz	  B-‐Modes:	  
Further	  Evidence	  Favoring	  Gravity	  Wave	  Detec7on	  

Wesley	  N.	  Colley	  and	  J.	  Richard	  GoS,	  III,	  September	  2014	  Genus Topology and Cross-Correlation of BICEP2 with Planck 353 GHz B-modes: Further Evidence for Gravity Wave Detection 11

Figure 14. At top, the BICEP2 map (as in Fig. 1); in the mid-
dle, our Planck 353 GHz Map V (as in Fig. 7). At bottom is
the correlation of these two maps. All maps are in Mercator pro-
jection in the region |RA| 6 30�, �65� 6 Dec 6 �50�. Red
shows positive-positive correlations; blue shows negative-negative
correlations; green shows anti-correlations (negative-positive or
positive-negative).

degree patches. We can measure the theoretical C
l

for gravi-
tational lensing at l = 119 from Fig. 2 in the BICEP2 paper
(BICEP2 2014a). The theoretical C

l

amplitude is of course
based on lensing data from Planck and elsewhere. Taking
the ratio of the C

l

’s from lensing and noise at l = 119 allows
us to calculate that the ratio z/w = 0.774. The noise and
gravitational lensing power spectra are proportional to each
other (both have C

l

⇠ const over the range 50 < C

l

< 120),
so we can get the ratio z/w from the ratios of the C

l

’s at
l = 119. We will therefore adopt z/w = 0.774. Then, using
w + z = 0.448, we find z = 0.1955. We can now solve the
two equations above for x and y. Substituting we find

C

PB

(�353/�B

) = 0.552 + 0.1955 + 20.3y (12)

We can then solve for y and find x = 0.552�y. The equation
can also be rewritten as

C

PB

(�353/�B

) = 1� w + 20.3y, (13)

which we will find useful later. To estimate the tensor-to-
scalar mode ratio r, we simply utilize the BICEP2 team’s
power spectrum calibration. In our notation, that is simply
r = (x/0.552)·0.2. In other words, if there were no dust (y =

Table 1. Relative contributions to BICEP map, for di↵erent anal-
yses of the dust. The error on each measured correlation, C

PB

,
is estimated to be 0.039. C⇤ refers to the correlation necessary to
imply a r of 0. In all cases, the correlation measured is at least
2.5� below this level (for Maps I–V, these levels are 2.6�, 4.9�,
3.1�, 4.1� and 3.1�).

Map �353(µK) C

PB

C

⇤
x y r

Map I 4.97 0.101 0.202 0.292 0.259 0.106
Map II 3.31 0.112 0.302 0.370 0.181 0.134
Map III 3.12 0.202 0.321 0.219 0.333 0.079
Map IV 2.96 0.181 0.337 0.274 0.278 0.099
Map V 3.03 0.161 0.331 0.301 0.250 0.109

0), x = 0.552 and we would find r = 0.2, as calibrated by
BICEP2’s power spectrum analysis. We present in Table 1
those results for Planck Maps I – V.

The mean value of r from the 5 methods is r = 0.106.
A simple estimate of the uncertainty associated with our
values of r is the direct standard deviation of the above val-
ues from the di↵erent methods; that computes to ±0.020.
This is a reasonable estimate of the error associated with
our varied mapping processes. (For comparison, one could
apply median statistics [c.f. Gott et al. 2001] to our 5 r val-
ues; the median value is r = 0.106, while the chance the true
value is between 0.99 and 0.109 is 62.5%, roughly 1�.) If we
used the independent �353D = 23.1�

BD

estimate from a sim-
ple power-law interpolation between Planck at 353 GHz and
Planck at 143 GHz to estimate the dust amplitude at 150
GHz, we would have gotten a mean value of r = 11.4. Thus
the uncertainty in r to do the uncertainty in this ratio is
±0.008. However, there is still some additional error in the
estimate of z. The BICEP2 team reports that the gravita-
tional lensing power can vary by about 45.5%. As such, we
recomputed our x, y and r values with z increased and de-
creased by 45.5% (z

max

was adjusted by the same resulting
addends on z); this introduces an additional error of 0.016.
Note that Equation (12) shows that adding or subtracting
(0.455⇥0.1955) = 0.089 from z changes y not at all, but adds
or subtracts 0.089 from x with consequent changes of r of
±0.016. We also have the error in r introduced by the 0.039
error in the correlation measurements; this translates to an
error of 0.029 in r. Each individual map has an uncertainty
in its correlation coe�cient C

PB

of ±0.039 determined as we
have described, by cross-correlating BICEP2 with random
Planck 353 fields. We raise and lower C

PB

by this amount to
compute the error bias on r in each of the 5 maps. The rms
value of this 1� error in r is 0.029. So, we take as our best
value r = 0.106 (this is both the mean and the median of the
values from our 5 maps). As our very conservative estimate
of the error in r, we will add in quadrature the standard
deviations of the r values from the 5 di↵erent maps, errors
in the factor 21.3, the errors due to the expected errors in
the correlation coe�cients, and the errors due to the uncer-
tainty in gravitational lensing: r = 0.106± 0.039. Rounding
and keeping significant digits, r = 0.11± 0.04.

It is important to note that these varied methods give
consistent results. Map I, for example, includes ringing in the
50 < l < 120 modes from the Galactic plane. This ringing
just adds noise, which boost the value of �353 and lowers the

c� ???? RAS, MNRAS 000, 1–13

r ⇠ 0.1

Do	  not	  take	  it	  too	  seriously	  as	  it	  is	  based	  on	  
redigi7zed	  plots	  of	  both	  BICEP2	  and	  Planck.	  
	  
However	  the	  basic	  idea	  to	  check	  Cross-‐
Correla7on	  of	  BICEP2	  and	  Planck	  	  is	  a	  good	  
one.	  This	  is	  what	  BICEP2	  and	  Planck	  are	  doing	  
now,	  using	  the	  actual	  combined	  data.	  And	  we	  
are	  wai7ng…	  

r =?



Planck	  intermediate	  results.	  XXX.	  
The	  angular	  power	  spectrum	  of	  polarized	  dust	  emission	  
at	  intermediate	  and	  high	  Galac7c	  la7tudes	  

Today’s	  paper	  

Details	  on	  dust	  in	  the	  BICEP2	  patch	  of	  the	  sky.	  

Current	  conclusion	  

Extrapola7on	  of	  the	  Planck	  353	  GHz	  data	  to	  150	  GHz	  gives	  a	  dust	  power	  DBB	  ≡	  l(l	  +	  
1)CBB/(2π)	  of	  1.32	  ×	  10−2	  μK2	  over	  the	  mul7pole	  range	  of	  the	  primordial	  
recombina7on	  bump	  (40	  <	  l	  <	  120);	  l	  l	  CMB	  the	  sta7s7cal	  uncertainty	  is	  ±0.29	  ×	  10−2	  
μK2CMB	  and	  there	  is	  an	  addi7onal	  uncertainty	  (+0.28,	  −0.24)	  ×	  10−2	  μK2CMB	  from	  the	  
extrapola7on.	  This	  level	  is	  the	  same	  magnitude	  as	  reported	  by	  BICEP2	  over	  this	  l	  range,	  
which	  highlights	  the	  need	  for	  assessment	  of	  the	  polarized	  dust	  signal	  even	  in	  the	  
cleanest	  windows	  of	  the	  sky.	  The	  present	  uncertain7es	  are	  large	  and	  will	  be	  reduced	  
through	  an	  ongoing,	  joint	  analysis	  of	  the	  Planck	  and	  BICEP2	  data	  sets.	  



	  	  	  	  	  	  	  	  	  	  	  	  	  
Chaotic Inflation in Supergravity:   

shift symmetry	  
Kawasaki,	  Yamaguchi,	  Yanagida	  2000	  

Kahler	  poten7al	  	  

and	  superpoten7al	  
The	  poten7al	  is	  very	  curved	  with	  respect	  to	  S	  and	  Im	  Φ, so	  
these	  fields	  vanish.	  But	  Kahler	  poten7al	  does	  not	  depend	  on	  
	  

W = mS�

� =
p
2Re � = (�+ �̄)/

p
2

The	  poten7al	  of	  this	  field	  has	  the	  simplest	  form,	  as	  in	  chao7c	  
infla7on,	  without	  any	  exponen7al	  terms:	  



Superpoten7al	  must	  be	  a	  REAL	  holomorphic	  func7on.	  (We	  must	  be	  sure	  that	  
the	  poten7al	  is	  symmetric	  with	  respect	  to	  Im	  	  	  	  	  ,	  so	  that	  Im	  	  	  	  	  	  	  =	  0	  is	  an	  
extremum	  (then	  we	  will	  check	  that	  it	  is	  a	  minimum).	  The	  Kahler	  poten7al	  is	  
any	  func7on	  of	  the	  type	  

The	  poten7al	  as	  a	  func7on	  of	  the	  real	  part	  of	  	  	  	  	  	  	  at	  S	  =	  0	  is	  

�

FUNCTIONAL	  FREEDOM	  	  in	  choosing	  infla7onary	  poten7al	  

K((�� �̄)2, SS̄)

RK,	  	  Linde,	  Rube	  2010	  

W = S f(�)

V = |f(�)|2
� �

Here	  S	  is	  a	  golds7no	  mul7plet:	  supersymmetry	  is	  broken	  only	  in	  the	  golds7no	  direc7on	  



FUNCTIONAL	  FREEDOM	  	  in	  choosing	  infla7onary	  
poten7al	  in	  supergravity	  allows	  us	  to	  fit	  any	  set	  
of	  ns	  and	  r.	  
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10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-� Planck+WP+BAO

�CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the �CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k� = 0.002 Mpc�1.

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N� < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = �4 exp
�
�� �

Mpl

�
(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) � t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = �4
�
�

Mpl

���
(36)

lead to inflation with a(t) � exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r � �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) � �4
�
1 � �

p

µp + ...

�
, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 � �4M2

pl/µ
2 + 3r/8 and

r � 32�2
�M2

pl/µ
4. This potential leads to predictions in agree-

ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 � �(2/N)(p � 1)/(p � 2)
when r � 0. The hill-top potential with p = 3 lies outside the

Sunday, March 31, 13

FIG. 1: The green area describes observational consequences of
inflation in the Higgs model (10) with v � 1 (a ⌧ 1), for the
inflationary regime when the field rolls down from the maximum of
the potential. The continuation of this area upwards corresponds
to the prediction of inflation which begins when the field � initially
is at the slope of the potential at |v� �| � v. In the limit v ! 1,
which corresponds to a ! 0, the predictions coincide with the
predictions of the simplest chaotic inflation model with a quadratic
potential m2

2 �2.

an inflationary regime when the field � rolls from the
maximum of the potential at � = 0, as in new inflation
scenario. Natural initial conditions for inflation in this
model are easily set by tunneling from nothing into a
universe with spatial topology T 3, see e.g. [24] and the
discussion in [51]. The results of investigation of the ob-
servational consequences of this model [38, 42, 48] are
described by the green area in Figure 1. Predictions of
this model are in good agreement with observational data
for a certain range of values of the parameter a ⌧ 1.

However, this does not mean that absolutely any po-
tential V (�) can be obtained in this simple context, or
that one has a full freedom of choice of the functions
f(�). It is important to understand the significance of
the restrictions on the form of the Kähler potential and
superpotential described above. According to [39], in the
theory with the Kähler potential K = K((� � ¯

�)

2, S ¯S)

the symmetry of the Kähler potential � ! ±¯

�, as well as
the condition that f(�) is a real holomorphic function are
required to ensure that the inflationary trajectory, along
which the Kähler potential vanishes is an extremum of
the potential in the direction orthogonal to the inflati-
onary trajectory S = Im� = 0. After that, the proper
choice of the Kähler potential can make it not only an
extremum, but a minimum, thus stabilizing the inflation-
ary regime [38, 39, 44].

The requirement that f(�) is a real holomorphic func-
tion does not affect much the flexibility of choice of the
inflaton potential: One can take any positively defined

potential V (�), take a square root of it, make its Taylor
series expansion and thus construct a real holomorphic
function which approximate V (�) with great accuracy.
However, one should be careful to obey the rules of the
game as formulated above.

For example, suppose one wants to obtain a fourth de-
gree polynomial potential of the type of V (�) =

m2�2

2

(1+

a� + b�2

) in supergravity. One may try to do it by tak-
ing K = (� +

¯

�)

2/2 + S ¯S) and f(�) = m�(1 + cei✓�)

[52]. For general ✓, this choice violates our conditions for
f(�). In this case, the potential will be a fourth degree
polynomial with respect to Im � if Re � = 0. However,
in this model the flat direction of the potential V (�)

(and, correspondingly, the inflationary trajectory) devi-
ate from Re � = 0. (Also, in addition to the minimum at
� = 0, the potential will develop an extra minimum at
� = �c�1e�i✓.) As a result, the potential along the infla-
tionary trajectory is not exactly polynomial, contrary to
the expectations of [52, 53]. Moreover, the kinetic terms
of the fields will be non-canonical and non-diagonal.

This may not be a big problem, since the potential in
the direction orthogonal to the inflationary trajectory is
exponentially steep. Therefore the deviation of this field
from Re � = 0 will not be large, and for sufficiently large
values of the inflaton field � the potential will be ap-
proximately given by the simple polynomial expression
|f(�/

p
2)|2. But in order to make a full investigation of

inflation in such models one would need to study evo-
lution of all fields numerically, and make sure that all
stability conditions are satisfied. An advantage of the
methods developed in [38, 39] is that all fields but one
vanish during inflation, all kinetic terms are canonical
and diagonal along the inflationary trajectory, and in-
vestigation of stability is straightforward.

Fortunately, one can obtain an exactly polynomial po-
tential V (�) in the theories with K = K((� � ¯

�)

2, S ¯S)

using the methods of [38, 39], if the polynomial can be
represented as a square of a polynomial function f(�)

with real coefficients. As a simplest example, one may
consider f(�) = m�

�
1 � c� + d�

2

�
. The resulting po-

tential of the inflaton field can be represented as

V (�) =

m2�2

2

�
1 � a� + a2b �2

)

�
2

. (11)

Here a = c/
p

2 and a2b = d/2. We use the parametriza-
tion in terms of a and b because it allows us to see what
happens with the potential if one changes a: If one de-
creases a, the overall shape of the potential does not
change, but it becomes stretched. The same potential
can be also obtained in supergravity with vector or ten-
sor multiplets [36].

Inflation in this theory may begin under the same ini-
tial conditions as in the simplest large field chaotic in-
flation models �n. The difference is that in the small a
limit, the last 60 e-foldings of inflation are described by
the theory �2. Meanwhile for large a one has the same

RK,	  Linde	  and	  Westphal,	  1405.0270	  

K((�� �̄)2, SS̄) V = |f(�)|2W = S f(�),	   ,	  



Natural	  Infla7on	  in	  Supergravity	  
Natural	  infla>on	  in	  theories	  with	  axion	  poten7als	  is	  known	  for	  nearly	  25	  years	  
(Freese	  et	  al	  1990),	  but	  un>l	  now	  it	  did	  not	  have	  any	  stable	  supergravity	  
generaliza>on.	  Invariably,	  there	  was	  an	  instability	  with	  respect	  to	  some	  moduli,	  
or	  we	  needed	  some	  assump7ons	  about	  string	  theory	  upliUing.	  The	  problem	  
was	  solved	  only	  recently:	  RK,	  Linde,	  Vercnocke,	  1404.6204	  	  
	  

All	  non-‐inflaton	  moduli	  stabilized	  



Natural	  infla7on	  occurs	  even	  in	  theories	  with	  a,	  b	  >	  1,	  as	  
suggested	  by	  string	  theory.	  For	  |a	  –	  b|	  <<	  1,	  	  one	  can	  have	  
natural	  infla>on	  even	  in	  the	  theory	  with	  a	  single	  axion	  field.	  	  

Large	  field	  natural	  infla>on	  with	  a	  single	  axion	  

3

and perform the following change of variables T ! iT
and S ! iS. We find

W =
⇤2

p
2
S(e�aT � eaT

⌘
, K = K+ , (18)

where the inflaton is now the imaginary part of a scalar
T . It leads to exactly the same physics as Model 2, and
very similar physics compared to Model 1. The relevant
potential is, therefore, given again (approximately) by
Fig. 1.

Model 4

Finally we give a supergravity model reminiscent of a
potential with a sum of several cosines as in [4, 5]. The
superpotential and Kähler potential are

W =
p
2⇤2S

✓
A sin

aT

2
+B sin

bT

2

◆
, K = K� .

(19)
The inflaton potential is

V = 2⇤4
⇣
A sin

a�

2
p
2
+B sin

b�

2
p
2

⌘2
. (20)

III. IRRATIONAL AXION LANDSCAPE

Now we will make what could seem a minor modifica-
tion of the previous model, but we will find a dramat-
ically di↵erent potential. The Kähler potential now is
K = K+, and the superpotential slightly di↵ers from
(18)

W = ⇤2S(1�Ae�aT �Be�bT ) . (21)

The potential at S = T + T̄ = 0 is

V = ⇤4
⇣
1 +A2 +B2 � 2A cos

a�p
2

+ 2AB cos
(a� b)�p

2
� 2B cos

b�p
2

⌘
. (22)

This potential has an interesting behavior discussed
in [4, 5], but now we have its explicit supergravity im-
plementation without any need for an uplifting. As dis-
cussed long ago by Banks, Dine and Seiberg [18], a par-
ticularly rich behavior is possible if the ratio a

b = q is irra-
tional. This leads to a landscape-type structure of the po-
tential with infinite number of di↵erent stable Minkowski
vacua and metastable dS vacua with di↵erent values of
the cosmological constant, see Fig. 2. If one of the con-
stants a and b in this scenario is irrational, we have an
infinite number of possible dS minima, which allows to
solve the cosmological constant problem using anthropic
considerations.

Moreover, inflationary predictions in this scenario de-
pend on the behavior of the inflaton potential in the

2000 4000 6000 8000 10000f
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V

FIG. 2. Irrational axion potential for A = B = 1, a = 0.01
p
3,

b = 0.005
p
7. The field is shown in Planck units, from 0 to 10000.

This may create an impression that the potential is very steep, but

in fact the potential is very flat and allows chaotic inflation. Just

as in the string landscape scenario [12–17], inflation may end in any

of the infinitely many metastable dS vacua with di↵erent values of

the cosmological constant [18].

vicinity of each of these dS vacua. As a result, one can
have a broad spectrum of possibilities which allows to fit
a large variety of observational data within the context
of a single model with a small number of parameters.

IV. INFLATION FOR a, b & 1

Until now, we discussed the scenario with a, b ⌧ 1.
However, string theory suggests that the parameters
a, b & 1. Can we still have natural inflation in that case?

Let us consider a model with

W = ⇤2S(e�aT � e�bT ), K = K+ . (23)

We will assume that a, b & 1, a � b ⌧ 1. One can show
that in this case inflation is indeed possible.

The absolute minimum of the potential in this theory
is at T = 0. However, one can show that inflation occurs
in the regime of a slow roll from the saddle point of the
potential with Re T = a/2. Re T remains very close to
a/2 during inflation, and only in the very end it starts
moving towards the global minimum with T = 0. The
inflaton potential in this theory is well approximated by

V = 2⇤4e�a2/2
⇣
1� cos

(a� b)�p
2

⌘
. (24)

This potential allows inflation even for a, b � 1 if the
di↵erence between a and b is small, |a�b| ⌧ 1. A similar
idea, in a di↵erent context, was used in the racetrack
inflation model [19], and then applied to natural inflation
in [4]. In this way, one can bring natural inflation one
step closer towards its implementation in string theory.
Note that we were able to do it in the theory of a single
axion field.

RK,	  Linde,	  Vercnocke,	  1404.6204	  	  
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Models	  described	  above	  can	  easily	  explain	  large	  r.	  
Good	  for	  BICEP2.	  They	  can	  also	  describe	  r	  <<	  1,	  but	  
not	  without	  tuning.	  Can	  we	  do	  it	  naturally?	  
	  
Let	  us	  return	  to	  Planck	  and	  some	  mysteries	  related	  
to	  its	  results.	  

We	  found	  a	  new	  class	  of	  chao7c	  infla7on	  models	  with	  
spontaneously	  broken	  conformal	  or	  superconformal	  invariance.	  
Observa7onal	  consequences	  of	  such	  models	  are	  stable	  with	  
respect	  to	  strong	  deforma7ons	  of	  the	  scalar	  poten7al.	  	  	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  Cosmological	  aMractors	  
RK,	  Linde	  2013	  
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Miracles	  to	  be	  explained:	  	  
	  MANY	  apparently	  unrelated	  theories	  make	  same	  predic>on	  

This	  point	  is	  at	  the	  sweet	  spot	  of	  the	  Planck	  allowed	  region.	  	  
	  
Here	  N	  =	  O(60)	  is	  the	  required	  number	  of	  e-‐foldings	  of	  infla7on	  
corresponding	  to	  perturba7ons	  on	  the	  scale	  of	  the	  observable	  part	  
of	  the	  universe.	  
	  
Why	  predic7ons	  of	  different	  theories	  converge	  at	  the	  same	  point?	  
Why	  convergence	  is	  so	  fast?	  What	  is	  the	  rela7on	  to	  non-‐minimal	  
coupling	  to	  gravity?	  Anything	  related	  to	  broken	  conformal	  
invariance?	  Any	  way	  to	  explain	  it	  or	  at	  least	  account	  for	  it	  in	  
supergravity?	  

1� ns =
2

N
, r =

12

N2



Significant	  sensi7vity	  of	  infla7onary	  models	  on	  a	  choice	  of	  the	  
frame	  

The	  superconformal	  theory	  underlying	  supergravity	  
requires	  the	  choice	  of	  a	  Jordan	  frame	  	  	  

1

2
⌦(z, z̄)R =

1

2
e�

1
3K(z,z̄) R

eN (X, X̄)R

The	  superconformal	  theory	  is	  defined	  by	  the	  Kahler	  poten7al	  
of	  the	  embedding	  manifold,	  including	  the	  conformon.	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Non-‐minimal	  coupling	  to	  gravity	  

	  	  	  	  Einstein	  frame,	  large	  ζ	  	  

j

V

(a)

j

V

(b)

Figure 9. The potential �
4 (�2 � v2)2 as a function of the canonically normalized field ' in the

Einstein frame. (a) ⇠ < 0, 1 � |⇠|v2 ⌧ 1. (b) ⇠ > 0. Notice the similarity between these two
potentials. However, physical interpretation of these two potentials is very di↵erent. The value of the
canonically normalized field ' in the model with ⇠ < 0 typically is very large. Meanwhile the value of
this field for the model with ⇠ > 0 can be very small, which is the basis of the Higgs inflation scenario
[9].

statement, one may compare the potential �
4 (�2 � v2)2 with ⇠ < 0 in the limit |⇠|v2 ! 1

with the potential in the Higgs inflation model [9] with ⇠ > 0 and v < 1, for the same values
of parameters � and |⇠|, see Figs. 9(a) and 9(b). The results of our calculations of the
parameters ns and r and of the amplitude of perturbations of metric in this model coincide
with the corresponding results of Ref. [9].

The relation between the inflationary regime with � < v and ⇠ < 0 in the limit |⇠|v2 ! 1
and Higgs inflation with � > v and ⇠ � 1 is quite interesting and even somewhat mysterious,
as if there is some hidden duality between these two classes of models with opposite signs of ⇠.
Moreover, the same set of the cosmological parameters (ns, r) = (1� 2

N , 12
N2 ) = (0.967, 0.003)

also appears in Starobinsky model [16], see [17, 18].

The value of � can be determined from the observed value of amplitude of density
perturbations �⇢ ⇡ 5 ⇥ 10�5. For the two observationally interesting cases the situation is as
follows: For the large-� case with positive ⇠, � decreases along the constant-⇠ lines. At ⇠ = 0
we have � ⇡ 2 ⇥ 10�13 and for large v we have � ⇡ 4 ⇥ 10�11/v2 (this follows from the fact
that for large v the quartic potential near its minimum looks like a quadratic one with mass
squared m2 = �v2). For large ⇠ we have � ⇡ 5 ⇥ 10�10⇠2 independently of v, as in Ref. [9].
For the small-� case with negative ⇠ the behavior is similar. For small |⇠| and large v (but
not too large to pass the cusp peak) we have � ⇡ 4 ⇥ 10�11/v2. In the limit |⇠|v2 ! 1 the
potential is the same as that of Ref. [9] and hence again we have � ⇡ 5 ⇥ 10�10⇠2. Thus we
see that � can be parametrically large or small.

7 Conclusions

In this paper we studied the simplest chaotic inflation models with potentials m2

2 �2 and
�
4 (�2 � v2)2, with the field � nonminimally coupled to gravity, for arbitrary values of the
parameters v and ⇠. We demonstrated that these models can be implemented in the context
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Jordan	  frame,	  arbitrary	  V(φ)	  

A universal attractor for inflation at strong coupling
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We introduce a novel non-minimal coupling between gravity and the inflaton sector. Remarkably,

for large values of this coupling all models asymptote to a universal attractor. This behaviour is

independent of the original scalar potential and generalises the attractor of new Higgs inflation to

all models. The attractor is located in the ‘sweet spot’ of Planck’s recent results.

Introduction

The last few years have seen exciting experimental advances,
both in particle physics and in cosmology. The LHC has de-
tected the first scalar field ever, whose characteristics are
compatible with being the Higgs particle. The Planck satel-
lite has measured the CMB temperature anisotropies with
unprecented precision, the results of which are fully con-
sistent with inflation. Remarkably, it has moreover proven
possible to forge a link between these two fields. Whereas
it was previously thought that the self-coupling of the Higgs
field was too large to allow for inflation, the introduction of
a non-minimal coupling ⇠�2R between the inflationary and
gravitational sectors ameliorates this situation [? ]. Inter-
estingly, it was found that for couplings of order one and
higher, new Higgs inflation asymptotes to identical predic-
tions as the Starobinsky model of inflation [? ].

Until presently, it has only been possible to modify the
�2�4 scalar potential of new Higgs inflation in this way. In
this letter we will introduce a similar, but distinct, non-
minimal coupling between the inflationary and gravitational
sector. Schematically it is of the form ⇠

p
V (�)R. For �2�4

theory, this coupling coincides with a non-minimal coupling
⇠R�2 that is more commonly considered, but for di↵erent
scalar potentials the two non-minimal couplings are distinct.
Also note that this operator is dimension-4 for any choice of
the scalar potential, not just for the quartic one; the param-
eter ⇠ is always dimensionless. In an e↵ective field theory
one would thus generically expect such a coupling, if it is
not ruled out by any symmetry arguments. We will find
that this novel non-minimal coupling allows for a interest-
ing modification of all scalar potentials: for su�ciently large
coupling all choices for V (�) asymptote to Starobinsky in-
flation.

Non-minimal coupling

The starting point of many inflationary models is a La-
grangian consisting of the Einstein-Hilbert term for gravity
plus a kinetic term and scalar potential for the inflaton field.
We add a non-minimal coupling between these two sectors
of a form that (to our knowledge) has not been considered
before. The Lagrangian reads

LJ =
p

�g[ 12R + 1
2⇣R

p
V (�) � 1

2 (@�)2 � V (�)] . (1)

Due to the non-minimal coupling, we will refer to this form
of the theory as Jordan frame. In order to transform to the
canonical Einstein frame, one needs to redefine the metric:

gµ⌫ ! ⌦(�)�1gµ⌫ , ⌦(�) = 1 + ⇣
p

V (�) . (2)

This bring the Lagrangian to the following, Einstein-frame
form:

LE =
p

�g


1
2R � 1

2 (⌦(�)�1 + 3
2 (log ⌦(�))02)(@�)2 � V (�)

⌦(�)2

�
.

Note that in the absence of non-minimal coupling, ⇠ = 0,
the distinction between Einstein and Jordan frame vanishes.
In this case the inflationary dynamics is fully determined by
the properties of the scalar potential V (�). In the presence
of a non-minimal coupling, however, one has to analyse the
interplay between the di↵erent contributions to the inflation-
ary dynamics due to V (�) and ⇠. Remarkably, in the strong
coupling limit, we will demonstrate that these dynamics are
solely determined by ⇠ and independent of V (�).

A universal attractor

In this section we consider the strong coupling limit of infla-
tion, where ⇠ becomes very large. We will later quantify how
large ⇠ needs to be for this limit. First we will present two
arguments for a universal attractor behaviour in the limit of
infinite ⇠.

The first, heuristic argument involves a comparison of the
three terms that involve � in the Jordan frame Lagrangian.
Slow-roll inflation always requires the potential energy to
dominate over the kinetic terms. Moreover, in the large-⇠
limit the non-minimal coupling term will also dominate over
the latter. Therefore the kinetic terms plays a subdominant
role in this limit. Neglecting this term, the field equation for
� becomes algebraic and implies

⇠R = 4�2
p

V (�) . (3)

Substituting this back into the Jordan frame Lagrangian
yields

LJ =
p

�g[ 12R +
⇠2

16�2
R2] , (4)

and hence the Starobinsky model of inflation [? ] appears.

2

A second, more robust argument starts from the kinetic
term in Einstein frame. In the large-⇠ limit, the two contri-
butions to the kinetic terms scale di↵erently under ⇠. Re-
taining only the leading term, the Lagrangian becomes

LE =
p

�g


1
2R � 3

4 (@ log(⌦(�)))2 � �2 V (�)

⌦(�)2

�
. (5)

Remarkably, the canonically normalised field ' involves the
function ⌦(�) of the scalar potential itself,

' =
p

3/2 log(⌦(�)) . (6)

Therefore, in terms of ', the theory has lost all reference to
the original scalar potential. It has the universal form

LE =
p

�g
h
1
2R � 1

2 (@')2 � ⇣�2(1 � e�
p

2/3')2
i

, (7)

which coincides with the scalar formulation of the Starobin-
sky model. The spectral index and tensor-to-scalar ratio are

ns = 1 � 2

N
, r =

12

N2
. (8)

in the large-N limit. These are located in the ‘sweet spot’ of
Planck’s recent results.

The crucial assumption in the above derivation was that
the kinetic term is dominated by the second contribution. In
other words, we require

⌦(�) ⌧ 3
2⌦(�)02 . (9)

In terms of our original scalar potential and the associated
slow-roll parameter ✏J , this translates into the following con-
dition

1 + ⇠
p

V (�) ⌧ 3
4⇠2V (�)✏J(�) , ✏J =

1

2

✓
V�

V

◆2

. (10)

Interestingly, this implies that models with a flatter scalar
potential require a stronger coupling in order to reach the
vicinity of the attractor. In contrast, for less fine-tuned mod-
els with larger values of ✏J , the system reaches the attractor
for a lower value of the coupling ⇠. It is important to point
out that even models with a scalar potential that does not
support inflation, e.g. of an exponential form, still asymptote
to the Starobinsky model at strong coupling.

Another remark that we would like to make is that it can
be convenient to make a di↵erent identification of the canon-
ical variable. In the strong coupling limit, one can arbitrarily
choose the constant term a in the definition of the canonical
scalar field, and shift ' to introduce a second constant b:

' =
p

3/2 log(a + b⇠
p

V (�)) . (11)

The resulting scalar potential reads

�2

⇠2
(a � be

p
2/3')2

(1 � a + be
p

2/3')2
. (12)
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FIG. 1. The ⇠-dependence of (ns, r) on a linear and a logarithmic

scale for di↵erent chaotic models with n = (2/3, 1, 3/2, 2, 3, 4)
(in decreasing redshift) for 60 e-folds. The points correspond to

log(⇠) = (�2, . . . , 2).

The leading contributions to the cosmological observables
will therefore be equal to (8); there will however be di↵er-
ences at the subleading level, however. Nevertheless, it may
be preferable to conveniently choose a and b to preserve any
symmetries that the original potential (e.g. parity even or
odd in �) might have. An example is a = b = 1/2, for which
the fraction becomes tanh2('/

p
6).

Examples

In this section we illustrate the universal attractor behaviour
for a number of classes of models. Starting with chaotic
inflation [? ], the scalar potential reads

V (�) = �n . (13)

Without non-minimal couplings, these have the following
cosmological observables:

ns = 1 � 2 + n

2N
, r =

4n

N
, (14)

Just	  as	  before,	  with	  the	  same	  
observa7onal	  consequences,	  
independently	  of	  V(φ)	  

But	  at	  small	  ζ it	  reduces	  to	  the	  original	  theory	  V(φ),	  so	  by	  
changing	  	  ζ	  we	  can	  interpolate	  between	  the	  original	  theory	  
and	  the	  universal	  aSractor	  point	  at	  large	  ζ.	  

RK,	  Linde,	  Roest	  1310.3950	  
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model	  in	  supergravity	  

interpolate between the standard predictions of the chaotic inflation scenario with various

potentials V (�) and ⇠ = 0 [6], and the attractor point (1.1).

Recently we considered models with a large family of potentials V (�) and introduced a

generalized version of non-minimal coupling to gravity, such as ⇠
p
V (�)R, or ⇠�R [12]. For

small ⇠, these models have the same predictions as the usual inflation models with minimal

coupling to gravity, but in the large ⇠ limit their predictions converge to (1.1).

The inflaton potential of the canonically normalized inflaton field ' in all models yielding

the universal result (1.1) can be represented as

V (') = V0

⇣
1� e�

p
2
3' + ...

⌘
(1.2)

in the limit ' ! 1. More general potentials V0(1� e�b'+ ...) have been considered in many

inflationary theories, starting from [21], with di↵erent values of the parameter b. However,

in the context of the cosmological attractors discussed so far, the constant b was always

equal
p
2/3. In this paper we will consider two classes of supergravity models, where the

potentials at large values of the inflaton field ' are given by

V (') = V0

⇣
1� e�

p
2
3↵' + ...

⌘
. (1.3)

A striking feature is that the new parameter ↵ in both classes of models is related in the same

way to the Kähler curvature RK of the inflaton’s scalar manifold: RK = � 2
3↵ . The scalar

curvature thus that plays a crucial role in the generalized attractors that we put forward in

this paper.

One of such models is an SU(1,1)
U(1) ↵-� model found in [2] in a particular version of super-

gravity where the inflaton field is a part of a vector multiplet rather than a chiral multiplet.

The potential of the model is

V ⇠
�
� � ↵e�

p
2
3↵'

�2
. (1.4)

The values of ns and r for this model do not depend on � and in the limit of large N and

small ↵ are given by

ns = 1� 2

N
, r = ↵

12

N2
. (1.5)

In Section 2 of this paper we analyze observational consequences of this model for generic

values of ↵ > 0 and find that in the large ↵ (small curvature) limit, the observational

predictions for ns and r of this class of models coincide with the predictions of the simplest

chaotic inflation model with a quadratic potential, which are given by

ns = 1� 2

N
, r =

8

N
, (1.6)

2

↵� �

In	  this	  model,	  ns	  and	  r	  do	  not	  depend	  on	  β. For	  α, β = 1, 
the	  poten7al	  is	  the	  same	  as	  in	  Starobinsky	  model.	  For	  
small	  α	  

ns = 1� 2

N
, r = ↵

12

N2

For	  large	  α the	  predic7ons	  are	  the	  same	  as	  in	  the	  simplest	  	  
chao7c	  infla7on	  with	  a	  quadra7c	  poten7al:	  

ns = 1� 2

N
, r =

8

N

Models	  with	  one	  real	  scalar	  from	  a	  vector	  mul7plet	  
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Superconformal α-‐aMractors	  

L =
p
�g


1

2
R� 1

2
@µ'@

µ'� F (tanh
'p
6↵

)

�

RK,	  Linde,	  Roest	  	  1311.0472	  

ns = 1� 2

N
, r = ↵

12

N2

Another	  class	  of	  cosmological	  aSractors	  naturally	  appears	  in	  superconformal	  
theory	  and	  supergravity.	  This	  class	  includes,	  in	  par7cular,	  models	  

At	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  these	  models	  have	  universal	  predic7on	  ↵ . 1

However,	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  predic7ons	  depend	  on	  the	  choice	  of	  F(x).	  For	  
the	  simplest	  choice	  F	  =	  xn	  ,	  the	  predic7ons	  coincide	  with	  those	  of	  the	  
simplest	  chao7c	  infla7on	  models	  

↵ � 1

V ⇠ 'n



ϕ4"

ϕ3"

ϕ2"

ϕ"

ϕ2/3"



The	  curvature	  of	  the	  Kahler	  manifold	  is	  inversely	  propor7onal	  to	  α	  	  

Small	  α means	  high	  curvature,	  small	  r	  	  -‐	  good	  for	  Planck 	  	  

Large	  α means	  small	  curvature,	  large	  r	  	  -‐	  good	  for	  BICEP2 	  	  

Thus,	  finding	  ns	  and	  r	  may	  tell	  us	  something	  important	  
about	  the	  nature	  of	  gravity	  and	  geometry	  of	  superspace.	  



L =
p
�g


1

2
R� 1

2
@µ'@

µ'� F (tanh
'p
6↵

)

�

What	  if	  instead	  of	  the	  monomial	  func7ons	  F	  =	  xn	  
one	  considers	  F	  =	  x	  +x2	  +x3+…	  ?	  

Then	  in	  the	  large	  α limit,	  the	  predic7ons	  approach	  
a	  single	  aSractor	  point:	  The	  simplest	  chao7c	  
infla7on	  with	  a	  quadra7c	  poten7al. 	  	  

Kallosh,	  AL,	  Roest	  1405.3646	  
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By	  changing	  the	  strength	  of	  non-‐minimal	  coupling	  to	  gravity	  
and	  the	  curvature	  of	  the	  Kahler	  manifold	  in	  supergravity,	  one	  
can	  con>nuously	  interpolate	  between	  two	  aMractor	  points	  
for	  these	  classes	  of	  large	  field	  models:	  the	  predic7ons	  of	  the	  
simplest	  chao7c	  infla7on	  models	  with	  large	  r,	  	  favored	  by	  
BICEP2,	  and	  the	  lowest	  part	  of	  the	  ns-‐r	  plane	  favored	  by	  
Planck.	  	  



RK,	  Linde,	  Vercnocke,	  Wrase,	  1406.4866	  

Analy>c	  Classes	  of	  Metastable	  de	  SiMer	  Vacua	  

From	  2003	  7ll	  recently:	  	  De	  SiMer	  hun>ng	  in	  the	  landscape	  

No	  underlying	  principle	  was	  known	  with	  broken	  supersymmetry	  as	  to	  how	  to	  achieve	  local	  
stability	  for	  dS	  vacua:	  absence	  of	  tachyons	  	  

We	  have	  found	  how	  to	  generate	  analy7cally	  mul7ple	  dS	  vacua	  in	  supergravity	  	  which	  are	  
locally	  stable.	  	  We	  use	  computers	  only	  to	  test	  the	  new	  principle,	  and	  to	  find	  examples,	  like	  the	  
ones	  in	  STU	  models.	  

Our	  new	  strategy	  is	  to	  use	  the	  advantage	  of	  one	  of	  the	  fields	  in	  supergravity	  to	  be	  a	  no-‐
scale	  one,	  as	  in	  KKLT,	  	  and	  to	  solve	  the	  following	  equa7ons	  

Renata: Bert, please, decide if you want to explain this case here and what the limit to
Minkowski is

Solution in Class II in eq. (3.17) clearly admit the Minkowski (AdS) non-supersymmetric limit
at vanishing (negative ) �. Even for � = 0 the limit to ✏ = 0 is singular, therefore here again the
Minkowski and AdS vacua have a rich dependence on ✏ which should not be taken to zero.

There is a solution 2 in the Class II, described in Appendix B.2, for the case with a
3

= 0
choice which corresponds also to W

UUU

= 0, which has a limit to both � as well as ✏ vanishing,
still supersymmetry remains broken and also flat directions are recovered.

The mass eigenvalues at a = 1 expanded near small values of ⇤ and ✏ are:

m2

1,2

=
1

48⇥ 96
, m2

3

=
✏2

192
� 13

2
⇤ , m2

4

=
✏2

192
+ ⇤ , m2

5

=
1 + 3a2

16⇥ 96
, m2

6

=
✏2

8⇥ 96
+

3

8

⇤

✏2
(5.11)

If we first send ⇤ to zero at fixed ✏ we find few small masses

m2

3

=
✏2

192
, m2

4

=
✏2

192
, m2

6

=
✏2

8⇥ 96
(5.12)

If we send now ✏ to zero, we find 3 flat directions in the non-supersymmetric Minkowski minimum.
Thus all our dS examples which we studied agree with the predictions of the no-go theorem in

the beginning of this section.

6 Discussion

In this paper we have given a general recipe for constructing abundant families of de Sitter vacua
in supergravity models that are motivated by compactifications of string theory. The reason there
are many locally stable supersymmetric Minkowski vacua in supergravity is that at D

a

W = 0 and
W = 0 the mass matrix at the minimum is of the form

M2

Minkowski

=

✓
eK |D2W |2

a

¯

b

0
0 eK |D2W |2

āb

◆
, (6.1)

so that all eigenvalues are either positive or zero, but never negative. The arrangement for the de
Sitter vacua made in this paper is to impose a hierarchy for the supersymmetry breaking and use
the no-scale T modulus in such a way that the approximate no-scale condition e↵ectively removes
the negative �3|W |2 term from the potential

|D
T

W |2 � 3|W |2 ⇠ O(✏2) . (6.2)

The remaining part of the potential for the X i fields is positive and small

|D
i

W |2 ⇠ O(✏2) . (6.3)

We evaluate the full mass matrix under the conditions that

V = ⇤ , @
a

V = 0 , D
a

W = F
a

(✏) , @
a

@
b

V = V
ab

(⇤, ✏) , (6.4)

18We	  have	  found	  certain	  condi7ons	  when	  it	  is	  possible	  to	  prove	  that	  all	  de	  SiSer	  solu7ons	  of	  
these	  equa7ons	  are	  locally	  stable!	  Hence,	  we	  can	  produce	  analy7c	  de	  SiSer	  vacua	  in	  the	  
landscape	  in	  abundance.	  	  
Our	  examples	  in	  STU	  models	  confirm	  the	  generic	  condi7ons	  required	  for	  the	  proof	  of	  stability.	  

To	  relate	  this	  new	  dS	  supergravity	  landscape	  to	  specific	  string	  theory	  compac7fica7ons	  
is	  the	  next	  step.	  	  



First	  aMempt:	  let	  us	  deform	  slightly	  the	  locally	  stable	  susy	  Minkowski	  vacua	  to	  get	  	  

locally	  stable	  de	  SiSer	  vacua	   |DW |2 � 3|W |2 > 0

We	  proved	  a	  no-‐go	  theorem	  that	  small	  deforma7on	  of	  a	  W	  and/or	  K	  of	  a	  locally	  	  
stable	  susy	  Minkowski	  vacua	  will	  not	  produce	  a	  locally	  stable	  de	  SiSer	  vacua	  	  

Therefore	  a	  part	  of	  the	  supergravity	  landscape	  with	  locally	  stable	  de	  SiSer	  vacua	  
	  must	  be	  disconnected	  from	  the	  	  supersymmetric	  locally	  stable	  Minkowski	  	  vacua	  

The	  no-‐go	  theorem,	  therefore,	  predicts,	  that	  the	  limit	  from	  a	  locally	  stable	  	  
de	  SiSer	  vacuum	  cannot	  be	  	  a	  supersymmetric	  locally	  stable	  Minkowski	  vacuum	  	  

This	  predic7on	  is	  confirmed	  in	  our	  examples:	  the	  limits	  are	  either	  stable	  Minkowski	  	  
with	  broken	  susy,	  or	  have	  flat	  direc7ons.	  

W ! W + �W K ! K + �K

It	  did	  not	  work	  



A New Toy In Town!	


A	  nilpotent	  chiral	  mul7plet,	  Volkov-‐Akulov	  golds7no	  and	  D-‐brane	  physics	  	  

Observa7on:	  not	  a	  single	  version	  of	  string	  theory	  monodromy	  supergravity	  model	  
is	  known	  as	  of	  today.	  There	  is	  always	  a	  problem	  of	  non-‐inflaton	  moduli	  
stabiliza7on	  or	  a	  consistency	  problem.	  

Meanwhile,	  numerous	  well	  working	  cosmological	  supergravity	  models	  of	  infla7on	  
and/or	  upliUing	  involving	  a	  golds7no	  mul7plet	  have	  not	  been	  associated	  with	  
string	  theory.	  See	  examples	  in	  earlier	  part	  of	  the	  talk.	  

All	  earlier	  aSempts	  to	  associate	  string	  theory	  models	  with	  effec7ve	  supergravity	  	  
are	  based	  on	  standard	  unconstrained	  chiral	  mul7plets:	  spin	  0	  <-‐>	  spin	  1/2	  	  

Fermionic	  VA	  golds7no	  live	  on	  D-‐branes,	  have	  only	  spin	  1/2	  	  



Unconstrained	  chiral	  superfield	  

S(x, ✓) = s(x) +
p
2 ✓G(x) + ✓

2
F

S(x)

Nilpotent	  chiral	  superfield	  
S

2(x, ✓) = 0

S =
GG

2FS
+

p
2 ✓G + ✓2FS

s(x) ) G(x)G(x)

2FS(x)



D-‐p-‐branes	  and	  Volkov-‐Akulov	  golds7no	  

SDBI+WZ = � 1

↵

2

Z
d10x

p
� detGµ⌫ =

1

↵

2

Z
E

m0 ^ ... ^ E

m9
,

E

m = dxm + ↵

2
�̄�md�



Too	  many	  fields,	  some	  of	  them	  do	  not	  directly	  par7cipate	  in	  
infla7on.	  We	  must	  add	  higher	  correc7ons	  to	  the	  Kahler	  poten7al	  
to	  stabilize	  these	  fields	  near	  their	  zero	  values.	  

The	  cure:	  Volkov-‐Akulov	  nonlinear	  realiza7on	  of	  supersymmetry	  
does	  not	  require	  fundamental	  scalar	  degrees	  of	  freedom,	  they	  are	  
replaced	  by	  bilinear	  fermionic	  combina7ons	  with	  zero	  vev.	  
	  

Ferrara,	  RK,	  Linde	  	  1408.4096	  
RK,	  Linde	  1408.5950	  
Antoniadis,	  Dudas,	  Ferrara,	  Sagno2	  	  1403.3269	  	  	  	  	  

Procedure:	  Replace	  standard	  unconstrained	  chiral	  superfields	  by	  
nilpotent	  superfields,	  which	  do	  not	  have	  dynamical	  scalar	  
components.	  
	  

S

2(x, ✓) = 0



Calculate	  poten7als	  as	  func7ons	  of	  all	  superfields	  
as	  usual,	  and	  then	  DECLARE	  that	  S	  =0	  for	  the	  
scalar	  part	  of	  the	  nilpotent	  superfield.	  No	  need	  
to	  stabilize	  and	  study	  evolu7on	  of	  the	  S	  field.	  	  

Supergravity	  with	  nilpotent	  mul7plets	  is	  a	  new	  theory	  
requiring	  a	  very	  sophis7cated	  analysis,	  especially	  when	  
fermion	  interac7ons	  are	  involved.	  However,	  the	  bosonic	  
sector	  is	  much	  simpler	  than	  before.	  	  

So	  much	  simpler!!!	  



De	  SiMer	  Vacua	  and	  Dark	  Energy	  

We	  proposed	  a	  systema>c	  procedure	  for	  building	  locally	  stable	  dS	  vacua	  without	  
tachyons	  in	  stringy	  theory	  STU	  models,	  or	  using	  the	  Polonyi	  type	  superfield.	  

Polonyi	  type	  superfield	  was	  successfully	  used	  in	  the	  past	  in	  supergravity	  models,	  
in	  par7cular	  to	  provide	  a	  supersymmetric	  version	  of	  an	  	  F-‐term	  upliUing	  for	  the	  KKLT	  
De	  SiSer	  vacua.	  	  	  However,	  it	  was	  not	  known	  how	  to	  relate	  Polonyi	  to	  string	  theory	  

Nilpotent	  golds7no	  superfied	  S2=0	  is	  associated	  with	  the	  D-‐brane	  physics	  in	  string	  theory,	  
via	  Volkov-‐Akulov	  theory.	  This	  leads	  to	  a	  supersymmetric	  KKLT	  upliUing	  in	  string	  theory.	  

NEW:	  replace	  Polonyi	  by	  a	  nilpotent	  superfield	  

Ferrara,	  RK,	  Linde	  	  1408.4096	  

W = WKKLT �M2S, K = KKKLT + SS̄

V = VKKLT (⇢, ⇢̄) +
M4

(⇢+ ⇢̄)3



For	  the	  first	  7me	  using	  nilpotent	  superfield	  S2=0	  we	  have	  simple	  string	  theory	  
mo7vated	  supergravity	  models	  for	  infla7on	  with	  de	  SiSer	  vacua	  exit.	  
Example	  

K = � (�� �̄)2

2
+ SS̄, W = SM2(1 + c�2) +W0

The	  field	  Im	  	  Φ	
 is	  heavy	  and	  quickly	  vanishes,	  during	  infla7on	  we	  find	  a	  
quadra7c	  poten7al	  for	  Re	  Φ	

	  

At	  the	  minimum	  Φ 	   vanishes	  and	  the	  poten7al	  is	  

V0 = M4 � 3W 2
0 ⇠ 10�120

Generaliza7on	  to	  generic	  infla7onary	  models	  with	  V=	  f2(Φ) during	  infla7on	  
is	  straigh}orward	  

D�W = 0 DSW = M2

SuperHiggs	  effect:	  gravi>no	  eats	  golds>no	  from	  the	  S-‐mul>plet	  and	  becomes	  fat!	  

RK,	  Linde	  1408.5950	  

No	  cosmological	  
Polonyi	  model	  
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