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Dust is not entirely settled ...

Al |

-

[Mortonson & Seljak]; [Flauger, Hill & Spergel];
See on the other hand, [Colley & Gotti]



Gravity Waves and Inflation

I_f the BICEPZ2 results are confirmed to be primordial, natural
Interpretations:

4+ Inflation took place

4+ The energy scale of inflation is the GUT scale

r \1/4
Ei s >~ 0.75 % (ﬁ) X 10_2MP1

4+ The inflaton field excursion was super-Planckian

s\ 1/2 |
A¢ 2 (m) Mp, Lyth: 96

4+ Great news for string theory due to strong UV sensitivity!



Assumptions in the Lyth Bound

single field
slow-roll
Bunch-Davies initial conditions

vacuum fluctuations
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2 vacuum fluctuations
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Chaotic Inflation s 56

* A poster child inflation model (also seems favored) is V = m?p?:
A V(@

4+ Loop corrections
involving inflaton and
gravitons are small due
to approximate shift
symmetry

¢ — @ + const.

4+ Coupling to UV degrees of freedom in quantum gravity a
priori breaks this shift symmetry and lead to corrections that
spolil inflation, because of the large field excursions

Leg|o] = %(&b)Q — %m%? + Z c; PP A2
1=1



Chaotic Inflation Linde 6

Eeﬂ? [Qb] — %(8gb)2 — %m2¢2 4+ Z c; ¢2iA4—2i
1=1

E WA M

figane taten fnom Baumann & MerHlisten 14




Natural Inflation ... 2...c. ows 90

“* String models where the inflaton is an axion in principle can
avoid this problem A V(@)

4+ Shift symmetry broken
by non-perturbative
effects+UV completion,
but periodicity is exact

4+ In string theory axions
generically come from
p-forms, so above the
KK scale the shift
symmetry becomes a
gauge symmetry

Dimopoalos ot af, ' 05



Natural Inflation ... 2...c. ows 90

“* String models where the inflaton is an axion in principle can
avoid this problem A V(@)

4+ Shift symmetry broken
by non-perturbative
effects+UV completion,
but periodicity is exact

4+ In string theory axions
generically come from
p-forms, so above the

KK scale the shift

symmetry becomes a B dC
auge symmetr — p+l = "p

g g y y ¢ 4/7'(' Cp Op — Cp -+ dAp_l

4 However, these axions

have sub-Planckian Banks ct al, 03 Swnce & Wetten "06
decay constants



Multiple Axions

N-flation Deneseatee, Ractrn, MeGreeny, Wacker 05

Aligned natural inflation Rx, 7ittes, Petose ‘02 [See Vittes ¢ tall]



Axion Monodromy

Getty Images

A single axion goes super-Planckian.



Axion Monodromy Inflation
Scvenctein & Weostphal 08

s N
Combine chaotic inflation and

lclea:

natural inflation

A V(¢)

The axion periodicity is lifted, allowing for super-Planckian
displacements. The UV corrections to the potential should
still be constrained by the underlying symmetry.
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Axion Monodromy Inflation
Scuensteicn & Westphal 08

s N\
Combine chaotic inflation and

Idea:

natural inflation
. y

Early developments:

4+ McAllister, Silverstein, Westphal — String scenarios

exceedingly complicated, uncontrollable ingredients, backreaction, ...

4+ Kaloper, Lawrence, Sorbo — 4d framework

UV completion?

See alse Paltc, Weigand,; Blumentagen, Planschinn;
Hacslen, Liiot, Maseai; / o® — ¢ 5B
%%W,SC&‘WM, WW, WW,’ P WW%%% o, Sil i, W ;;z ' 08



F-term Axion Monodromy Inflation

N

, i Givinga mass to an
Obs: [Ax:on Monodromg] ~

axion

\. J

4+ Done in string theory within the moduli stabilization
program: adding ingredients like background fluxes
generate superpotentials in the effective 4d theory

& .. > .D3

e

D7 figane takien from Vbaies & Tranga 12



F-term Axion Monodromy Inflation

Obs. [Axion Monoclromg] ~

p
lemga mass to an

axion

4+ Done in string theory within the moduli stabilization

\.

N

J

program: adding ingredients like background fluxes

generate superpotentials in the effective 4d theory

lclea:

-

generate an inflation Potential
\

, \
(lse same techmques to

J

R v N W

D7 figanne taken from Vaiics & Thnanga ‘12



F-term Axion Monodromy Inflation

N

.
lemga mass to an

Obs: [Axion Monoclromy] ~

axion

\. J

4+ Done in string theory within the moduli stabilization
program: adding ingredients like background fluxes
generate superpotentials in the effective 4d theory

4 )

Use same techniques to

lclea:

generate an inflation Potential
\ Y

e Simpler models, all sectors understood at weak coupling
e Spontaneous SUSY breaking, no need for brane-anti-brane

o Clear endpoint of inflation, allows to address reheating



Toy Example: Massive Wilson line

“* Simple example of axion: (4+d)-dimensional gauge field
integrated over a circle in a compact space llq4

¢ = . A or A = ¢(z)m(y)

4+ & massless if An1 = 0 = S’ is a non-trivial circle in N4

exact periodicity and (pert.) shift symmetry

4+ & massive if An1 = -p? N1 = kS homologically trivial in Mg

(non-trivial fibration)



Toy Example: Massive Wilson line

“* Simple example of axion: (4+d)-dimensional gauge field
integrated over a circle in a compact space llq4

¢ = . A or A = ¢(z)m(y)

4+ & massless if An1 = 0 = S’ is a non-trivial circle in N4

exact periodicity and (pert.) shift symmetry

4+ & massive if An1 = -p? N1 = kS homologically trivial in Mg

(non-trivial fibration)

Fy =dA; = ¢dn ~ upws = shifts in ¢ increase energy

via the induced flux F»

= periodicity is broken and shift symmetry approximate



MWL and twisted tori

“* Simple way to construct massive Wilson lines: consider
compact extra dimensions [q with circles fibered over a base,
like the twisted tori that appear in flux compactifications

“* There are circles that are not contractible but do not
correspond to any harmonic 1-form. Instead, they correspond
to torsional elements in homology and cohomology groups

Tor Hy (114, Z) = Tor H* (114, Z) = Zy,



MWL and twisted tori

“* Simple way to construct massive Wilson lines: consider
compact extra dimensions [q with circles fibered over a base,
like the twisted tori that appear in flux compactifications

“* There are circles that are not contractible but do not
correspond to any harmonic 1-form. Instead, they correspond
to torsional elements in homology and cohomology groups

Tor Hy (114, Z) = Tor H* (114, Z) = Zy,

% Simplest example: twisted 3-torus T*
H\(T3,Z) =7 x 7 x 7,

oo

2 3 2 3
dny = kdx” Ndx” —» F =¢kdx” Ndx two normal  one torsional
¢ 1-cycles 1-cycle

_ kR under a shift § = ¢ +1
Ry R Fo increases by k units

L4



MWL and monodromy

V(g) ~ |FI*
A

Question:

(

|

How ClOCS monoclromy ancl

Prevent wild UV corrections?

~

aPProximate shift symmetry help

J




Torsion and gauge invariance

“* Twisted tori torsional invariants are not just a fancy way of
detecting non-harmonic forms, but are related to a hidden
gauge invariance of these axion-monodromy models

% Let us again consider a 7d gauge theory on M3 x T3

4+ Instead of A1 we consider its magnetic dual V4

dm = k
V4203/\771—|—b2/\0'2 77}”_’)(72 dV4Zng/\771—|—(db2—/€03)/\0'2



Torsion and gauge invariance

“* Twisted tori torsional invariants are not just a fancy way of
detecting non-harmonic forms, but are related to a hidden
gauge invariance of these axion-monodromy models

% Let us again consider a 7d gauge theory on M3 x T3

4+ Instead of A1 we consider its magnetic dual V4
dm = ko9
V4203/\771—|—b2/\0'2 ==-—’-§ dV4Zng/\771—|—(de—/€03)/\O'2

4 From dimensional reduction of the kinetic term:

2
/d7a:]dV4\2 —> [/d4x|d03|2+ %|dbg —k03|2J

e Gauge invariance C3 — C5+ dAs by — by + kAo

o Generalization of the Stlickelberg Lagrangian

ZLucvedo & Tragenbenger 96



Effective 4d theory
“* The effective 4d Lagrangian

2
[ /d% 1dC3|* + %ubg - k(]ﬁj

describes a massive axion, has been applied to Rallook et al, ‘95
QCD axion = generalized to arbitrary V(o) Duali, Jackin, Pi 05
Deali, Follernts, Franca (5

“* Reproduces the axion-four-form Lagrangian proposed by
Kaloper and Sorbo as 4d model of axion-monodromy inflation
with mild UV corrections

Fy = dC
/d4at |Fy|* + |do|* + o Fy ! ’ Zaloper & Sorbs ‘OF
d¢ = *4db2

“* It is related to an F-term generated mass term

W, Loucs, Sommerfeld 4



Effective 4d theory
* Effective 4d Lagrangian

2
4 % il A Z Fa = dts

“* Gauge symmetry = UV corrections only depend on F4

> 21

Lorld] = 506 — 6> + A

/ 1=1

e Shift sym in ¢

® Gauge sym in F4

= suppressed corrections up to the scale where V() ~ A?
= effective scale for corrections A = Neir = N°/p



Effective 4d theory
“ Effective 4d Lagrangian

2
4 2 el v 2 Fa = dCs
[/d x |dCs|* + 12 |dby — kC| j dé = *4dbs

“* Gauge symmetry = UV corrections only depend on F4

A%Aeﬂc:A<é>
14

~_ -

E WA /*//\/A\«




Discrete symmetries and domain walls
“* The integer k in the Lagrangian

2
(/d‘la: | Fy)* + %\dbz — k:(]3|2j

corresponds to a discrete symmetry of the theory broken
spontaneously once a choice of four-form flux is made.
This amounts to choose a branch of the scalar potential

V($)

k=4

n=1 n=2

n=3

¢
27.‘.f¢ > fegane tatsen rom Ralopen & Lawnence 14




Discrete symmetries and domain walls
“* The integer k in the Lagrangian

2
[/d% Fyl? + %\dbg - kcgﬁj

corresponds to a discrete symmetry of the theory broken
spontaneously once a choice of four-form flux is made.
This amounts to choose a branch of the scalar potential

“* Branch jumps are made via nucleation of domain walls that
couple to C3z, and this puts a maximum to the inflaton range

“* Tunneling rate between branches
P = G_S _ e—UXRS’
where o = domain wall tension, Ro = bubble radius

R}(AV) = R20 = Ry = 0/AV



Discrete symmetries and domain walls

“* This gives the usual Coleman formula for 4D field theory:

27#204
P — 6_ Q(AV)B

“* In string theory models, ¢ = tension of branes wrapping an
internal cycle, AV ~ V/N, we found in a single modulus case:

g NMEN®
S_(MSL)24( % ) wl| Brown

“* Even with the high inflation scale suggested by BICEPR,

L <108

M$ ™~
 Tunneling is (marginally) suppressed for Ms L = 10 and gs = 1.

“* Other interesting tunneling channels in string theory.
w| Marctesans and Gancia - Etvebariia



Massive Wilson lines in string theory
% Simple example of MWL in string theory: D6-brane on M13x T3

“* An inflaton vev induces a non-trivial flux F2 proportional to ¢
but now this flux enters the DBI action

Vdet (G + 21’ Fy) = dvoly.s (JF2|* + corrections)
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“* For small values of ® we recover chaotic inflation, but for
large values the corrections are important and we have a
potential of the form
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except for the inflation endpoint
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but now this flux enters the DBI action

Vdet (G + 21’ Fy) = dvoly.s (JF2|* + corrections)

“* For small values of ® we recover chaotic inflation, but for
large values the corrections are important and we have a
potential of the form

Similar to the D4-brane model of Silverstein and Westphal
except for the inflation endpoint



Massive Wilson lines and flattening
“* The DBI modification

(¢)* = VL' + ()2 — L

can be interpreted as corrections due to UV completion

“* E.g., integrating out moduli such that H < mmod < Mgut will
correct the potential, although not destabilise it

Raloper, Lawnence, Sonba 11

“* In the DBI case the potential is flattened: argued general effect
due to couplings to heavy fields
HPINg W Doug, Hora, Sttvenstein, Wessshal ‘10
“* Large vev flattening also observed in examples of confining
gauge theories whose gravity dual is known [Witten’98]

Datbowsty, Launence, Roberts Il
“* a’ corrections are important for inflation even w/ a symmetry



Other string examples

“* We can integrate a bulk p-form potential C, over a p-cycle to
get an axion

Fp_|_1 — de, Cp — Cp + dAp—l C = / Cp

p

“* If the p-cycle is torsional we will get the same effective action

2
/d10x|F9_p\2 —> /d% dC3)? + %\dbg — kC3)?



Other string examples

“* We can integrate a bulk p-form potential C, over a p-cycle to
get an axion

Fp_|_1 — de, Cp — Cp + dAp—l C = / Cp

p

“* If the p-cycle is torsional we will get the same effective action

2
/dl%|F9_p\2 —> /d4:c [dC5]* + %\dbz — kCs3)?

* The topological groups that detect this possibility are
Tor H,(X¢,Z) = Tor H?*!(X¢,7Z) = Tor H*"?(X¢,7Z) = Tor Hs_,(X¢, Z)

one should make sure that the corresponding axion mass is
well below the compactification scale (e.g., using warping)

France, Gallowi, Retolaza, Uranga 14



Other string examples

“* Axions also obtain a mass with background fluxes

“* Simplest example: ¢ = Co in the presence of NSNS flux Hs

W = (F3 — TH3) A€ T=Co+1/9s
X6

“* We also recover the axion-four-form potential

/ C()Hg/\F7 = /C()F4 F4 :/ F7
M3 xXg M1.3 PD[H3]



Other string examples

“* Axions also obtain a mass with background fluxes

“* Simplest example: ¢ = Co in the presence of NSNS flux Hs

W = (F3 — TH3) A€ T=Co+1/9s
X6

“* We also recover the axion-four-form potential

/ C()Hg/\F7 = /C()F4 F4 :/ F7
M3 xXg M1.3 PD[H3]

* M-theory version: &eadley, Wetten OZ
* A rich set of superpotentials obtained with type IIA fluxes

/ GJC/\(F0+F2+F4) J.=J+18B
o = potentials higher than quadratic

“* Massive axions detected by torsion groups in K-theory



Conclusions

“* Axion monodromy is an elegant idea that combines chaotic
and natural inflation, aiming to prevent disastrous UV
corrections to the inflaton potential.

“* We have discussed its concrete implementation in a new
framework, dubbed F-term axion monodromy inflation
compatible with spontaneous supersymmetry breaking.

“* In a simple set of models the inflaton is a massive Wilson line.
They show the mild UV corrections for large inflaton vev.

“* Effective action reproduces the axion-four-form action
proposed by Kaloper and Sorbo. Discrete symmetries
classified by K-theory torsion groups.

 a’ corrections to EFT
important for inflation & moduli stabilization.



Conclusions

“* A broad class of large field inflationary scenarios that can

implemented in any limit of string theory w/ rich pheno:
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¢ Moduli stabilization needs to be addressed in detailed models

[See Blumenhagen’s talk]
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Particle Production

1/

Usual assumption: [82 + k* — %] (adgi;) = Sij , Sij =0

Particle production can provide a source of Sj;

Simplest model: an additional scalar field y

[Chung, Kolb, Riotto and Tkachev];[Cook, Sorbo]; [Senatore, Silverstein and Zaldarriaga];
[N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhoul]

- x particles quickly become non-relativistic, quadrupole moment (source of GWSs) is suppressed.

- Source highly non-Gaussian scalar perturbations not suppressed by the small quadrupole moment.



Particle Production - Axion Model

A workable model: [N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou]
M 1 1 1 .
s= [dtay=g| SR 5002 - Vie)- 3067 - UW) - {7~ LFF |

-~
inflaton sector hidden sector

Continuous production of relativistic vector quanta.

Only known model of particle production during inflation that

1. produces significant amount of GWs,
2. avoids strong non-Gaussianity of scalar perturbations.

Interesting signatures:
1. Parity violation in GWs
2. Non-Gaussian tensor fluctuations

3. Can accommodate blue tilt in tensor spectrum



Gauge Field Production

Time dependence of axion sources gauge fields

o 2 2kE N _
[aT+k iT] A:l:(7_7k)—07 S—QHf>

One helicity mode is copiously produced:

1/4
— —E— 2
A_|_ ~ —T eﬂ£_2 —28kT , 87-A+ ~ ﬁ A_|_ .
8Ek —T

Effects on scalar and tensor spectrum:

4m€ 4mg
PP (1 1+925.107%2p 656 ) Pow >~ 16€P (1 +3.4-107°€P ¢ >

0.010

Negligible effects on scalar spectrum
0.005 -

1 —0.0735¢ 0.001 -
Py~ w 4t
=P 10 .0046r 3x107¢
1x1074 ¢
Sourced GWs dominate over vacuum Sy 10-5 -

fluctuations in tensor spectrum for §z 3.4




Tensor Non-Gaussianity

Sourced tensor modes can leave sizable non-Gaussianity of nearly
equilateral shape on CMB temperature anisotropies & polarization.

ome [Cook, Sorbo]
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PLANCK temperature data can detect X~ 5 x10°at 1o.

Inclusion of E-mode polarization data can improve the 1o limit to
X~ 3.8 x10° (PLANCK) and 2.9x10° (PRISM)

Inclusion of B-mode polarization data can probe the full range of this model.
[Shiraishi, Ricciardone and Saga]



Parity Violating Effects

Only one helicity of GWs is efficiently generated since A, + A. — hg

4mE
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Level of Chirality: 2= 5i, 5 pi, " 17510 10 5cp e

PLANCK, SPIDER, CMBPol
and a (hypothetical)
cosmic variance limited experiment

[N. Barnaby, J. Moxon, R. Namba,
M. Peloso, G. Shiu and P. Zhou]
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Forecasted constraints (or signals) come from Is 10 [Gluscevic, Kamionkowski]; do not expect

constraints from BICEP2 (their jackknifed <TB> & <EB> signals appears consistent with zero).



