The String Theory Universe 2nd COST MP1210 Meeting

# Holographic graphene bilayers

## Gianluca Grignani

Università di Perugia & INFN, Sezione di Perugia

In collaboration with: Andrea Marini, Namshik Kim and Gordon W. Semenoff

Mainz, 22-26 Sept. 2014

## Overview

■ Graphene → conformal system of massless fermions in 2+1-dim interacting through electromagnetic forces

• 
$$\alpha_{\text{graphene}} = \frac{U}{T} = \frac{e^2}{4\pi\hbar c} \frac{c}{v_F} \sim \frac{300}{137} = 2.2$$

• AdS/CFT  $\rightarrow$  D3/probe D5  $\rightarrow$  top-down approach

- Dual theory → N = 4 SYM at large 't Hooft coupling λ coupled to fundamental hypermultiplets along a 2+1-dim defect [DeWolfe, Freedman, Ooguri,hep-th/0111135]
- We study the D3/probe D5-D5 system as an holographic model of a graphene bilayer
- The effects of both an external magnetic field and of a charge density are examined
- Two channels for chiral symmetry breaking
  - intra-layer condensate  $\langle \bar{\psi}_1 \psi_1 \rangle$
  - inter-layer condensate  $\langle \bar{\psi}_1 \psi_2 \rangle$

# D3/probe $D5-\overline{D5}$

#### • Stack of N D3-branes $\rightarrow \operatorname{AdS}_5 \times S^5$ background

$$ds^{2} = r^{2} \left( -dt^{2} + dx^{2} + dy^{2} + dz^{2} \right) + \frac{1}{r^{2}} \left( dr^{2} + r^{2} d\psi^{2} + r^{2} \sin^{2} \psi d^{2} \Omega_{2} + r^{2} \cos^{2} \psi d^{2} \tilde{\Omega}_{2} \right)$$

where  $d^2\Omega_2 = \sin\theta d\theta d\phi$  and  $d^2\tilde{\Omega}_2 = \sin\tilde{\theta}d\tilde{\theta}d\tilde{\phi}$ It is useful to introduce other coordinates

$$\rho = r \sin \psi , \qquad l = r \cos \psi$$

$$ds^{2} = (\rho^{2} + l^{2}) \left( -dt^{2} + dx^{2} + dy^{2} + dz^{2} \right) + \frac{1}{\rho^{2} + l^{2}} \left( d\rho^{2} + \rho^{2} d^{2} \Omega_{2} + dl^{2} + l^{2} d^{2} \tilde{\Omega}_{2} \right)$$

Poincaré horizon at  $r = 0 \longrightarrow \rho = l = 0$ .

■ *l* asymptotically gives the distance between the D3- and the D5-brane → the bare fermion mass.

Gianluca Grignani

• Embed  $N_5$  D5 and  $\overline{\text{D5}}$  probes in this background  $(N_5 \ll N)$ 

DBI + WZ actions

$$S = T_5 N_5 \left[ -\int d^6 \sigma \sqrt{-\det(g + 2\pi\alpha' F)} + 2\pi\alpha' \int C^{(4)} \wedge F \right]$$

Worldvolume coordinates and ansatz for the embedding of the D5-D5

Embed the D5 on  $(t, x, y, \rho \text{ and } \Omega_2)$ .

**z**( $\rho$ ) and  $l(\rho)$  give the brane a non trivial profile in  $\rho$ .

Gianluca Grignani

Induced metric on the D-branes worldvolume

$$ds^{2} = (\rho^{2} + l^{2}) \left( -dt^{2} + dx^{2} + dy^{2} \right) + \frac{\rho^{2}}{\rho^{2} + l^{2}} d^{2} \Omega_{2}$$
$$+ \frac{d\rho^{2}}{\rho^{2} + l^{2}} \left( 1 + ((\rho^{2} + l^{2})z')^{2} + l'^{2} \right)$$

• Charge density and external magnetic field  $\rightarrow$  D5 world-volume gauge fields (in the  $a_{\rho} = 0$  gauge)

$$\frac{2\pi}{\sqrt{\lambda}}F = a_0'(\rho)d\rho \wedge dt + bdx \wedge dy$$
$$b = \frac{2\pi}{\sqrt{\lambda}}B \qquad a_0 = \frac{2\pi}{\sqrt{\lambda}}A_0$$

#### **DBI** action

**DBI** action for  $N_5$  D5 ( $\overline{\text{D5}}$ )

$$S = \mathcal{N}_5 \int d\rho \frac{\rho^2}{\rho^2 + l^2} \sqrt{(\rho^2 + l^2)^2 + b^2} \sqrt{1 + l'^2 + ((\rho^2 + l^2)z')^2 - {a'_0}^2}$$

where 
$$\mathcal{N}_5 = rac{\sqrt{\lambda}NN_5}{2\pi^3}V_{2+1}$$

■  $a_0(\rho)$  and  $z(\rho)$  are cyclic variables  $\rightarrow$  their canonical momenta are constants

$$Q = -\frac{\delta \mathscr{L}}{\delta a'_0} \equiv \frac{2\pi \mathcal{N}_5}{\sqrt{\lambda}} q \qquad q = \frac{\rho^2 a'_0 \sqrt{(\rho^2 + l^2)^2 + b^2}}{(\rho^2 + l^2)\sqrt{1 + l'^2 + ((\rho^2 + l^2)z')^2 - (a'_0)^2}}$$
$$\Pi_z = \frac{\delta \mathscr{L}}{\delta z'} \equiv \mathcal{N}_5 f \qquad f = \frac{(\rho^2 + l^2)\rho^2 z' \sqrt{(\rho^2 + l^2)^2 + b^2}}{\sqrt{1 + l'^2 + ((\rho^2 + l^2)z')^2 - {a'_0}^2}}$$

• 
$$q = \text{charge density on the D5} (\overline{\text{D5}})$$

Gianluca Grignani

#### Equations of motion

Solving for  $a_0'(\rho)$  and  $z'(\rho)$  in terms of q and f we get

$$\begin{aligned} a_0' &= \frac{q(\rho^2 + l^2)\sqrt{1 + l'^2}}{\sqrt{\rho^4 \left(b^2 + (\rho^2 + l^2)^2\right) + q^2(\rho^2 + l^2)^2 - f^2}} \\ z' &= \frac{f\sqrt{1 + l'^2}}{(\rho^2 + l^2)\sqrt{\rho^4 \left(b^2 + (\rho^2 + l^2)^2\right) + q^2(\rho^2 + l^2)^2 - f^2}} \end{aligned}$$

By Legendre transforming the action one gets the Routhian

$$R_{fq} = \int d\rho \frac{\sqrt{(l'^2 + 1)(-f^2 + l^2(l^2 + 2\rho^2)(\rho^4 + q^2) + \rho^4(\rho^4 + q^2 + b^2))}}{l^2 + \rho^2}$$

From which the EoM for  $l(\rho)$  can be derived as

$$- (l^{2} + \rho^{2}) l'' (-f^{2} + l^{2} (l^{2} + 2\rho^{2}) (\rho^{4} + q^{2}) + \rho^{4} (\rho^{4} + q^{2} + b^{2})) - 2 (l'^{2} + 1) (\rho (f^{2} + \rho^{2} l^{2} (3\rho^{2} l^{2} + l^{4} + 3\rho^{4} + b^{2}) + \rho^{8}) l' + (\rho^{4} - f^{2}) l) = 0$$

Note: the magnetic field b can be rescaled to 1 by rescaling  $\rho\to \sqrt{b}\rho,$   $f\to b^2f,\,q\to b\,q$ 

Gianluca Grignani

## Asymptotic behaviour

Asymptotic behaviour at  $\rho\to\infty$  for the embedding functions  $z(\rho),\,l(\rho)$  and the gauge field  $a_0(\rho)$ 

• 
$$z(\rho) \simeq_{\rho \to \infty} \pm \frac{L}{2} \mp \frac{f}{5\rho^5} + \dots$$
 (for D5/D5)

- L = separation between the D5 and the  $\overline{\text{D5}}$
- $\blacktriangleright~f \propto$  expectation value for the inter-layer chiral condensate

$$l(\rho) \underset{\rho \to \infty}{\simeq} m + \frac{c}{\rho} + \dots$$

- $m \propto \text{mass term}$  for the fermions  $\longrightarrow$  we consider solution with m = 0
- $c \propto$  expectation value for the intra-layer chiral condensate

• 
$$a_0(\rho) \underset{\rho \to \infty}{\simeq} \mu - \frac{q}{\rho} + \dots$$
  
•  $\mu = \text{chemical potential}$ 

#### Scheme of the possible types of solutions

|            | f = 0                              | f  eq 0                          |
|------------|------------------------------------|----------------------------------|
| c = 0      | unconnected, $l=0$                 | connected, $l = 0$               |
|            | BH, chiral symm.                   | Mink, inter                      |
| $c \neq 0$ | unconnected, $l( ho)$ not constant | connected, $l( ho)$ not constant |
|            | BH/Mink, intra                     | Mink, intra/inter                |

#### Unconnected solutions



## Connected solutions

If  $f \neq 0$  the solution for  $z(\rho)$  is

$$z(\rho) = f \int_{\rho_0}^{\rho} d\tilde{\rho} \frac{\sqrt{1+l'^2}}{(\rho^2+l^2)\sqrt{\rho^4 (b^2+(\rho^2+l^2)^2) + q^2(\rho^2+l^2)^2 - f^2}}$$

$$ho_0$$
 such that  $ho_0^4 \left( b^2 + (
ho_0^2 + l^2(
ho_0))^2 
ight) + q^2 (
ho_0^2 + l(
ho_0)^2) - f^2 = 0$ 



Minkowski embedding

- D-brane worldvolume confined in the region  $\rho \ge \rho_0$
- in order to have a sensible solution we have to glue smoothly the D5/ $\overline{\rm D5}$  solutions at  $\rho = \rho_0$

 $\rightarrow$  connected solution

■  $f_{D5} = -f_{\overline{D5}}$  and  $q_{D5} = -q_{\overline{D5}} \iff$ D5-D5 system is neutral

- $(f = 0, c \neq 0)$ -solutions can in principle be either BH or Mink. embeddings
- In practice if  $q \neq 0$  only BH embeddings are allowed
- Mink. embeddings  $\rightarrow$  D-brane pinches off at  $\rho = 0$
- If q ≠ 0 → there must be charge sources → F-strings suspended between the D5 and the Poincaré horizon (r = 0)
- $T_{F1} > T_{D5} \longrightarrow$  strings pull the D5 to  $r = 0 \longrightarrow$  BH embed. [Kobayashi et al. hep-th/0611099]
- For unconnected solutions (f = 0) Mink. embeddings are allowed only if q = 0



#### D-brane separation and chemical potential

Separation between the D5 and the  $\overline{\rm D5}$  for the connected solution  $(f\neq 0)$ 

$$L = 2 \int_{\rho_0}^{\infty} d\rho \, z'(\rho) = \int_{\rho_0}^{\infty} d\rho \, \frac{2f\sqrt{1+l'^2}}{(\rho^2 + l^2)\sqrt{\rho^4 \, (b^2 + (\rho^2 + l^2)^2) + q^2(\rho^2 + l^2)^2 - f^2}}$$

Chemical potential

$$\mu = \int_{\rho_0}^{\infty} a_0'(\rho) \, d\rho = \int_{\rho_0}^{\infty} \, d\rho \, \frac{q(\rho^2 + l^2)\sqrt{1 + l'^2}}{\sqrt{\rho^4 \left(b^2 + (\rho^2 + l^2)^2) + q^2(\rho^2 + l^2)^2 - f^2}}$$

where, for  $f \neq 0$ ,  $\rho_0$  is the solution of

$$\rho_0^4 \left( b^2 + (\rho_0^2 + l^2(\rho_0))^2 \right) + q^2(\rho_0^2 + l(\rho_0)^2) - f^2 = 0$$

if  $f = 0 \longrightarrow \rho_0 = l(\rho_0) = 0$  for  $q \neq 0$  and  $\rho_0 = 0$  for q = 0

Gianluca Grignani

#### D-brane separation and chemical potential

For the constant solution l = 0 the integrals can be done analitically

• The turning point  $\rho_0$  of the connected solution is

$$\rho_0 = \frac{\sqrt[4]{\sqrt{(b^2 + q^2)^2 + 4f^2} - b^2 - \rho^2}}{\sqrt[4]{2}}$$

The separation between the branes for the connected solution is

$$L = \frac{f\sqrt{\pi}\Gamma\left(\frac{5}{4}\right) {}_{2}F_{1}\left(\frac{1}{2}, \frac{5}{4}; \frac{7}{4}; -\frac{f^{2}}{\rho_{0}^{8}}\right)}{2\rho_{0}{}^{5}\Gamma\left(\frac{7}{4}\right)}$$

The chemical potential is

$$\mu = \frac{q \sqrt{\pi} \Gamma\left(\frac{5}{4}\right) {}_{2}F_{1}\left(\frac{1}{4}, \frac{1}{2}; \frac{3}{4}; -\frac{f^{2}}{\rho_{0}^{8}}\right)}{\rho_{0} \Gamma\left(\frac{3}{4}\right)}$$

Gianluca Grignani

- $\blacksquare$  We must look for non-trivial (i.e. non-constant) solutions for  $l(\rho)$
- EoM for l is a non-linear ODE
- Numerical method to find solutions imposing the suitable asymptotic condition

$$l(\rho) \underset{\rho \to \infty}{\simeq} \frac{c}{\rho} + \dots$$
 massless fermions!

- We used a shooting technique
- Four types of solutions are allowed

▶ 
$$f = 0$$
,  $c = 0$   $(z = \pm L/2, l = 0)$  → chiral symm.

• 
$$f = 0, c \neq 0 \longrightarrow$$
 intra

• 
$$f \neq 0$$
,  $c = 0 \longrightarrow$  inter

•  $f \neq 0$ ,  $c \neq 0 \longrightarrow$  intra and inter

## Plot of solutions

- Example of plots of non-trivial solutions with  $\sqrt{b}L\simeq 1.5$  and  $\mu/\sqrt{b}\simeq .77$ 
  - $f = 0, c \neq 0 \longrightarrow$  intra

• 
$$f \neq 0, c = 0 \longrightarrow$$
 inter

•  $f \neq 0$ ,  $c \neq 0 \longrightarrow$  inter and intra



#### Solutions with zero charge density

- $\blacksquare$  We are interested in solutions at fixed L and  $\mu$
- Eq. for  $a_0$  is  $\longrightarrow a'_0 = \frac{q(\rho^2 + l^2)\sqrt{1 + l'^2}}{\sqrt{\rho^4 \left(b^2 + (\rho^2 + l^2)^2\right) + q^2(\rho^2 + l^2)^2 f^2}}$
- It has a trivial solution  $\rightarrow a_0 = \text{const}$  when q = 0
- Other solutions with q = 0 and  $a_0 = \mu$



Which configuration is favored?

- $\blacksquare$  Compare the free energies of the different solutions at the same L and  $\mu$
- The right quantity to define the free energy is the action evaluated on solutions  $\longrightarrow \mathcal{F}[L,\mu] = S[l,z,a_0]$

$$\delta \mathcal{F} = \int_0^\infty d\rho \left( \delta l \frac{\partial \mathcal{L}}{\partial l'} + \delta a_0 \frac{\partial \mathcal{L}}{\partial a'_0} + \delta z \frac{\partial \mathcal{L}}{\partial z'} \right)' = -q \delta \mu + f \delta L$$
$$\mathcal{F}[L,\mu] = \mathcal{N}_5 \int_{\rho_0}^\infty d\rho \frac{\rho^4 \left( 1 + \left(l^2 + \rho^2\right)^2 \right) \sqrt{\frac{1 + l'^2}{f^2 - q^2 \left(l^2 + \rho^2\right)^2 - \rho^4 \left(1 + \left(l^2 + \rho^2\right)^2\right)}}{l^2 + \rho^2}$$

•  $\mathcal{F} \longleftrightarrow$  implicit function of L and  $\mu$ 

- The free energy of each solution is UV divergent
- Regularization → subtracting to the free energy of each solution that of the trivial  $(f = 0, c = 0; \rho \neq 0)$ -solution (with the same  $\mu$ )
- We use the regularized free energy to study the dominant configuration at fixed values of L and  $\mu$
- We construct the phase diagram working on a series of constant *L* slices

#### Free Energy as a function of the separation: no charge

[Evans,Kim 1311.0149]



red line: Minkowski embedding unconnected, only intra

blue line: connected  $\rho$ -independent, only inter

green line: connected  $\rho$ -dependent, both inter and intra

## Free Energy as a function of the chemical potential



## $D3/D5-\overline{D5}$ Phase diagram





D3/probe D5-D5 system as an holographic model of a graphene bilayer

- Two channels for chiral symmetry breaking → intra/inter-layer condensates
- Inter-layer condensate is possible only for overall neutral system
- There is a pahse with both inter- and intra-layer condensates
- Study of the phase diagram  $\left(\mu/\sqrt{b},\sqrt{b}L\right)$
- For two layers at a finite distance with an external magnetic field and a chemical potential → chiral symmetry is always broken
- Three relevant phases  $\rightarrow$  intra q = 0, intra  $q \neq 0$ , inter

Gianluca Grignani

This work can be extended in several directions:

The temperature can be taken into account

Study of non-neutral system  $(\rho_{D5} + \rho_{\overline{D5}} \neq 0)$ 

■ We can use a different holographic model for bilayer semi-metal → D3/probe D7-D7

[Davis, Kraus, Shah. arXiv:0809.1876]