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Holography or gauge/gravity duality

Equivalence between (quantum) gravity in bulk space-times and quantum
field theories on their boundaries

cartoon of
AdS space

CFT lives on the
boundary of AdS

  

Strongly coupled

GravityQFT
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Weakly coupled
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Uses of the gauge/gravity duality
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Localization

For certain supersymmetric field theories defined on compact curved
Riemannian manifolds the path integral may be computed exactly

Localization: functional integral over all fields of a theory→
integral/sum over a reduced set of field configurations

Saddle point around a supersymmetric locus gives the exact answer

A priori the path integral (“partition function” Z) depends on the
parameters of the theory and of the background geometry
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Basic idea of localization

The idea of using localization as a method to calculate obeservables in a
quantum field theory goes back to [Witten 1988]

Suppose we have an action S[φ] invariant under a supersymmetry δ (more
generally a Grassmann-odd symmetry) so that δS[φ] = 0, with δ2 = 0

Then consider the path integral of a theory deformed by a δ-exact term δVF

Z(t) =

∫
Dφ e−S−tδVF

The key point is that (assuming δDφ = 0) this is independent of t

−
dZ

dt
=

∫
Dφ δVF e−S−tδVF =

∫
Dφδ

(
VFe−S−tδVF

)
= 0

⇒ Z ≡ Z(0) = Z(t→∞)
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Basic idea of localization

If we choose δVF to have positive definite bosonic part, then as
t→∞ the integrand is suppressed exponentially, except when
δVF|bosonic = 0

In this case the saddle point approximation is not an approximation, it
is an exact result

Z =

∫
δ−invariant fields

Dφ e−S (1− loop determinant)

A typical choice of VF is of the type VF = Tr[(δψ)†ψ], where ψ is
a fermion of the theory

The path integral localizes on supersymmetric configurations

δψ = 0
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Uses of localization

Results have been obtained for supersymmetric theories defined on various
manifolds Md, with different amounts of supersymmetry. A sample list of
references calculating partition functions (or/and BPS observables) using
localization is:

d = 1: supersymmetric quantum mechanics [Cordova-Shao], . . .

d = 2: S2 [Benini-Cremonesi], [Doroud et al], elliptic genera [Benini et al], . . .

d = 3: S3 [Kapustin et al], [Hama et al], [Jafferis] and its deformations . . . ,
S1 × S2 [S. Kim], . . .

d = 4: Riemannian [Witten ’88], Kähler [Johansen ’94], S4 [Pestun], Hopf
surfaces [Assel et al], . . .

d = 5: S5 and its deformations, Sasaki-Einstein [Källén,Qiu,Zabzine et al], . . .
S1 × S4, S1 × CP2 [Kim et al], . . .

. . . many more . . .
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Uses of localization

When the manifold Md is of the form S1 ×Md−1 the path integral may be

interpreted as an index Tr e−(operator), “counting” states in the field theory
(Hamiltonian formalism). In this case the name “partition function” is more
appropriate: think of S1 as compactified time, but there is no temperature

Indices and other partition functions may be used to test conjectured
non-perturbative Seiberg(-like) dualities

Partition functions on S2 and S4 compute exact Kähler potential on the
space of marginal deformations of supersymmetric SCFs

. . . relationships across dimensions, factorisation, “Higgs branch” vs “Coulomb
branch”, manifolds with boundaries, topological strings, Rényi/entanglement
entropy, Hilbert series, . . .
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Localization vs holography

Localization Holography

Large N (semi-classical)
Supersymmetry

Beyond large N (semi-classical)→ “quantum holography” Murthy’s talk
[Dabholkar,Drukker,Gomes,Murthy,. . . ]
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Comparing localization with holography

When a field theory has a holographic dual, what can we attempt to
compare on the two sides?

Using localization we can compute exactly n-point functions of BPS
(δOi = 0) operators

〈O1 . . .On〉 =

∫
δ−invariant fields

Dφ e−S (1− loop)O1 . . .On

In the large N (semi-classical) limit we can compare with holographic
n-point functions of BPS operators computed using the gravity dual. The
simplest case is one-point functions

Even simpler is the path integral with no insertions, whose gravity dual is

e−Ssupergravity[Md+1] = Z[Md = ∂Md+1]

where the supergravity action is evaluated on-shell on a (d + 1)-dimensional
solution Md+1 with d-dimensional conformal boundary Md, on which the
supersymmetric QFT is defined
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Rigid supersymmetry and localization
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Four dimensional N = 1 supersymmetric field theories

For concreteness, we now focus on d = 4, N = 1 supersymmetric gauge
theories with matter

Vector multiplet: gauge field A; Weyl spinor λ; auxiliary scalar D, all
transforming in the adjoint representation of a group G

Chiral multiplet: complex scalar φ; Weyl spinor ψ; auxiliary scalar F, all
transforming in a representation R of the group G

In flat space with Lorentzian signature, supersymmetric Lagrangians
containing these fields are textbook material

A first caveat in Euclidean space is that degrees of freedom in multiplets are
a priori doubled: λ† → λ̃, φ† → φ̃, etcetera, where tilded fields are
regarded as independent
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Supersymmetry and Lagrangians (flat space)

For example, the supersymmetry transformations of the fields in the vector
multiplet are

δAµ = iζσµλ̃ δD = −ζσµDµλ̃

δλ = Fµν σµνζ + iDζ δλ̃ = 0

where ζ is a constant spinor parameter, Dµ = ∂µ − iAµ·, and
Fµν ≡ ∂µAν − ∂νAµ − i[Aµ,Aν]

The supersymmetric Yang-Mills Lagrangian reads

Lvector = tr

[
1

4
FµνFµν −

1

2
D2 + iλ̃ σ̃µDµλ

]

Similarly, there are supersymmetry transformations and supersymmetric
Lagrangians for the fields in the chiral multiplet
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Rigid supersymmetry on curved manifolds

One can try to define supersymmetric field theories on Riemannian (or
Lorentzian) curved manifolds: clearly ∂µ → ∇µ, but this is not enough

The supersymmetry transformations and Lagrangians must be modified.
[Witten]: “twist” N = 2 SYM→ supersymmetric on arbitrary Riemannian
manifod

Somewhat surprisingly, rigid supersymmetry in curved space (Euclidean or
Lorentzian) addressed systematically only in the 2010’s

But local supersymmetry studied since long time ago→ supergravity

[Festuccia-Seiberg]: take supergravity with some gauge and matter fields
and appropriately throw away gravity→ “rigid limit”

Important: in the process of throwing away gravity, some extra fields of the
supergravity multiplet remain, but are non-dynamical→ background fields
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Rigid new minimal supersymmetry

For d = 4 field theories with an R symmetry, one can use (Euclidean) new
minimal supergravity [Sohnius-West]. Gravitini variations:

δψµ ∼ (∇µ − iAµ) ζ + iVµζ + iVνσµνζ = 0

δψ̃µ ∼ (∇µ + iAµ) ζ̃ − iVµζ̃ − iVνσ̃µν ζ̃ = 0

Aµ,Vµ are background fields and ζ, ζ̃ are supersymmetry parameters

Existence of ζ or ζ̃ is equivalent to Hermitian metric
[Klare-Tomasiello-Zaffaroni], [Dumitrescu-Festuccia-Seiberg]

The supersymmetry transformations of the vector multiplet are

δAµ = iζσµλ̃ + iζ̃ σ̃µλ

δλ = Fµν σµνζ + iDζ δλ̃ = Fµν σ̃µν ζ̃ − iDζ̃

δD = −ζσµ
(
Dµλ̃− 3i

2
Vµλ̃

)
+ ζ̃ σ̃µ

(
Dµλ + 3i

2
Vµλ

)
where Dµ = ∇µ − iAµ · −iqRAµ
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Superconformal anomalies

Putting an N = 1 SCFT on a curved background yields trace and
R-symmetry anomalies

〈Tm
m〉 =

c

16π2
C 2 −

a

16π2
E −

c

6π2
FmnFmn

〈∇mJm〉 =
c− a

24π2
RmnpqR̃mnpq +

5a− 3c

27π2
FmnF̃mn

where F = d(A− 3
2
V), a and c are the central charges and

C 2 ≡ CmnpqCmnpq = RmnpqRmnpq − 2RmnRmn +
1

3
R2

E ≡
1

4
εmnpqεrsuvRmnrsRpquv = RmnpqRmnpq − 4RmnRmn + R2

P ≡
1

2
εmnpqRmnrsRpq

rs =
1

2
εmnpqCmnrsCpq

rs
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Supersymmetry tames the anomalies

If the background is supersymmetric the anomalies are simplified
substantially [Cassani-DM]

For example, assuming the existence of both Killing spinors ζ abd ζ̃ (in
Lorentzian signature this is valid with ζ only)

〈Tm
m〉 = −

a

16π2
E

〈∇mJm〉 =
a

36π2
P

In particular, this is true for complex manifolds with topology S1 × S3 to be
discussed next→ on these manifolds integrated anomalies vanish
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Localization on four-manifolds: strategy outline

[Assel-Cassani-DM]

Work in Euclidean signature and start with generic background fields Aµ,
Vµ associated to a Hermitian manifold

Construct δ-exact Lagrangians for the vector and chiral multiplets→ set-up
localization on a general Hermitian manifold

Restrict to backgrounds admitting a second spinor ζ̃ with opposite R-charge

Further restrict to manifolds with topology M4 ' S1 × S3

Prove that the localization locus is given by gauge field Aτ = constant,
with all other fields (λ,D;φ, ψ, F) vanishing

Partition function reduces to a matrix integral over Aτ → integrand is
infinite product of 3d super-determinants
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Localizing Lagrangians and saddle point equations

The bosonic parts of the localizing terms constructed with ζ only are

L(+)
vector = tr

(
1

4
F (+)
µν F

(+)µν +
1

4
D2

)
Lchiral = (gµν − iJµν) Dµφ̃Dνφ + F̃F

With the obvious reality conditions on the fields, A,D Hermitian, φ̃ = φ†,
F̃ = F†, we obtain the saddle point equations

vector : F (+)
µν = 0 , D = 0

chiral : JµνDνφ̃ = iDµφ̃ , F = 0
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Geometries with two supercharges of opposite R-charge

Suppose there exists a second spinor ζ̃, with opposite chirality, obeying the
rigid new minimal equation

(∇µ + iAµ) ζ̃ − iVµζ̃ − iVνσ̃µν ζ̃ = 0

Geometry is a special case of ambihermitian manifold, which may be neatly
characterised by the complex holomorphic Killing vector field Kµ = ζσµζ̃

The metric takes a canonical form in terms of complex coordinates z,w

ds2 = Ω2[(dw + hdz)(dw̄ + h̄dz̄) + c2dzdz̄]

with Ω(z, z̄), c(z, z̄), h(z, z̄) arbitrary functions
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Hopf surfaces

A Hopf surface is essentially a four-dimensional complex manifold with the
topology of S1 × S3. It can be described as a quotient of C2 − (0, 0), with
coordinates z1, z2 identified as

(z1, z2) ∼ (pz1, qz2)

where p, q are in general two complex parameters

We show that on a Hopf surface we can take a very general metric

ds2 = Ω2dτ 2 + f2dρ2 + mIJdϕIdϕJ I, J = 1, 2

while preserving two spinors ζ and ζ̃

τ is a coordinate on S1, while the 3d part has coordinates ρ, ϕ1, ϕ2,
describing S3 as a T2 fibration over an interval
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The matrix model

The localizing locus simplifies drastically, e,g. → F (+) = F (−) = 0→ full
contribution comes from zero-instanton sector! Flat connections Aτ =
constant, and all other fields vanishing

The localized path integral is reduced an infinite products of d = 3
super-determinants, that may be computed explicitly using the method of
pairing of eigenvalues [Hama et al], [Alday et al]

Infinite products regularised using formulas for elliptic gamma functions

Zchiral
1-loop =

∏
ρ∈∆R

∏
n∈Z

Zchiral
1-loop (3d)

[
σ

(n,ρ)
0

]

→ eiπΨ
(0)
chi eiπΨ

(1)
chi

∏
ρ∈∆R

Γe

(
e2πiρA0 (pq)

r
2 , p, q

)
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Supersymmetric index

The prefactor Ψ
(1)
chi is anomalous and must cancel after combining with the

vector multiplet contribution→ anomaly cancellation conditions “for free”

The rest combines into the following formula

Z[Hp,q] = e−F(p,q) I(p, q)

where I(p, q) is the supersymmetric index with p, q fugacities

I(p, q) =
(p; p)rG (q; q)rG

|W|

∫
TrG

dz

2πiz

∏
α∈∆+

θ
(

zα, p
)
θ
(

z−α
, q
)∏

J

∏
ρ∈∆J

Γe
(

zρ(pq)
rJ
2 , p, q

)

which may be defined as a sum over states as

I(p, q) = Tr[(−1)FpJ+J′− R
2 qJ−J′− R

2 ]

The fact that the index is computed by the localized path integral on a Hopf
surface was anticipated by [Closset-Dumitrescu-Festuccia-Komargodski]
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Supersymmetric Casimir energy

The path integral + regularisation produces a pre-factor F(p, q) explicitly
given by (p ≡ e−2π|b1|, q ≡ e−2π|b2|)

F(p, q) =
4π

3

(
|b1|+ |b2| −

|b1|+ |b2|
|b1||b2|

)
(a− c)

+
4π

27

(|b1|+ |b2|)3

|b1||b2|
(3 c− 2 a)

a =
3

32

(
3 trR3 − trR

)
, c =

1

32

(
9 trR3 − 5 trR

)
Invariant depending only on complex structure and the trace anomaly
coefficients a, c→ expect to encode physical properties

It captures the “vacuum energy”→ supersymmetric Casimir energy Esusy
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More comments on the supersymmetric Casimir energy

How does one know the result does not depend on the regularisation
procedure, e.g. zeta-function?

One must show that there are no finite, supersymmetric, counterterms, i.e.
integrals of local densities [Assel-Cassani-DM] (to appear)

Supersymmetric Casimir energy can be recovered from the Hamiltonian
formalism [Lorenzen-DM] (to appear)

〈0|HBPS|0〉 = Esusy

where HBPS is an appropriate supersymmetric Hamiltonian
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Partition function on M3

From the 4d partition function is possible to extract the partition function of
an N = 2, d = 3 theory on a manifold M3 ' S3 arising as the dimensional
reduction on S1, previously computed in [Alday et al]

Zβ =

∫
dσ0 e

− iπk
|b1b2|

Trσ2
0
∏
α∈∆+

4 sinh
πσ0α

|b1|
sinh

πσ0α

|b2|

·
∏
ρ

sβ

[
i(β + β−1)

2
(1− r)−

ρ(σ0)√
|b1b2|

]

Here β =
√
|b1/b2| and sβ(z) denotes the double sine function

It depends on M3 ' S3 only through the almost contact structure, via the
Killing vector K = b1∂ϕ1 + b2∂ϕ2 , where ∂ϕ1 , ∂ϕ2 is a basis of U(1)2

Dario Martelli (KCL) 26 September 2014 27 / 41



Exact free energy and large N limit

The exact free energy F = − log Z of a general N = 2 supersymmetric
Chern-Simons theory defined on an M3 depends on the gauge group G,
matter representation R Chern-Simons levels k, as well as b1, b2

For a quiver gauge group G = SU(N)p we can consider the large N limit:
N→∞, at fixed k

For rather general N = 2 theories one finds that in this limit the
dependence on β factorises as [DM-Passias-Sparks]

Fβ =
(β + β−1)2

4
Fβ=1 + O(N1/2)

where Fβ=1 ∼ O(N3/2) is the large N free energy on the round
three-sphere (with standard almost contact structure)

In the final part of the talk I will discuss how to reproduce this result from a
holographic computation, independently of many details of the dual
supergravity solutions
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Holography
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Gravity duals of N = 2 Chern-Simons theories on S3

The holographic dual to the ABJM model is the N = 6 solution of d = 11
supergravity solution with metric AdS4 × S7/Zk

A large class of N = 2 quiver gauge theories with Chern-Simons terms are
dual to AdS4 × Y7, with Y7 a Sasaki-Einstein manifold

In order to compare with field theories on the round S3 it suffices to consider
Euclidean AdS4, with round S3 at its conformal boundary

Key ingredient: the bulk Killing spinor ε in AdS4 induces a rigid Killing
spinor χ on the boundary round S3

∇µε = −
1

2
Γµε −→ ∇iχ = i

2
γiχ

The holographically renormalised on-shell sugra action reproduces the
localized free energy Fβ=1 at large N [Drukker-Marino-Putrov]
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Gravity duals for more general M3

Idea: find a supersymmetric filling M4 of the given M3 in d = 4, N = 2 gauged
supergravity (Einstein-Maxwell theory), and use the fact that any such solution
uplifts to a supersymmetric solution M4 × Y7 of d = 11 supergravity

Action: S = −
1

16πG4

∫
d4x
√

g
(
R + 6− F2

)
Killing Spinor Equation:

(
∇µ − iAµ +

1

2
Γµ +

i

4
FνρΓ

νρΓµ

)
ε = 0

Dirichlet problem: find (M4, gµν ,A) such that

The conformal boundary of M4 is M3

The bulk gauge field A restricts to a background A(3) on the boundary

The bulk Killing spinor ε restricts to the boundary rigid Killing spinor χ

Check: The on-shell sugra action reproduces the localized free energy at large N
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General class of four dimensional gravity duals

1 Given an N = 2 supersymmetric field theory defined on M3 ' S3 with
arbitrary metric, together with a choice of almost contact structure, can we
construct its 4d gravity dual?

2 Can we compute the holographic free energy for any such solution, and
check that it agrees with the large N limit of the localized partition function
on M3?

Affirmative answer to both questions, working in minimal gauged
supergravity in four dimensions, and focusing on (anti-)self-dual metrics on
the four-ball [Farquet-Lorenzen-DM-Sparks]
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Self-dual supersymmetric solutions

The local form of Euclidean supersymmetric solutions of Euclidean d = 4
minimal gauged supergravity given in [Dunajski-Gutowski-Sabra-Tod]

When the graviphoton is real there exist a canonical Killing vector

K = iε†ΓµΓ5ε∂µ = ∂ψ

There is a special class of “self-dual solutions” in which ∗4F = −F is
anti-self-dual and the four-metric is Einstein with anti-self-dual Weyl tensor

These solutions are (locally) conformal to a scalar-flat Kähler metric

ds2
4 =

1

y2
ds2

Kahler =
1

y2

[
V−1(dψ + φ)2 + V(dy2 + 4ewdzdz̄)

]
where V = 1− 1

2
y∂yw, with the metric determined entirely by a solution to

the Toda equation
∂z∂z̄w + ∂2

ye
w = 0
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Self-dual supersymmetric solutions

A self-dual supersymmetric solution can be constructed starting from a metric
ds2

Kahler and a Killing vector K

The function/coordinate y can be computed from the Killing vector K as

Ψ ≡
1

2
(dK[)+ →

2

y2
= |Ψ |2

The (bulk) gauge field depends on the choice of K, e.g. through the formula

F =
1

2
R

where R is the Ricci curvature of the Kähler metric ds2
Kahler, computed

with the complex structure defined by K:

Jµν = −ygµρ
(
dK[

)+

ρν
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Constructing gravity duals to M3 ' S3

Our strategy for constructing gravity duals to the boundary geometries on
M3 ' S3 is to begin with an arbitrary U(1)× U(1)-invariant self-dual
Einstein metric on a four-ball B4, which is asymptotically locally AdS with
conformal boundary ∂B4 = [M3]

These metrics can be written down (locally) in explicit form, and are labeled
by an arbitrary number of parameters [Calderbank-Pedersen]→ solutions a
la multi-center (m-pole solutions)

Then we pick an arbitrary Killing vector K = b1∂ϕ1 + b2∂ϕ2 , where
∂ϕ1 , ∂ϕ2 are a basis of U(1)× U(1)

By construction, for each metric and each choice of Killing vector K we
locally get a supersymmetric supergravity solution

Finally, we prove that for any fixed choice of self-dual Einstein metric, this
leads to a one-parameter family of solutions labelled by b1/b2, which are
globally regular
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Conformal boundary

Asymptotically (near to y = 0) the bulk KIlling spinor has the expansion

ε = y−1/2

[(
1 + Γ0 + 1

4
yw(1)Γ0

) ( χ
0

)
+O(y2)

]

where χ is a three-dimensional spinor satisfying the rigid (new minimal)
Killing spinor equation and

w(y, z, z̄) = w(0)(z, z̄) + yw(1)(z, z̄) +O(y2)

The structure induced on the conformal boundary (at y = 0) is precisely the
3d background geometry [Closset-Dumitrescu-Festuccia-Komargodski], so χ
obeys that rigid new minimal supersymmetry equation (similar to 4d version
we saw earlier)
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Holographic free energy

The holographic free energy is the on shell supergravity Euclidean action
evaluated on a solution, regularised and renormalised, using the prescription
of holographic renormalisation

− log Zgravity = SEinstein−Maxwell + SGibbons−Hawking + Scounterterms

The individual terms do depend on the detailed solution, for example

1

16πG4

∫
B4

F2
√

det g d4x = −
π(|b1|+ |b2|)2

8G4b1b2

+
1

256πG4

∫
M3

(
3w3

(1) + 4w(1)w(2)

)√
det g3 d

3x
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Holographic free energy

However, remarkably the final result is

− log Zgravity = Son shell =
(|b1|+ |b2|)2

4|b1||b2|
·
π

2G4

This formula is derived without knowledge of any specific metric! We have
assumed only that a solution with the correct global properies exists (the
m-pole provide infinitely many explicit examples)

It is analogous to the formula for the volume of a Sasakian manifold in
terms of an arbitrary Reeb Killing vector, that was shown to be essentially
independent of the explicit metric [DM-Sparks-Yau]

It agrees perfectly with large N limit of − log Z computed using
localization! Result analogous to general check of a-maximisation =
Z-minimisation in AdS5/CFT4 X
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Other examples

There are a few other examples in other dimensions, but a more systematic
understanding is still lacking

4d/5d [Cassani-DM] supersymmetric Casimir energy of N = 1 field theories on
S1 × S3

sqaushed compared to newly constructed supersymmetric
asymptotically locally AdS5 solution of type IIB supergravity

5d/6d [Jafferis-Pufu] large N free energy of susy gauge theories on S5 matched to
holographic free energy and entanglement entropy of supersymmetric AdS6

in massive type IIA supegravity

5d/6d [Alday et al] match free energy of field theories on examples of deformed S5

to holographic computations in newly constructed asymptotically locally
AdS6 solutions of massive type IIA supergravity

Dario Martelli (KCL) 26 September 2014 39 / 41



Other examples

4d/5d [Bobev et al] large N free energy of N = 2∗ SYM (mass-deformed N = 4
SYM) on round S4 compared to new aymptotically AdS5 solution of type
IIB supergravity

3d/4d [Huang-Rey-Zhou] and [Nishioka] large N free energy of susy gauge theories
on branched S3 = “supersymmetric Rényi entropy”, matched to on-shell
action of supersymmetric topological (hyperbolically sliced) black hole

4d/5d [Huang-Zhou] and [Crossley et al] large N supersymmetric Rényi entropy in
N = 4 SYM matched to on-shell action of hyperbolically sliced
supersymmetric black hole solution of type IIB supergravity
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Outlook

Push the localization technique: how many more path integrals can we
compute exactly and explicitly, and what can we learn from them? Especially
in higher dimensions (d = 4, 5) rigid supersymmetry allows for large classes
of geometries (in d = 5 a systematic classification is still missing)

Supersymmetric localization yields very precise predictions for the
gauge/gravity duality, allowing to perform detailed tests in situations without
superconformal invariance. Supergravity solutions should reproduce exactly
numbers and functions, rather than qualitative features of the putative field
theory dual!

This is forcing us to refine the holographic dictionary and think about “why”
computations on the two sides match→ progress towards “proving” the
gauge/gravity duality in islands of growing size (as opposed to checking it in
a large number of isolated examples)

Localization may be used to perform exact quantum computations in
gravitational theories. Gauge/gravity duality tested beyond the
semi-classical/large N limit
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