Supersymmetric gauge theories, localization and holography

Dario Martelli

King's College London

European Research Council

2nd COST MP1210 Meeting and 20th European Workshop on String Theory

(日) (周) (三) (三)

The String Theory Universe

JGU Mainz 22 - 26 September 2014

Dario Martelli (KCL)

3

Outline

- 2 Rigid supersymmetry and localization
- Intersection Holography

(日) (同) (三) (三)

3

Holography or gauge/gravity duality

Equivalence between (quantum) gravity in bulk space-times and quantum field theories on their boundaries

Uses of the gauge/gravity duality

<ロ> (日) (日) (日) (日) (日)

Localization

- For certain supersymmetric field theories defined on compact curved Riemannian manifolds the path integral may be computed exactly
- Localization: functional integral over all fields of a theory → integral/sum over a reduced set of field configurations
- Saddle point around a supersymmetric locus gives the exact answer
- A priori the path integral ("partition function" **Z**) depends on the parameters of the theory and of the background geometry

Basic idea of localization

- The idea of using localization as a method to calculate obeservables in a quantum field theory goes back to [Witten 1988]
- Suppose we have an action $S[\phi]$ invariant under a supersymmetry δ (more generally a Grassmann-odd symmetry) so that $\delta S[\phi] = 0$, with $\delta^2 = 0$
- Then consider the path integral of a theory deformed by a δ -exact term δV_{F}

$$Z(t) = \int \mathcal{D}\phi \, \mathrm{e}^{-S-t\delta V_F}$$

• The key point is that (assuming $\delta \mathcal{D} \phi = \mathbf{0}$) this is independent of **t**

$$-\frac{\mathrm{d}\mathbf{Z}}{\mathrm{d}\mathbf{t}} = \int \mathcal{D}\phi \,\delta\mathbf{V}_{\mathsf{F}} \,\mathrm{e}^{-\mathsf{S}-\mathrm{t}\delta\mathbf{V}_{\mathsf{F}}} = \int \mathcal{D}\phi\delta\left(\mathbf{V}_{\mathsf{F}}\mathrm{e}^{-\mathsf{S}-\mathrm{t}\delta\mathbf{V}_{\mathsf{F}}}\right) = \mathbf{0}$$

 $\Rightarrow \quad \mathsf{Z} \equiv \mathsf{Z}(0) = \mathsf{Z}(\mathsf{t} \to \infty)$

(日) (周) (三) (三)

Basic idea of localization

- If we choose δV_F to have positive definite bosonic part, then as $t\to\infty$ the integrand is suppressed exponentially, except when $\delta V_F|_{bosonic}=0$
- In this case the saddle point approximation is not an approximation, it is an exact result

$$\mathsf{Z} = \int_{\delta- ext{invariant fields}} \mathcal{D}\phi \, \mathrm{e}^{-\mathsf{S}} \left(1 - ext{loop determinant}
ight)$$

- A typical choice of V_F is of the type $V_F = \text{Tr}[(\delta \psi)^{\dagger} \psi]$, where ψ is a fermion of the theory
- The path integral localizes on supersymmetric configurations

$$\delta \psi = \mathbf{0}$$

Uses of localization

Results have been obtained for supersymmetric theories defined on various manifolds $M_d,$ with different amounts of supersymmetry. A sample list of references calculating partition functions (or/and BPS observables) using localization is:

d = 1: supersymmetric quantum mechanics [Cordova-Shao], ...

d = 2: S^2 [Benini-Cremonesi], [Doroud et al], elliptic genera [Benini et al], ...

 $d=3;\ S^3$ [Kapustin et al], [Hama et al], [Jafferis] and its deformations \ldots , $S^1\times S^2$ [S. Kim], \ldots

d=4: Riemannian [Witten '88], Kähler [Johansen '94], ${\bf S}^4$ [Pestun], Hopf surfaces [Assel et al], \ldots

d=5: S^5 and its deformations, Sasaki-Einstein [Källén,Qiu,Zabzine et al], \ldots $S^1\times S^4,$ $S^1\times \mathbb{C}P^2$ [Kim et al], \ldots

... many more ...

Uses of localization

- When the manifold M_d is of the form $S^1\times M_{d-1}$ the path integral may be interpreted as an index Tr $e^{-(operator)}$, "counting" states in the field theory (Hamiltonian formalism). In this case the name "partition function" is more appropriate: think of S^1 as compactified time, but there is no temperature
- Indices and other partition functions may be used to test conjectured non-perturbative Seiberg(-like) dualities
- Partition functions on S² and S⁴ compute exact Kähler potential on the space of marginal deformations of supersymmetric SCFs

... relationships across dimensions, factorisation, "Higgs branch" vs "Coulomb branch", manifolds with boundaries, topological strings, Rényi/entanglement entropy, Hilbert series, ...

イロト 不得 トイヨト イヨト 二日

Localization vs holography

• Beyond large N (semi-classical) \rightarrow "quantum holography" Murthy's talk [Dabholkar, Drukker, Gomes, Murthy, . . .]

(日) (同) (三) (三)

Comparing localization with holography

- When a field theory has a holographic dual, what can we attempt to compare on the two sides?
- Using localization we can compute exactly **n**-point functions of BPS $(\delta O_i = 0)$ operators

$$\langle \mathcal{O}_1 \dots \mathcal{O}_{\mathsf{n}}
angle = \int_{\delta-\operatorname{invariant fields}} \mathcal{D}\phi \, \mathsf{e}^{-\mathsf{S}} \left(1 - \mathsf{loop}\right) \mathcal{O}_1 \dots \mathcal{O}_{\mathsf{n}}$$

- In the large **N** (semi-classical) limit we can compare with holographic **n**-point functions of BPS operators computed using the gravity dual. The simplest case is one-point functions
- Even simpler is the path integral with no insertions, whose gravity dual is

$$e^{-S_{supergravity}[M_{d+1}]} = Z[M_d = \partial M_{d+1}]$$

where the supergravity action is evaluated on-shell on a (d+1)-dimensional solution M_{d+1} with d-dimensional conformal boundary M_d , on which the supersymmetric QFT is defined

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Rigid supersymmetry and localization

イロト イヨト イヨト イヨト

3

Four dimensional $\mathcal{N} = 1$ supersymmetric field theories

- \bullet For concreteness, we now focus on $d=4, \ \mathcal{N}=1$ supersymmetric gauge theories with matter
- Vector multiplet: gauge field A; Weyl spinor λ ; auxiliary scalar D, all transforming in the adjoint representation of a group G
- Chiral multiplet: complex scalar φ; Weyl spinor ψ; auxiliary scalar F, all transforming in a representation *R* of the group G
- In flat space with Lorentzian signature, supersymmetric Lagrangians containing these fields are textbook material
- A first caveat in Euclidean space is that degrees of freedom in multiplets are a priori doubled: $\lambda^{\dagger} \rightarrow \tilde{\lambda}, \phi^{\dagger} \rightarrow \tilde{\phi}$, etcetera, where tilded fields are regarded as independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Supersymmetry and Lagrangians (flat space)

• For example, the supersymmetry transformations of the fields in the vector multiplet are

$$\begin{split} \delta \mathcal{A}_{\mu} &= \mathrm{i} \zeta \sigma_{\mu} \widetilde{\lambda} \qquad \delta \mathsf{D} = -\zeta \sigma^{\mu} \mathsf{D}_{\mu} \widetilde{\lambda} \\ \delta \lambda &= \mathcal{F}_{\mu\nu} \, \sigma^{\mu\nu} \zeta + \mathrm{i} \mathsf{D} \zeta \qquad \delta \widetilde{\lambda} = \mathsf{0} \end{split}$$

where ζ is a constant spinor parameter, $\mathbf{D}_{\mu} = \partial_{\mu} - \mathbf{i} \mathcal{A}_{\mu}$, and $\mathcal{F}_{\mu\nu} \equiv \partial_{\mu} \mathcal{A}_{\nu} - \partial_{\nu} \mathcal{A}_{\mu} - \mathbf{i} [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]$

• The supersymmetric Yang-Mills Lagrangian reads

$$\mathcal{L}_{\rm vector} = {\rm tr} \left[\; \frac{1}{4} \mathcal{F}^{\mu\nu} \mathcal{F}_{\mu\nu} - \frac{1}{2} \mathsf{D}^2 + \mathsf{i} \widetilde{\lambda} \, \widetilde{\sigma}^\mu \mathsf{D}_\mu \lambda \; \right] \label{eq:local_vector}$$

• Similarly, there are supersymmetry transformations and supersymmetric Lagrangians for the fields in the chiral multiplet

イロト (過) (ヨ) (ヨ) (ヨ) ヨー ののの

Rigid supersymmetry on curved manifolds

- One can try to define supersymmetric field theories on Riemannian (or Lorentzian) curved manifolds: clearly $\partial_{\mu} \rightarrow \nabla_{\mu}$, but this is not enough
- The supersymmetry transformations and Lagrangians must be modified. [Witten]: "twist" N = 2 SYM → supersymmetric on arbitrary Riemannian manifod
- Somewhat surprisingly, rigid supersymmetry in curved space (Euclidean or Lorentzian) addressed systematically only in the 2010's
- But local supersymmetry studied since long time ago \rightarrow supergravity
- [Festuccia-Seiberg]: take supergravity with some gauge and matter fields and appropriately throw away gravity → "rigid limit"
- Important: in the process of throwing away gravity, some extra fields of the supergravity multiplet remain, but are non-dynamical → background fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Rigid new minimal supersymmetry

 For d = 4 field theories with an R symmetry, one can use (Euclidean) new minimal supergravity [Sohnius-West]. Gravitini variations:

$$\begin{split} \delta\psi_{\mu} &\sim \left(\nabla_{\mu} - \mathrm{i}\mathsf{A}_{\mu}\right)\zeta + \mathrm{i}\mathsf{V}_{\mu}\zeta + \mathrm{i}\mathsf{V}^{\nu}\sigma_{\mu\nu}\zeta = 0\\ \delta\tilde{\psi}_{\mu} &\sim \left(\nabla_{\mu} + \mathrm{i}\mathsf{A}_{\mu}\right)\tilde{\zeta} - \mathrm{i}\mathsf{V}_{\mu}\tilde{\zeta} - \mathrm{i}\mathsf{V}^{\nu}\tilde{\sigma}_{\mu\nu}\tilde{\zeta} = 0 \end{split}$$

• ${\sf A}_{\mu}, {\sf V}_{\mu}$ are background fields and $\zeta,\, { ilde \zeta}$ are supersymmetry parameters

- Existence of ζ or ζ̃ is equivalent to Hermitian metric [Klare-Tomasiello-Zaffaroni], [Dumitrescu-Festuccia-Seiberg]
- The supersymmetry transformations of the vector multiplet are

$$\begin{split} \delta \mathcal{A}_{\mu} &= \mathsf{i} \zeta \sigma_{\mu} \widetilde{\lambda} + \mathsf{i} \widetilde{\zeta} \, \widetilde{\sigma}_{\mu} \lambda \\ \delta \lambda &= \mathcal{F}_{\mu\nu} \, \sigma^{\mu\nu} \zeta + \mathsf{i} \mathsf{D} \zeta \qquad \delta \widetilde{\lambda} = \mathcal{F}_{\mu\nu} \, \widetilde{\sigma}^{\mu\nu} \widetilde{\zeta} - \mathsf{i} \mathsf{D} \widetilde{\zeta} \\ \delta \mathsf{D} &= -\zeta \sigma^{\mu} \big(\mathsf{D}_{\mu} \widetilde{\lambda} - \frac{3\mathsf{i}}{2} \mathsf{V}_{\mu} \widetilde{\lambda} \big) + \widetilde{\zeta} \, \widetilde{\sigma}^{\mu} \, \big(\mathsf{D}_{\mu} \lambda + \frac{3\mathsf{i}}{2} \mathsf{V}_{\mu} \lambda \big) \\ \mathsf{where} \, \mathsf{D}_{\mu} &= \nabla_{\mu} - \mathsf{i} \mathcal{A}_{\mu} \cdot - \mathsf{i} \mathsf{q}_{\mathsf{R}} \mathsf{A}_{\mu} \end{split}$$

- 4 週 ト - 4 三 ト - 4 三 ト

Superconformal anomalies

• Putting an $\mathcal{N} = 1$ SCFT on a curved background yields trace and R-symmetry anomalies

$$\begin{split} \langle \mathsf{T}_{\mathsf{m}}^{\mathsf{m}} \rangle &= \frac{\mathsf{c}}{16\pi^{2}} \mathscr{C}^{2} - \frac{\mathsf{a}}{16\pi^{2}} \mathscr{E} - \frac{\mathsf{c}}{6\pi^{2}} \mathsf{F}_{\mathsf{mn}} \mathsf{F}^{\mathsf{mn}} \\ \langle \nabla_{\mathsf{m}} \mathsf{J}^{\mathsf{m}} \rangle &= \frac{\mathsf{c} - \mathsf{a}}{24\pi^{2}} \mathsf{R}_{\mathsf{mnpq}} \widetilde{\mathsf{R}}^{\mathsf{mnpq}} + \frac{\mathsf{5a} - \mathsf{3c}}{27\pi^{2}} \mathsf{F}_{\mathsf{mn}} \widetilde{\mathsf{F}}^{\mathsf{mn}} \\ \end{split}$$
where $\mathsf{F} = \mathsf{d}(\mathsf{A} - \frac{\mathsf{3}}{2}\mathsf{V})$, a and c are the central charges and
 $\mathscr{C}^{2} \equiv \mathsf{C}_{\mathsf{mnpq}} \mathsf{C}^{\mathsf{mnpq}} = \mathsf{R}_{\mathsf{mnpq}} \mathsf{R}^{\mathsf{mnpq}} - 2\mathsf{R}_{\mathsf{mn}} \mathsf{R}^{\mathsf{mn}} + \frac{\mathsf{1}}{\mathsf{3}} \mathsf{R}^{2} \\ \mathscr{E} \equiv \frac{1}{4} \epsilon^{\mathsf{mnpq}} \epsilon^{\mathsf{rsuv}} \mathsf{R}_{\mathsf{mnrs}} \mathsf{R}_{\mathsf{pquv}} = \mathsf{R}_{\mathsf{mnpq}} \mathsf{R}^{\mathsf{mnpq}} - 4\mathsf{R}_{\mathsf{mn}} \mathsf{R}^{\mathsf{mn}} + \mathsf{R}^{2} \\ \mathscr{P} \equiv \frac{1}{2} \epsilon^{\mathsf{mnpq}} \mathsf{R}_{\mathsf{mnrs}} \mathsf{R}_{\mathsf{pq}}^{\mathsf{rs}} = \frac{\mathsf{1}}{2} \epsilon^{\mathsf{mnpq}} \mathsf{C}_{\mathsf{mnrs}} \mathsf{C}_{\mathsf{pq}}^{\mathsf{rs}} \end{split}$

3

(日) (同) (三) (三)

Supersymmetry tames the anomalies

- If the background is supersymmetric the anomalies are simplified substantially [Cassani-DM]
- For example, assuming the existence of both Killing spinors ζ abd $\tilde{\zeta}$ (in Lorentzian signature this is valid with ζ only)

$$\langle \mathsf{T}^{\mathsf{m}}_{\mathsf{m}} \rangle = -\frac{\mathsf{a}}{16\pi^2} \mathscr{E}$$

 $\langle \nabla_{\mathsf{m}} \mathsf{J}^{\mathsf{m}} \rangle = \frac{\mathsf{a}}{36\pi^2} \mathscr{P}$

• In particular, this is true for complex manifolds with topology $S^1 \times S^3$ to be discussed next \rightarrow on these manifolds integrated anomalies vanish

Localization on four-manifolds: strategy outline

[Assel-Cassani-DM]

- Work in Euclidean signature and start with generic background fields A_{μ} , V_{μ} associated to a Hermitian manifold
- Construct δ -exact Lagrangians for the vector and chiral multiplets \rightarrow set-up localization on a general Hermitian manifold
- ullet Restrict to backgrounds admitting a second spinor $\tilde{\zeta}$ with opposite R-charge
- \bullet Further restrict to manifolds with topology $M_4 \simeq S^1 \times S^3$
- Prove that the localization locus is given by gauge field A_{τ} = constant, with all other fields (λ , D; ϕ , ψ , F) vanishing
- Partition function reduces to a matrix integral over A_τ → integrand is infinite product of 3d super-determinants

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Localizing Lagrangians and saddle point equations

• The bosonic parts of the localizing terms constructed with ζ only are

$$\begin{aligned} \mathcal{L}_{\text{vector}}^{(+)} &= \operatorname{tr}\left(\frac{1}{4}\mathcal{F}_{\mu\nu}^{(+)}\mathcal{F}^{(+)\,\mu\nu} + \frac{1}{4}\mathsf{D}^{2}\right) \\ \mathcal{L}_{\text{chiral}} &= \left(\mathsf{g}^{\mu\nu} - \mathsf{i}\mathsf{J}^{\mu\nu}\right)\mathsf{D}_{\mu}\widetilde{\phi}\mathsf{D}_{\nu}\phi + \widetilde{\mathsf{F}}\mathsf{F} \end{aligned}$$

• With the obvious reality conditions on the fields, \mathcal{A} , D Hermitian, $\tilde{\phi} = \phi^{\dagger}$, $\tilde{F} = F^{\dagger}$, we obtain the saddle point equations

vector :
$$\mathcal{F}_{\mu\nu}^{(+)} = 0$$
, $D = 0$
chiral : $J^{\mu}{}_{\nu}D^{\nu}\widetilde{\phi} = iD^{\mu}\widetilde{\phi}$, $F = 0$

Geometries with two supercharges of opposite R-charge

• Suppose there exists a second spinor $\widetilde{\zeta},$ with opposite chirality, obeying the rigid new minimal equation

$$(
abla_{\mu}+iA_{\mu})\,\widetilde{\zeta}-iV_{\mu}\widetilde{\zeta}-iV^{
u}\widetilde{\sigma}_{\mu
u}\widetilde{\zeta}=0$$

- Geometry is a special case of ambihermitian manifold, which may be neatly characterised by the complex holomorphic Killing vector field $\mathbf{K}^{\mu} = \zeta \sigma^{\mu} \widetilde{\zeta}$
- The metric takes a canonical form in terms of complex coordinates z, w

$$ds^{2} = \Omega^{2}[(dw + hdz)(d\bar{w} + \bar{h}d\bar{z}) + c^{2}dzd\bar{z}]$$

with $\Omega(z, \overline{z})$, $c(z, \overline{z})$, $h(z, \overline{z})$ arbitrary functions

Hopf surfaces

• A Hopf surface is essentially a four-dimensional complex manifold with the topology of $S^1 \times S^3$. It can be described as a quotient of $\mathbb{C}^2 - (0, 0)$, with coordinates z_1, z_2 identified as

$$(\mathsf{z}_1,\mathsf{z}_2)\sim(\mathsf{p}\mathsf{z}_1,\mathsf{q}\mathsf{z}_2)$$

where **p**, **q** are in general two complex parameters

• We show that on a Hopf surface we can take a very general metric

$$ds^{2} = \Omega^{2}d\tau^{2} + f^{2}d\rho^{2} + m_{IJ}d\varphi_{I}d\varphi_{J} \qquad I, J = 1, 2$$

while preserving two spinors $\pmb{\zeta}$ and $\widetilde{\pmb{\zeta}}$

• τ is a coordinate on S¹, while the 3d part has coordinates $\rho, \varphi_1, \varphi_2$, describing S³ as a T² fibration over an interval

The matrix model

- The localizing locus simplifies drastically, e,g. → *F*⁽⁺⁾ = *F*⁽⁻⁾ = 0 → full contribution comes from zero-instanton sector! Flat connections *A_τ* = constant, and all other fields vanishing
- The localized path integral is reduced an infinite products of **d** = **3** super-determinants, that may be computed explicitly using the method of pairing of eigenvalues [Hama et al], [Alday et al]
- Infinite products regularised using formulas for elliptic gamma functions

$$\mathsf{Z}_{1\text{-loop}}^{\mathrm{chiral}} = \prod_{\rho \in \mathcal{A}_{\mathcal{R}}} \prod_{\mathsf{n} \in \mathbb{Z}} \mathsf{Z}_{1\text{-loop}\,(\mathrm{3d})}^{\mathrm{chiral}} \big[\sigma_0^{(\mathsf{n},\rho)} \big]$$

$$\rightarrow \, \mathrm{e}^{\mathrm{i}\pi \varPsi_{\mathrm{chi}}^{(0)}} \, \mathrm{e}^{\mathrm{i}\pi \varPsi_{\mathrm{chi}}^{(1)}} \, \prod_{\rho \in \varDelta_{\mathcal{R}}} \, \varGamma_{\mathrm{e}} \left(\mathrm{e}^{2\pi \mathrm{i}\rho_{\mathcal{A}_{0}}} \, (\mathrm{pq})^{\frac{\mathrm{r}}{2}}, \mathrm{p}, \mathrm{q} \right)$$

(日) (同) (三) (三)

Supersymmetric index

- The prefactor Ψ⁽¹⁾_{chi} is anomalous and must cancel after combining with the vector multiplet contribution → anomaly cancellation conditions "for free"
- The rest combines into the following formula

$$Z[\mathcal{H}_{p,q}] = e^{-\mathcal{F}(p,q)} \mathcal{I}(p,q)$$

where $\mathcal{I}(\mathbf{p}, \mathbf{q})$ is the supersymmetric index with \mathbf{p}, \mathbf{q} fugacities

$$\mathcal{I}(\mathbf{p},\mathbf{q}) = \frac{(\mathbf{p};\mathbf{p})^{\mathbf{r}\mathbf{G}}(\mathbf{q};\mathbf{q})^{\mathbf{r}\mathbf{G}}}{|\mathcal{W}|} \int_{\mathsf{T}^{\mathbf{r}\mathbf{G}}} \int_{\mathbf{\alpha}\in\Delta_{+}} \frac{\mathrm{d}\mathbf{z}}{2\pi i \mathbf{z}} \prod_{\boldsymbol{\alpha}\in\Delta_{+}} \theta\left(\mathbf{z}^{\boldsymbol{\alpha}},\mathbf{p}\right) \theta\left(\mathbf{z}^{-\boldsymbol{\alpha}},\mathbf{q}\right) \prod_{\mathbf{J}} \prod_{\boldsymbol{\rho}\in\Delta_{\mathbf{J}}} \Gamma_{\mathbf{e}}\left(\mathbf{z}^{\boldsymbol{\rho}}(\mathbf{p}\mathbf{q})^{\frac{\mathbf{r}_{\mathbf{J}}}{2}},\mathbf{p},\mathbf{q}\right)$$

which may be defined as a sum over states as

$$\mathcal{I}(\mathbf{p},\mathbf{q}) = \operatorname{Tr}[(-1)^{\mathsf{F}}\mathbf{p}^{\mathsf{J}+\mathsf{J}'-\frac{\mathsf{R}}{2}}\mathbf{q}^{\mathsf{J}-\mathsf{J}'-\frac{\mathsf{R}}{2}}]$$

 The fact that the index is computed by the localized path integral on a Hopf surface was anticipated by [Closset-Dumitrescu-Festuccia-Komargodski]

Supersymmetric Casimir energy

• The path integral + regularisation produces a pre-factor $\mathcal{F}(\mathbf{p}, \mathbf{q})$ explicitly given by $(\mathbf{p} \equiv e^{-2\pi |\mathbf{b}_1|}, \mathbf{q} \equiv e^{-2\pi |\mathbf{b}_2|})$

$$\begin{aligned} \mathcal{F}(\mathbf{p},\mathbf{q}) &= \frac{4\pi}{3} \left(|\mathbf{b}_1| + |\mathbf{b}_2| - \frac{|\mathbf{b}_1| + |\mathbf{b}_2|}{|\mathbf{b}_1||\mathbf{b}_2|} \right) (\mathbf{a} - \mathbf{c}) \\ &+ \frac{4\pi}{27} \frac{(|\mathbf{b}_1| + |\mathbf{b}_2|)^3}{|\mathbf{b}_1||\mathbf{b}_2|} (\mathbf{3} \, \mathbf{c} - \mathbf{2} \, \mathbf{a}) \\ \mathbf{a} &= \frac{3}{32} \left(\mathbf{3} \, \mathrm{tr} \mathbf{R}^3 - \mathrm{tr} \mathbf{R} \right) \,, \qquad \mathbf{c} \;=\; \frac{1}{32} \left(9 \, \mathrm{tr} \mathbf{R}^3 - 5 \, \mathrm{tr} \mathbf{R} \right) \end{aligned}$$

- Invariant depending only on complex structure and the trace anomaly coefficients a, c → expect to encode physical properties
- It captures the "vacuum energy" \rightarrow supersymmetric Casimir energy E_{susy}

More comments on the supersymmetric Casimir energy

- How does one know the result does not depend on the regularisation procedure, e.g. zeta-function?
- One must show that there are no finite, supersymmetric, counterterms, i.e. integrals of local densities [Assel-Cassani-DM] (to appear)
- Supersymmetric Casimir energy can be recovered from the Hamiltonian formalism [Lorenzen-DM] (to appear)

 $\langle 0|H_{BPS}|0\rangle=E_{\rm susy}$

where $\boldsymbol{\mathsf{H}}_{\mathsf{BPS}}$ is an appropriate supersymmetric Hamiltonian

(日) (周) (三) (三)

Partition function on M_3

• From the 4d partition function is possible to extract the partition function of an $\mathcal{N} = 2$, d = 3 theory on a manifold $M_3 \simeq S^3$ arising as the dimensional reduction on S^1 , previously computed in [Alday et al]

$$\begin{aligned} \mathsf{Z}_{\beta} &= \int \mathrm{d}\sigma_0 \,\mathrm{e}^{-\frac{\mathrm{i}\pi \mathsf{k}}{|\mathsf{b}_1\mathsf{b}_2|}\operatorname{Tr}\sigma_0^2} \prod_{\alpha \in \boldsymbol{\Delta}_+} 4 \sinh \frac{\pi \sigma_0 \alpha}{|\mathsf{b}_1|} \sinh \frac{\pi \sigma_0 \alpha}{|\mathsf{b}_2|} \\ &\cdot \prod_{\rho} \mathsf{s}_{\beta} \left[\frac{\mathrm{i}(\beta + \beta^{-1})}{2} (1 - \mathsf{r}) - \frac{\rho(\sigma_0)}{\sqrt{|\mathsf{b}_1\mathsf{b}_2|}} \right] \end{aligned}$$

• Here $\beta = \sqrt{|\mathbf{b}_1/\mathbf{b}_2|}$ and $\mathbf{s}_{\beta}(\mathbf{z})$ denotes the double sine function

• It depends on $M_3 \simeq S^3$ only through the almost contact structure, via the Killing vector $K = b_1 \partial_{\varphi_1} + b_2 \partial_{\varphi_2}$, where $\partial_{\varphi_1}, \partial_{\varphi_2}$ is a basis of $U(1)^2$

・ロト ・ 一日 ト ・ 日 ト

Exact free energy and large $\boldsymbol{\mathsf{N}}$ limit

- The exact free energy $\mathcal{F} = -\log Z$ of a general $\mathcal{N} = 2$ supersymmetric Chern-Simons theory defined on an M_3 depends on the gauge group G, matter representation \mathcal{R} Chern-Simons levels k, as well as b_1, b_2
- For a quiver gauge group $G=SU(N)^p$ we can consider the large N limit: $N\to\infty,$ at fixed k
- For rather general $\mathcal{N} = 2$ theories one finds that in this limit the dependence on β factorises as [DM-Passias-Sparks]

$$\mathcal{F}_{\beta} = \frac{(\beta + \beta^{-1})^2}{4} \mathcal{F}_{\beta=1} + O(N^{1/2})$$

where $\mathcal{F}_{\beta=1} \sim O(N^{3/2})$ is the large N free energy on the round three-sphere (with standard almost contact structure)

• In the final part of the talk I will discuss how to reproduce this result from a holographic computation, independently of many details of the dual supergravity solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Holography

3

▲口> ▲圖> ▲屋> ▲屋>

Gravity duals of $\mathcal{N}=2$ Chern-Simons theories on \mathbf{S}^3

- The holographic dual to the ABJM model is the ${\cal N}=6$ solution of d=11 supergravity solution with metric ${\rm AdS}_4\times S^7/\mathbb{Z}_k$
- A large class of $\mathcal{N} = 2$ quiver gauge theories with Chern-Simons terms are dual to AdS₄ × Y₇, with Y₇ a Sasaki-Einstein manifold
- In order to compare with field theories on the round S^3 it suffices to consider Euclidean AdS₄, with round S^3 at its conformal boundary
- Key ingredient: the bulk Killing spinor ϵ in AdS₄ induces a rigid Killing spinor χ on the boundary round **S**³

$$abla_{\mu}\epsilon = -rac{1}{2}\Gamma_{\mu}\epsilon \longrightarrow \nabla_{i}\chi = rac{i}{2}\gamma_{i}\chi$$

 The holographically renormalised on-shell sugra action reproduces the localized free energy *F*_{β=1} at large **N** [Drukker-Marino-Putrov]

イロト イポト イヨト イヨト

Gravity duals for more general M_3

Idea: find a supersymmetric filling M_4 of the given M_3 in d = 4, $\mathcal{N} = 2$ gauged supergravity (Einstein-Maxwell theory), and use the fact that any such solution uplifts to a supersymmetric solution $M_4 \times Y_7$ of d = 11 supergravity

Action:
$$\mathbf{S} = -\frac{1}{16\pi G_4} \int d^4 x \sqrt{\mathbf{g}} \left(\mathbf{R} + \mathbf{6} - \mathbf{F}^2\right)$$

Killing Spinor Equation: $\left(\nabla_{\mu} - \mathbf{i}\mathbf{A}_{\mu} + \frac{1}{2}\Gamma_{\mu} + \frac{\mathbf{i}}{4}\mathbf{F}_{\nu\rho}\Gamma^{\nu\rho}\Gamma_{\mu}\right)\epsilon = \mathbf{0}$

Dirichlet problem: find $(M_4, g_{\mu\nu}, A)$ such that

- The conformal boundary of M₄ is M₃
- The bulk gauge field A restricts to a background $A^{(3)}$ on the boundary
- The bulk Killing spinor ϵ restricts to the boundary rigid Killing spinor χ

Check: The on-shell sugra action reproduces the localized free energy at large N

(a)

General class of four dimensional gravity duals

- 1 Given an $\mathcal{N}=2$ supersymmetric field theory defined on $M_3\simeq S^3$ with arbitrary metric, together with a choice of almost contact structure, can we construct its 4d gravity dual?
- $2\,$ Can we compute the holographic free energy for any such solution, and check that it agrees with the large $N\,$ limit of the localized partition function on $M_3?$
- Affirmative answer to both questions, working in minimal gauged supergravity in four dimensions, and focusing on (anti-)self-dual metrics on the four-ball [Farquet-Lorenzen-DM-Sparks]

- 4 @ > 4 @ > 4 @ >

Self-dual supersymmetric solutions

- The local form of Euclidean supersymmetric solutions of Euclidean d = 4 minimal gauged supergravity given in [Dunajski-Gutowski-Sabra-Tod]
- When the graviphoton is real there exist a canonical Killing vector

$$\mathsf{K} = \mathrm{i}\epsilon^{\dagger}\Gamma^{\mu}\Gamma_{5}\epsilon\partial_{\mu} = \partial_{\psi}$$

- There is a special class of "self-dual solutions" in which *₄F = -F is anti-self-dual and the four-metric is Einstein with anti-self-dual Weyl tensor
- These solutions are (locally) conformal to a scalar-flat Kähler metric

$$\mathrm{d}s_4^2 = \frac{1}{y^2} \mathrm{d}s_{\mathrm{Kahler}}^2 = \frac{1}{y^2} \Big[\mathsf{V}^{-1} (\mathrm{d}\psi + \phi)^2 + \mathsf{V} (\mathrm{d}y^2 + 4\mathrm{e}^{\mathsf{w}} \mathrm{d}z \mathrm{d}\bar{z}) \Big]$$

where $V=1-\frac{1}{2}y\partial_yw$, with the metric determined entirely by a solution to the Toda equation

$$\partial_{z}\partial_{\bar{z}}w + \partial_{y}^{2}e^{w} = 0$$

イロト 不得下 イヨト イヨト 二日

Self-dual supersymmetric solutions

A self-dual supersymmetric solution can be constructed starting from a metric ${\rm d} s^2_{\rm Kahler}$ and a Killing vector K

• The function/coordinate ${\bf y}$ can be computed from the Killing vector ${\bf K}$ as

$$arPsi \equiv rac{1}{2} (\mathrm{d}\mathsf{K}^{\flat})^+ \qquad
ightarrow \qquad rac{2}{\mathsf{y}^2} = |arPsi|^2$$

• The (bulk) gauge field depends on the choice of K, e.g. through the formula

$$\mathsf{F}=rac{1}{2}\mathcal{R}$$

where \mathcal{R} is the Ricci curvature of the Kähler metric ds^2_{Kahler} , computed with the complex structure defined by K:

$$\mathsf{J}^{\mu}{}_{\nu}=-\mathsf{y}\mathsf{g}^{\mu\rho}\left(\mathrm{d}\mathsf{K}^{\flat}\right)^{+}_{\rho\nu}$$

(日) (周) (三) (三)

Constructing gravity duals to $M_3 \simeq S^3$

- Our strategy for constructing gravity duals to the boundary geometries on $M_3\simeq S^3$ is to begin with an arbitrary $U(1)\times U(1)$ -invariant self-dual Einstein metric on a four-ball B_4 , which is asymptotically locally AdS with conformal boundary $\partial B_4=[M_3]$
- These metrics can be written down (locally) in explicit form, and are labeled by an arbitrary number of parameters [Calderbank-Pedersen] → solutions a la multi-center (m-pole solutions)
- Then we pick an arbitrary Killing vector $\mathbf{K} = \mathbf{b}_1 \partial_{\varphi_1} + \mathbf{b}_2 \partial_{\varphi_2}$, where $\partial_{\varphi_1}, \partial_{\varphi_2}$ are a basis of $\mathbf{U}(1) \times \mathbf{U}(1)$
- By construction, for each metric and each choice of Killing vector **K** we locally get a supersymmetric supergravity solution
- Finally, we prove that for any fixed choice of self-dual Einstein metric, this leads to a one-parameter family of solutions labelled by b_1/b_2 , which are globally regular

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Conformal boundary

• Asymptotically (near to $\mathbf{y} = \mathbf{0}$) the bulk KIlling spinor has the expansion

$$\epsilon = \mathbf{y}^{-1/2} \left[\left(\mathbf{1} + \boldsymbol{\Gamma}_{\mathbf{0}} + \frac{1}{4} \mathbf{y} \mathbf{w}_{(1)} \boldsymbol{\Gamma}_{\mathbf{0}} \right) \left(\begin{array}{c} \boldsymbol{\chi} \\ \mathbf{0} \end{array} \right) + \mathcal{O}(\mathbf{y}^2) \right]$$

where χ is a three-dimensional spinor satisfying the rigid (new minimal) Killing spinor equation and

$$w(y, z, \overline{z}) = w_{(0)}(z, \overline{z}) + yw_{(1)}(z, \overline{z}) + \mathcal{O}(y^2)$$

• The structure induced on the conformal boundary (at y = 0) is precisely the 3d background geometry [Closset-Dumitrescu-Festuccia-Komargodski], so χ obeys that rigid new minimal supersymmetry equation (similar to 4d version we saw earlier)

イロト 不得下 イヨト イヨト 二日

Holographic free energy

 The holographic free energy is the on shell supergravity Euclidean action evaluated on a solution, regularised and renormalised, using the prescription of holographic renormalisation

$$-\log Z_{gravity} = S_{Einstein-Maxwell} + S_{Gibbons-Hawking} + S_{counterterms}$$

• The individual terms do depend on the detailed solution, for example

$$\begin{split} \frac{1}{16\pi G_4} \int_{B_4} F^2 \sqrt{\det g} \, \mathrm{d}^4 x \; = \; -\frac{\pi (|\mathbf{b}_1| + |\mathbf{b}_2|)^2}{8G_4 b_1 b_2} \\ & + \frac{1}{256\pi G_4} \int_{M_3} \left(3 w^3_{(1)} + 4 w_{(1)} w_{(2)} \right) \sqrt{\det g_3} \, \mathrm{d}^3 x \end{split}$$

Holographic free energy

• However, remarkably the final result is

$$-\log Z_{\text{gravity}} = S_{\text{on shell}} = \frac{(|\mathbf{b}_1| + |\mathbf{b}_2|)^2}{4|\mathbf{b}_1||\mathbf{b}_2|} \cdot \frac{\pi}{2G_4}$$

- This formula is derived without knowledge of any specific metric! We have assumed only that a solution with the correct global properies exists (the **m**-pole provide infinitely many explicit examples)
- It is analogous to the formula for the volume of a Sasakian manifold in terms of an arbitrary Reeb Killing vector, that was shown to be essentially independent of the explicit metric [DM-Sparks-Yau]
- It agrees perfectly with large N limit of log Z computed using localization! Result analogous to general check of a-maximisation = Z-minimisation in AdS₅/CFT₄

< □ > < 同 > < 三 > < 三

Other examples

There are a few other examples in other dimensions, but a more systematic understanding is still lacking

4d/5d [Cassani-DM] supersymmetric Casimir energy of $\mathcal{N} = 1$ field theories on $\mathbf{S}^1 \times \mathbf{S}^3_{sqaushed}$ compared to newly constructed supersymmetric asymptotically locally AdS₅ solution of type IIB supergravity

5d/6d [Jafferis-Pufu] large N free energy of susy gauge theories on S^5 matched to holographic free energy and entanglement entropy of supersymmetric AdS_6 in massive type IIA supegravity

5d/6d [Alday et al] match free energy of field theories on examples of deformed S^5 to holographic computations in newly constructed asymptotically locally AdS₆ solutions of massive type IIA supergravity

イロト 不得 トイヨト イヨト 二日

Other examples

- 4d/5d [Bobev et al] large N free energy of $\mathcal{N}=2^*$ SYM (mass-deformed $\mathcal{N}=4$ SYM) on round S^4 compared to new aymptotically AdS₅ solution of type IIB supergravity
- 4d/5d [Huang-Zhou] and [Crossley et al] large **N** supersymmetric Rényi entropy in $\mathcal{N} = 4$ SYM matched to on-shell action of hyperbolically sliced supersymmetric black hole solution of type IIB supergravity

(日) (周) (三) (三)

Outlook

- Push the localization technique: how many more path integrals can we compute exactly and explicitly, and what can we learn from them? Especially in higher dimensions (d = 4, 5) rigid supersymmetry allows for large classes of geometries (in d = 5 a systematic classification is still missing)
- Supersymmetric localization yields very precise predictions for the gauge/gravity duality, allowing to perform detailed tests in situations without superconformal invariance. Supergravity solutions should reproduce exactly numbers and functions, rather than qualitative features of the putative field theory dual!
- This is forcing us to refine the holographic dictionary and think about "why" computations on the two sides match → progress towards "proving" the gauge/gravity duality in islands of growing size (as opposed to checking it in a large number of isolated examples)
- Localization may be used to perform exact quantum computations in gravitational theories. Gauge/gravity duality tested beyond the semi-classical/large **N** limit