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Sigma-model perturbation theory, AdS/CFT and integrability

Unescapable tool to understand string theory in nontrivial backgrounds
(es. quantum consistency of proposed actions, UV finiteness)

Here: test AAS/CFT and check exact methods/results

> based on integrability [Minahan Zarembo 02 ..]

[WIANRRRAN:] [Beisert Staudacher 03 ..]

[..]

>> solid fact classically [Bena, Polchinski, Roiban 03]
(quantum: pure spinor language [Giangreco M. Puletti 08]) [Sorokin Wulff 09]

> based on supersymmetric localization [Pestun 07] [Drukker Marino Putrov 10]
> based on integrability and localization [Correa Henn Maldacena Sever 12]

[Gromov Sizov 14]



Sigma-model perturbation theory |

Unitarity methods for scattering in 2d

Sigma-model perturbation theory Il

ABJM cusp anomaly at two loops
and the interpolating function h(A)




Calculating scattering amplitudes efficiently

Remarkable efficiency of unitarity-based methods [Bern, Dixon, Dunbar, Kosower, 1994]
for calculation of amplitudes in various gft's and various dimensions
(non-abelian gauge theories, Chern-Simons theories, supergravity).

Quantifying the one-loop QCD challenge

pp 2 W+njets (amplitudes with most gluons)

# of jets # 1-loop Feynman diagrams
"

Current limit with
Feynman diagrams

o

110

-
.
.

| Oi':'-' 16.648
0 256.265 Current limit with
on-shell methods

[from a L. Dixon talk]
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Calculating scattering amplitudes efficiently

Remarkable efficiency of unitarity-based methods [Bern, Dixon, Dunbar, Kosower, 1994]
for calculation of amplitudes in various gft's and various dimensions
(non-abelian gauge theories, Chern-Simons theories, supergravity).

Goal: apply to evaluation of amplitudes
of two-dimensional cases of interest.

@ Methodological: techniques never really applied in two dimensions.
@ Provide tests of quantum integrability for certain string backgrounds.

@ Provide 2d scattering perturbation theory with efficient tools.
Extract information on integrable worldsheet S-matrices
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String worldsheet scattering

@ Worldsheet amplitudes (N — oo, free strings), scattering of the (2d) lagrangean excitations.
Non-trivial interactions due to highly non trivial background.

flat space AdSsxS° with RR fluxe
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String worldsheet scattering

@ Worldsheet amplitudes (N — oo, free strings), scattering of the (2d) lagrangean excitations.
Non-trivial interactions due to highly non trivial background.

_ PSU(2,2|4)
4 SO(4,1) x SO(5)

® Because of RR-background need a GS formulation

S embedded in
N 3

AL _ . . loop counting 27T
S = £ oV —hh®Gryn(X)0, XM, XN + fermions parameter 9 = =~
41 VA
® Work on a gauge-fixed sigma model (uniform light-cone gauge) [Arutyunov, Frolov,

Plefka, Zamaklar 2006]
stzfdanS:—/dap_EE—J
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String worldsheet scattering

® Worldsheet amplitudes (N — oo, free strings), scattering of the (2d) lagrangean excitations.
Non-trivial interactions due to highly non trivial background.

A PSU(2,2|4)
,«( SO(4,1) x SO(5)

® Because of RR-background need a GS formulation

( embedded in
) 3

AL _ . . loop counting 27T
S = £ d?c v/ —h }1,””(;1,\ ,N(X)()(, xM i),,X"\ + fermions parameter 9 = ——

d VA
@ Work on a gauge-fixed sigma model (uniform light-cone gauge) [Arutyunov, Frolov,

Plefka, Zamaklar 2006]
Hw:/daﬂwsz—/dap_EE—J

® Decompactification limit and large tension expansion g — o0

=gy

» sensible definition of a perturbative worldsheet S-matrix

S+
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AdS/CFT (internal) S-matrix I

[Klose McLoughlin Roiban Zarembo 2007]

® This S-matrix is the strong coupling perturbative expansion of the exact
AdSs/CFT4 S-matrix aka “spin chain S-matrix” £ g

VYIRS [Staudacher 2004}

Y v [Beisert Staudacher 2005]
[Beisert 2005]
Ky J.+
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Describe the exact asymptotic spectrum

> anomalous dimensions of local composite operators
> energies of their dual string configurations.
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AdS/CFT (internal) S-matrix I

[Klose McLoughlin Roiban Zarembo 2007]

® This S-matrix is the strong coupling perturbative expansion of the exact
AdSs/CFT4 S-matrix aka “spin chain S-matrix” £ g

VYIRS [Staudacher 2004}

Y v [Beisert Staudacher 2005]
[Beisert 2005]

®  Structure of two-particle S-matrix determined by supergroup PSU(2,2(4)

312 :.812

fixed with additional constraints like “crossing symmetry”

Hardest thing to compute, particularly in some models relevant in AdSs/CFT>
where solutions to crossing-like equations are difficult to determine.
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Unitarity cuts method

Consequence of the optical theorem
unitarity
ST =671

21111()2[()l

Relates a certain loop amplitude to a lower order one.

Imaginary part of the amplitude contains the branch-cut information.

S=1+4+:1T

5> 2Im(T) =TT"

p Cutting (Cutkosk
— 9 »y) 2mi & (p® — m?)

rules

Unitarity cuts method: revert the order,
find n-loop amplitude fusing lower order ones

Only singular part can be reconstructed (logs or polilogs.)
Cut-constructibility of a theory always to be verified.
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Two-dimensional scattering

Two-body scattering process of a theory invariant under space and time translations

-

described via the four-point amplitude
(@7 (p3) D2 (pa) S| @ar (1)@ N (p2)) = (2m)26D (p1 + p2 — p3 — pa) Ay fa (P1, D2, D3, Pa)

For d=2 and in the single mass case, scattering 2 — 2 is simple.
Particles either preserve or exchange their momenta

0 (pr+ p2 — p3 — pa) = J(p1,p2) (8(py — P3)d(Py — Py) + 0(Py — P4)d(Py — P3))

The Jacobian J(p1,p2) depends on dispersion relation.

S-matrix element defined by

J(p1,p2) P
(4 )AMCJQV(plap27p17p2)
€1€2

Sﬂ%(pl7p2)

Dispersion relation for asymptotic states (equal masses =1): e? =1+ piQ
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Scattering in d=2: unitarity cuts (1)

One-loop result from unitarity techniques: contributions from three cut-diagrams

s-channel t-channel u-channel

M P

Example: s-cut contribution. Glue tree-amplitudes.

AV T (1, P2, D3, Pa)s—cut = 1/ d’ly / d?ly imdt (17 — 1) imdt (15— 1)
MN AL B2 157 2] (2m)2 ) (2m)2 2

X .A(O) ]\Rjgj\f (p1,p2, l1, lz)A(O) gg(l% l17p37p4)
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Scattering in d=2: unitarity cuts (2)

D2 .S D3
® Use 2-momentum conservation at the first vertex

- 1 [ d*ly . .
A(l)]\}}cjg\f(plap27p37p4)|s—cut = 5/ (ZW;Q Z7T5+(l12 —1) Z7T5+((11 — D1 —P2)2 - 1)

Xj(o)ﬁSN(p17p27 lly _ll +p1 _|_p2> X(O)gg(_ll +p1 —|‘an llvp37p4)

@ Use the zeroes of 6 - functions in the A loop momenta are completely frozen.

Can pull tree-level amplitudes out of the integral (like f(z) 6(z) = f(0) d(x))

1

@ Restore loop momentum off-shell imﬁ(@ —1) > l% 1 and uplift




Scattering in d=2: unitarity cuts (2)

D2 S D3

® Use 2-momentum conservation at the first vertex

- 1 [ d*ly . .
A(l)]\}}cjg\f(plap27p37p4)|s—cut = 5/ (ZW;Q Z7T5+(l12 —1) Z7T5+((11 — D1 —P2)2 - 1)

Xj(o)ﬁSN(p17p27 lly _ll +p1 _|_p2> X(O)gg(_ll +p1 —|‘an llvp37p4)

@ Use the zeroes of 6 - functions in the A loop momenta are completely frozen.

Can pull tree-level amplitudes out of the integral (like f(z) 6(z) = f(0) d(x))
1

® Restore loop momentum off-shell  imd* (17 —1) — m 7 and uplift
2 _
Two-particle cuts in d=2 at one loop are maximal cuts.
YN r—
L/ ./
Expect same as quadrupole cuts in d=4:  A;°F = (A7) I, P
T——T)
p A,




4-points amplitude at one-loop

Tree-level amplitudes can be pulled out of the integral, evaluated at those zeroes.

A simple sum over discrete solutions of the on-shell conditions

I(p1 + p2)

T(1)PQ
A 2

MN(p17p27p37p4) —

~ T1(0) P
[A(O)]% (p1, P2, P1, 2)AD L2 (pa, p1, ps3, pa)

7 1(0)P
-+ A(O)ﬁ%\[(plap27p27p1)A(O)S}Cg <p17p27p37p4)

~

+ I(pl T pS)A(O)‘js\’pr(plap37p17pS)JZ((O)gjcgf(plap27p37p4)

T [(pl T p4)AV(O)‘]%4QR(p17p4aplap4)~’z(0)gﬁ(plvp27p47p3)

weighted by scalar “bubble” integrals

_ d2q !
I(p) = / (2m)2 (g2 — 1 +i€)((qg — p)?2 — 1 + i¢)

Inherently finite formula.
One of initial motivation of our work: ordinary Feynman diagrammatics was problematic
(divergencies did not cancel). Recently clarified in [Roiban, Sundin, Tseytlin, Wulff 14]

Sundin talk on Monday
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4-points amplitude at one-loop

Tree-level amplitudes can be pulled out of the integral, evaluated at those zeroes.

[M] =0 bosons
[M] =1 fermions

) S(O)MN(P1 p2)5( )RS (p1,p2)1(p1 + p2)

A simple sum over discrete solutions of the on-shell conditions

1
5(1)PQ 7
(p1 p2) 4(62 P1 — €1 P2

+(—1)[PHS]+[RH ]S(O)%PR(pl pl)S(O)gN(plaPZ)](O)

(=) IPHEIHQIISIHRIST+[P ][Q]S(O)SQ (pl,pz)S(O)SN(pl p2)I (p1 —pz)}

weighted by scalar “bubble” integrals

1 arsinh(e — €
Is=1(p1+p2) = — , (2P1 — €1 P2)
€2 P1 — €1 P2 41 (62 P1 — €1 P2)
1
I, =1(0) = —
¢ = 1(0) ATri
. h .

Iu — I(pl _p2) — arsin (62 pl 61 p2)

4 (62 P1 — €1 P2)
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4-points amplitude at one-loop

Tree-level amplitudes can be pulled out of the integral, evaluated at those zeroes.

[M] =0 bosons
[M] =1 fermions

) [S(O)MN(Z? pQ)S( )RS (plva)I(pl +p2)

A simple sum over discrete solutions of the on-shell conditions

1
S(l)PQ ,
(p1 p2) 4(62 P1 — €1 P2

+(—1)[PUSIHIRIS) GO)SE, (4 p1)5(0)§1%(p1,p2)1(0)
(=) IPHEIHQIISIHRIST+[P ][Q]S(O)SQ (pl,pz)S(O)SN(pl p2)I (p1 —pz)}

weighted by scalar “bubble” integrals

1
P e -\

1
! (0) 4
I,.=1(py —p2) = Rational

Logarithmic terms safe, rational could be not the whole story.
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® The t-channel cut is special.

- Using first 6(p1 — P3)d(pP2 — Pa)
makes it ill-defined and requires a prescription:

S
use delta-function only at the end of the calculation b e
R
- Asymmetrical wrt choice of the vertex
used to solve momenta: consistency condition
P2 /‘ \'p4
5 S(0)R 5 5 R
S(O)SMPR(plapl) S<O)S]i2f(p17p2) — S(O)ﬁ%(pl7p2) S<O>§N(p27p2) N Q

® We are NOT including contributions from tadpoles (no physical cuts)

@® Ainherently finite result says nothing about UV-finiteness or renormalizability.

Might be missing rational terms following from regularization procedure.

Cut-constructibility to be always checked



Relativistic models

® Bosonic: generalised sine-Gordon models

gauged WZW model for a coset G/H = SO(n + 1)/SO(n)
(n=1: sine-Gordon, n=2: complex sine-Gordon)

The method works up to a finite shift in the coupling.

@ Supersymmetric generalizations ( Pohimeyer reductions” of string theories):
N = 1,2 supersymmetric sine-Gordon
The method reproduces the full resulit.
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Relativistic models

® Bosonic: generalised sine-Gordon models

gauged WZW model for a coset G/H = SO(n + 1)/SO(n)
(n=1: sine-Gordon, n=2: complex sine-Gordon)

The method works up to a finite shift in the coupling.

@ Supersymmetric generalizations ( Pohimeyer reductions” of string theories):
N = 1,2 supersymmetric sine-Gordon
The method reproduces the full resulit.

In two cases cut-constructibility is non trivial.

(complex sine-Gordon and Pohimeyer-reduced AdS3xS* theory)

Models integrable only classically, quantum counterterms restore e.g. Yang-Baxter eq,

The unitarity method gives the “quantum integrable” result.

Valentina Forini, Unitarity methods for scattering in 2d



AdS/CFT S-matrix: exact and perturbative structure

AdSsxS° worldsheet sigma-model: most complicated example.

Exact S-matrix based on a (centrally extended) PSU(2|2)? symmetry algebra.
From symmetries and integrability follows a group factorization

[ ASSE + BOLSE
L ) D605 + E6,0)
S = ¢e'? §PSUQI2) g GPSU(2)2) Sgg — ! Ce, e F€a566d
Gégég H(Sffég
d d Sc
Each factor has manifest SU(2) x SU(2) invariance L Log0p K0,04
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AdS/CFT S-matrix: exact and perturbative structure

AdSsxS° worldsheet sigma-model: most complicated example.

Exact S-matrix based on a (centrally extended) PSU(2|2)? symmetry algebra.
From symmetries and integrability follows a group factorization

[ ASSE + BOLSE
L ) D605 + E6,0)
g — ¢i? §PSU(2(2) R SGPSU(2]2) Sgg — Ceab675 F€a566d
Gégég H(Sffdg
d d Sc
Each factor has manifest SU(2) x SU(2) invariance L Log0p K0,04
Perturbatively

Light-cone gauge-fixing preserves S0O(4) x SO(4) in the bosonic lagrangean
Worldsheet fields (embedding coords in AdSsxS®°) T, ®, Y™, Z™, fermions
can be represented as bispinors SO (4) ~ (SU(2) x SU(2))/Zs  Yaa = (0m)aa ¥,

LSZ reduction produces various tensor structures, translated in SU(2) x SU(2) language.
Tree-level S-matrix reproduces leading order of S [Klose McLoughlin Roiban Zarembo 2007]
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AdS/CFT S-matrix: exact and perturbative structure

AdSsxS° worldsheet sigma-model: most complicated example.

From symmetries and integrability follows a group factorization

S — el GPSUQI2) g GPSU(202) §0D _

Each factor has manifest SU(2) M invariance

Exact S-matrix based on a (centrally extended) PSU(2|2)? symmetry algebra.

A§S6¢ + BLSE
D665 + E63,03
Ce pe?? Feqp€°
Go56y  HOlo)
L5Y5E  K6&06¢

d

N

Matrix structure,
rational dependence
on momenta

\ 4

Logarithms

v "Bootstrapping” the tree-level S-matrix at one loop via unitarity cuts

.

recover all the tensor structure, group factorization and exponentiation of the logarithms.
One-loop non-trivial evidence of integrability and cut-constructibility.

See also [Roiban, Sundin, Tseytlin, Wulff 14]
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® For alarge class of 2-d models (relativistic and not) four-points
one-loop amplitudes are cut-constructible

> Standard unitarity (2-particle cuts) reproduces all rational terms,
up to shifts in the coupling. 5

® Efficient way for

> Proposing/checking matrix structure and overall phases for other models

- AdSs x S3 x T supported by pure RR flux L. Bianchi, B. Hoare
- AdS; x S? x S x S supported by pure RR flux arXiv: 1405.7947
. AdS3 x S x T* supported by a mix RR and NS NS fluxes

@ Cut-constructibility “criterion”

> |Integrability is crucial asset )< _ >(

> Structure of the one-loop S-matrix derived by unitarity cuts
automatically satisfies the Yang-Baxter equation
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Y Two loops rational terms (all logarithms reproduced in[Engelund McEwan Roiban 2013]
% Higher points: factorization should emerge ~ S;_.; = (S20)”

% Extend to off-shell objects, including form factors and correlation functions.

[Klose McLoughlin 2012/2013]
[Engelund McEwan Roiban 2013]
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String sigma-model perturbation theory I

ABJM cusp anomaly at two loops
and the interpolating function h(A)

L. Bianchi, M.S. Bianchi, A. Bres, VF, E. Vescovi, arxiv:1407.4788

poster on Monday




AdS4/CFT3 and integrability

® Planar AdS4/CFTssystem (\ = k/N, k, N — o)

N =6 super Chern-Simons theory in 3d 4 Type A strings in AdS, x CP?
gauge group U(N)xU(N), CS levels k and —k. with RR four- and two-form fluxes

believed to be integrable: formulation of Bethe equations (and TBA, and Pu-system).

® Two peculiarities:
1. The relevant string background is not maximally supersymmetric.

Construction of the superstring action complicated.

2. All-integrability based calculations are given in terms of a function appearing in the
magnon dispersion relation

¢ — \/1+4h2()\)sin2§

which is not fixed by symmetries. It is here a non-trivial, interpolating function of A .

Sundin talk on Monday
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Integrable couplings

Ay M
47

e In N =4 SYM the function is “trivial”: h(Ay ;) =

Checked exactly via comparison between integrability and localisation results
for the ""Brehmstrahlung function™ of N=4 SYM. [Correa, Henn, Sever, Maldacena 2012]

Seminara talk on Monday

@ In ABJM non-trivial dependence on the t'Hooft coupling

2 2 27 4 6
A log?2
h()\) :\g— (;i +OVANTT A >1

[Gaiotto Giombi Yin 08] [Grignani Harmark Orselli] [Nihsioka Takayanagi 08] [Minahan, Ohlsson Sax, Sieg 09]
[Leoni, Mauri, Minahan, Ohlsson Sax, Santambrogio, Sieg, Tartaglino Mazzucchellu 10]

Finite coupling dependence unknown from first principles.
[Lewkowycz Maldacena 2013][Bianchi, Griguolo, Leoni, Penati, Seminara 2014]

Knowledge of /() decisive to grant the conjecture integrability
of ABJM theory a full predictive power.
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A conjecture for the ABJM integrable coupling

A conjecture exist

sinh 27wh () ( 1 11,3
3£

A = o 5, 5, 5; ; 5; — Sinh2 27Th()\)) [Gromov Sizov 2014]

extrapolated by “similarities” between two all-order calculations:

> one based on integrability: “slope-function” as exact solution of the ABJM spectral curve
lia’, Fi i Tateo 2014
> one based on localization: 1/6 BPS Wilson loop [Cavaglia’, Fioravanti, Gromov Tateo 2014]

[Marino, Putrov, 10] [Drukker, Marino, Putrov, 10]

Its weak and strong coupling expansions are

4 6
h()\):)\_ﬂ_)\3+5ﬂ' )\5_89371'

3 T 500 AT+ O(N) A<l
1 1 log 2 Cor/BX
M) = /= (A= =) — (%2/\) 1
() \/2< 24) o + O (e A >
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Cusp anomaly in AdSs/CFT4

® \Weak coupling, appears in a variety of contexts:

> anomalous dimension of twist operators in large spin limit  A¢wist ~ f(A) InS, S >1

> renormalization of light-like cusped Wilson loops (Weusp) ~ e~ f(NeIn ¢

fA)

> leading IR behavior of log of scattering amplitudes log A ~ 5
€

+ ...

@ Strong coupling: corresponding string configurations are related

Rll

L

AdS

Belassical ~ f(A) In5, 5> 1 <Wcusp> — ZString - /[dXde]e_S[X’e]

[Gubser, Klebanov, Polyakov,02] [Kruczenski,02] [Kruczenski, Tirziu, Roiban, Tseytlin 07]

@ Integrability gives an all-order equation for cusp anomaly f(A), BES equation
matching all known independent perturbative results. [Beisert Eden Staduacher 2006]



ABJM cusp anomaly

O Despite nontrivial differences of the cusp physics in ABJM
[MS Bianchi, Griguolo, Penati, Seminara 2013,14] [Marmiroli 2013] [Lewkowitz Maldacena 2013]

integrability gives a BES equation only slightly modified, therefore the prediction

1 Gromov Vieira 2008]
faBim(A) = = fv=4(Avm) [
: XN k()
from which, knowing already the N=4 SYM case, [Basso Korchemsky Kotanski 2007]
[Roiban Tseytlin 2007]
3log 2 K 1
— A) = 2h(A) — — A>1
fapa(M) (M) 27 812 h(\) +
O Direct string sigma-model evaluation of the lhs
5 log 2 4
— | faBam(A) = V22X — o T O(V ) [ABJM]
m [several papers]

will give also an estimation of the rhs and thus of

h(\) = \/g _ 082 L o)

2T

Valentina Forini, ABJM cusp anomaly at two loops



Superstrings on AdSsxCP3

Solution of Type IlA sugra preserving 24 out of 32 supersymmetries. [Nilsson Pope 84]

Supercoset approach a la flat space [Hennaux Mezincescu 85] and AdS5xS5 [Metsaev Tseytlin 98]

O5p(6]4) [Arutyunov Frolov 08]
U(3) x SO(1,3) [Stefanski 08]

has 24 fermionic dof, and for strings only moving in AdS4 kappa-symmetry has rank 12.

Sigma-model action based on

Coset model misses 4 physical fermions corresponding to broken supersymmetries.

Quantum studies of these configurations require starting from complete
lIA string action in AdS4xCP?3 and make suitable kappa-symmetry gauge fixing.

[Gomis Sorokin Wulff 08] [Grassi Sorokin Wulff 09]
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String action and effective string tension

® Action obtained in [Uvarov, 09,10] from double dimensional reduction from D=11 action
for membrane in AdSsxS’ based on supercoset OSp(8/4)/(SO(1,3)x SO(7))
[de Wit, Peeters, Plefka, Sevrin 98]

“AdS” light-cone gauge: light-cone coordinates entirely inside AdS4

dramatically simplifies fermionic action: at most quartic in the remaining 16 fermions.

[Metsaev Tseytlin 00]
[Metsaev Thorn Tseytlin 00]

@ Original ABJM dictionary proposal (R is the CP3 radius) [ABJM 2008]
for the effective string tension

R2
T = - =2V 2\
2T N
is modified to (in planar limit) [Bergman Hirano 2009] k

AR EED
T — —9./92( )\ = 1 plays a role at 2-loops
2ma! \/ 24 N 2V2) - 12v/2 in perturbation theory

due to higher order (in the curvature) corrections to the background



Perturbative evaluation of path integral around the cusp

@ Classical solution

T _ 1
w=e? =] T =7 I

o 20

2

describe a surface bounded by a null cusp, as at the AdS4 boundary 0 = w* = -2z "z

@ To extract cusp anomaly, compute partition function around it.
<Wcusp> — Zstring = /D[:Cy w, 2,1, 9] G_SE = G_W

Expand around the solution X = Xq + X
and evaluate the path integral perturbatively W = Wy + W, + Wy + ...

string = e~ 2/ VV V . (infinite) 2d volume, ~ log S

As solution is “"homogeneous’, i.e. fluctuation lagrangean has constant
coefficients, one can factor out V.

aq a9
floh=g|1+—+—5+...|, g=

T
g g 2



Very smooth calculation.

8 bosonic modes 8 fermionic modes
1 real scalar X! with mass % 2 massless modes,
1 real scalar @ with mass 1, 6 massive excitations with mass 2

>-
3 complex massless z7,a = 1.2, 3.

Their determinant is easily evaluated

1 d*p 1 1
—InZ; == In(m?2+1)+1n[p?+ = In(p?) — 2In(p?) — 61n | p? + =
n Z 2/(27)2{n(p+)+n<p +2>+6n(p) n(p“) 61r1p+4

51ln 2
= — dtd
167 i
N——
1%
5log 2
One-loop finiteness, expected result: a1 = — o

[McLoughlin, Roiban, Tseytlin 08] [Alday Arutyunov Bykov 08]
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Two loops

Expand the action up to quartic order in fluctuations
and compute all connected vacuum Feynman diagrams

1
Wo = <Sint> - §<Si2nt>c

where S;n: is the interacting part of the action at cubic and quartic order

Ligy = = 8p(dsz')? — 2p(x")? + 8px' (0s) 4 4* (Drp — Dsgp) + 4[(Br0)° — (Ds9p)”]
+ 4p(0:2%0:Zq — 052%05Z4) + 2€abcf9tz“ﬁbﬁc — 28“60(%2@77(,776 + 40t2a77a774 — 40 2%Ng N4
_ _ _ _ 1
’L{ [2i5acbzcﬁ6839a — isacbzcﬁbﬁa — 8N, 0s0% + 4pn, 0% — 2i6adcna (&sédﬁc + 24040, — §Zd96)] + c.c.}
— 4@'90(8304774 — 8877454 + 7748854 — 9485774) + 8inaﬁ“88x1 — 42'77a77ax1 + 4i0,0*0, 2" — 2i0,0*x"
+ ding* 0zt — 2imuntat + 40,2,7%0* + 40,2°n,0,4
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Two loops

Expand the action up to quartic order in fluctuations
and compute all connected vacuum Feynman diagrams.

1
Ws = <Sint> — §<Si2nt>c

where S;,: is the interacting part of the action at cubic and quartic order

4 16 .

Ly = 32 0 (0s2")? + 8p*(z')? — 32z (92") + §904 + R4 (Dep) + 8% (Drp)”
16 1
+ 3903(8890) + 802 (05)? + 8% (04 2°0, 24 + 052%05%4) + 3 [Zaatzazb&gzb +2%0,2,2°0, 2

— 2°2,0,2°01 2 — 2a2"012°01 2y + 20052"2p052° + 2°05242°05 5y — 220520520 — zazbaszaaszb}

— 40042, (2%my® + 72%mp) — 4i€%C0, 2, Zemy Tt — 2i€ 000 0¢ 22257 Na + 43(040% + nan) (0,2° 2, — 0,2,2°)
+ 8 (0a)? + care® T + e namnens + 2 (na” — 0a8%)| +i{ + 222400, — 2°Za7" 0y

— 277“Zazb689b + ﬁ“iazbﬁb — 8i€acbgpzcﬁb839_“ + 4z'5acb<,0zcﬁb€_“ + 16¢*n,0,0% — 8¢*n,0°

— 277a839_a|z|2 + naéalz|2 + 214050°Z.2% — N0 2. 2% + 8ig&na€“6b,§c@89b — 4'139077@5“0(’2695 + c.c.

+ 802 (004" — 0snaf* + 1u0,0* — 040,7*) + Sicaep 2’7 st — 4icqep 2Nl at

- 8i5“dcnazdncﬁsazl + 4i5adcna2dncx1 — 489077a77“83x1 + 249077a77“x1 — 24@94(9485331

C+ 1200,0% 2t — 240ma it 0sxt + 120maitat — 46900, 2, 2.mp 0% — A€ g0 2225700

+ 16ig0032a77“0_4 + 16ip0s2°n,04 + 4 [9477483,262;) — 94774832bzb — n4§483zbzb + 7749_48325,2(’} }
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Two loops

At two loops, possible topologies of connected vacuum diagrams
are sunset, double bubble, double tadpole

where vertices carry up to two derivatives.
Finiteness is not obvious, each diagram is separately divergent.
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@ Some simplification occurring from bosonic propagators being diagonal
(a feature of this gauge).

® Standard reduction allows to rewrite every integral as linear combination of
the two scalar integrals

72
o\ d“p 1
_[ ('nl: ) — / (27[-)2 ])2 n -,71,2

7 ( 5 9 2) / d?p d%q d?r 5(2) (p+q+r)
mi,my,ms) =
b 2m)t (P2 +m2)(¢® + m3)(r2 + m3)

® |n fact, the sum of all (remaining) divergent integrals cancel out in the computation!
no need to pick up an explicit regularization scheme to compute them.
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v

rlx

1

Only (two of the) cubic vertices give finite contributions

=20 [(00)" = 0s9)*]  Vila2 = 20 [|0s2]* — |052|"]

1, Qem=te (0 DID W

Ve = — €™y zamne + h.c. Ving = —2 € Zamp (D — 3)0c — h.c.
Voo = =419 na(0s — %)5" — h.c. @ml = —411Na(0s E Vy
Viroms = —2842%am + h.c. Viroos = 20521401 — hoc. W
Vot = =21 (00 — 0s0"n1) — hee.  Vyagay, = =20 (7'na + 0'04)(0s — )2’
Vipaiat = 166 [0, — ']’ V= 16° (00" + 00+
Ve = 4% [|0e2]* + |0s2)?] Visgtg, = —21 (' + 0°04)20,2° + h.c.
Virnaiia = 8 77" 471" Na Vizjag, = —21 (7704 — 0" ny) 20, 2’ — hee.
Vi = 4(7°1a)? V2,00 = 4i % (0'9emy — 9:0"n4) — h.c.
Vyuiaos = —871 146" 04 Vo1 gag, = 1210 ('ng + 6°6,) (05 — 3)a'
Visn, =4 e“bcnam,ncm + h.c. Vezitng = —21€4pc0;2 “*blfm + h.c.
Vi, onats = =89 052,04 — h.c. Vo no = 85,(“&:07)1,( ds — l)(9C — h.c.
V. 2iag, = 21 eabcc).,:a:bnc(h — h.c. Veenn = —21(220;2° r) my — ..bé)(za'f]b'l)a) + h.c.
Vit = 241 971%7a(Ds — §)a Vieno = =21 |2 %,a 9 — 1) — 22°na(0 — 10" — hec.
Viorpg = 819  1a(0s — 3)0% —hee. Vi = —4(9s — 3)a leabc.,am,m — h.e.

All other terms serve to cancel divergences.



Always in terms of a particular case of the general class

o0

K (—1)”
2 2 2\ _ —
I(Zm,m,m)—SWsz K_;(2n+1)2
responsible for the appearance of the Catalan constant K.
Two-loop result:
Vo |1 1 1 3 1 1 1 1 V5 1 1 K Vs
—mZy =215l (Lgg) — gl (mna)| =37l (Le2) =537
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Final result: ABJM cusp anomaly

@ The two loop ABJM cusp anomaly at strong coupling

B 5log2 (K 1) 1 B
faBim(A) = V2 . <47T2+24>m+0()\ )
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Final result: ABJM cusp anomaly

@ The two loop ABJM cusp anomaly at strong coupling () = )\ — i )

24

FABIAL (5\) _ \/ﬁ_ Slog2 K \/5\)_2

=+ O
2m A2 /2

Striking similarity with the N=4 SYM result

V)\YM 310g2 K _9
A\ — — — O/ A
fym(Aym) - _ o + O(V Avym)

Different factors in front of same structures !
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Final result: ABJM cusp anomaly

@ The two loop ABJM cusp anomaly at strong coupling (A =\ — — )

faBIM (5\) = V2\ - i LA \[5\)_2

=+ O(
2T 4x2/2)
Striking similarity with the N=4 SYM result

vV >\YM 310g2 K _9
— — O/ A
™ T\ )\YM + ( YM)

fym(Avym) =

Different factors in front of same structures !

® Starting point (lagrangeans) look rather different, however:

> Massless fermions (main difference wrt to AdSsxS® case) behave as effectively decoupled

> Fluctuations in CP3 behave as effectively decoupled.

> Mechanism of divergence cancellation very similar to AdSsxS° case.

. 1
> Relevant cubic vertices are “the same” in the two cases! @ —I(1, %’ %)
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@ The two loop ABJM cusp anomaly at strong coupling () = )\ — i )

24

faBim (5\) — V2h - i LA \/X)_2

= + O
2T Ax24/2)

Striking similarity with the N=4 SYM result

\/)\YM 310g2 K _9
Ayvm) = - - O/ A
Pl =7 Rl S

Different factors in front of same structures.

we get for interpolating function at strong coupling
|:> A log?2 1
h()) = \@ T + O(VA)?

coincides with strong coupling expansion of [Gromov Sizov 2014] conjecture

1 1y log?2 _on/oN
hw\/z (A 24) o +O(6 )
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Concluding remarks & outlook

v Two-loop calculation of ABJM cusp anomaly at strong coupling.

v Quantum consistency (UV-finiteness) of this AdSsxCP? action.

v’ First non-trivial perturbative check of h(\) at strong coupling.

V' Indirect evidence of quantum integrability of Type IIA string in AdS4xCP3
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Concluding remarks & outlook

v Two-loop calculation of ABJM cusp anomaly at strong coupling.

v Quantum consistency (UV-finiteness) of this AdSsxCP? action.

v’ First non-trivial perturbative check of h(\) at strong coupling.

V' Indirect evidence of quantum integrability of Type IIA string in AdS4xCP3

Y Three loop calculation: should involve products of K In2 and (3 9
Transcendentality properties studied, but yet unknown integrals.

Interesting for divergence cancellation, quantum integrability,
test of further “mapping” of AdS5xS5 model into AdS4xCP3.

% Calculate f(\) in backgrounds relevant for the AdSs/CFT2 correspondence.

% Finite coupling “stringy” test of () could be via lattice, a la [McKeown, Roiban, 13]
partition function of the discretized AdS light-cone gauge action in the background
of the null cusp solution.
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EXTRAS




Other string backgrounds: AdS; x S3x W*

® Three light-cone gauge-fixed string theories (Type 1I1B)

- AdSs x S3 x T supported by pure RR flux
- AdS3 x 5% x 8% x S' supported by pure RR flux
- AdS; x 8% x T* supported by a mix RR and NS NS fluxes

relevant for the AdSs/CF T2 correspondence, interesting physics (e.g. BTZ black holes)

Useful for connecting different working methods (CFT, integrability).

@® Super-coset sigma models

PSU(1,1|2) x PSU(1,1|2) < U(1)* D(2,1;,«x) x D(2,1; «) < U(1)

SL(2) x SU(2) SL(2) x SU(2) x SU(2)

[Cagnazzo Zarembo 2011]

with Z4 automorphism -> classical integrability. [Hoare Tseytlin 2012]



Perturbative structure of worldsheet S-matrix

Expansion of symmetry-determined and phase parts (6 absorbed in 7))

S’ — 14 Z g—nT(n—l) 0 — Z g—ne(n—l)
n=1

n=1

requires one-loop logarithms to contribute only to the diagonal terms

S=14 170 4 L (70 L g1y 4 L7 4 Lompo) 4 o) 1)
g 9° 9° 2

(and two-loop logarithms to be proportional to the tree-level S-matrix
- just the effect of two loop exponentiation - as §(2) has no logs)

Goal: compute one loop worldsheet S-matrix
“bootstrapping” it from tree level.



sigma-model

Superstring action

S = \4/_ 26 V/—hh®™G N (X)0, X Mo, XN + fermions
T

® Green-Schwarz formulation for fermions Oa = Oy 1M E”AI‘A

quadratic part Lrp =i(v —.(_/.(_/”b()‘['] — etbgl/ :)élkr_)(»,DbH'l

—

1 . 1
Daﬁl — (é)a -+ lcl)a.l'ﬂvd“ABFAB) (91 T SQQFOIQ;M(IJHJ

) 2T
@ Classical limit: A\ -+ oo  Sigma model coupling constant: g = —
VA
® Gauge-fixed lagrangean involves rescaling I
VA VA
Decompactification limit I+ — oo and large tension expansion g — oo

VA



Gauge fixing

Use an interpolating lightcone -gauge [Arutyunov Frolov Plefka Zamaklar 06]

Xt=(+4a)ttap=1+a0 a=1/2 light-cone gauge

/ / a=10 temporal gauge
AdSs S°
Transverse coordinates z*, pu=1...4 y , m=1...4

ds? = —Gu(2)dt? + G..(2)d2* + Gy (y)dp® + Gy (y)dy?
A / o /

I I
AdSs SO

Gauge choice preserves SO(8) at quadratic level, broken by interactions.



Interacting lagrangean

@ Bosonic lagrangean to quartic order in the fields X = (Y, Z)

L= (0uX) =5 X2+ 1 22,2 — 1Y @Y + ¢ (V2= 22) (X2 4 X?)

Lorentz invariance (quadratic part) broken by interactions.
Massive states with relativistic dispersion relation ¢ = /1 + p?

: / oM
€ = \/ 1+ — sin2 2 00“60“

T 2 \000

Exact dispersion relation known via symmetries p

(Scattering ws particles, for parametrically large momentum, become

solitonic solutions - giant magnons - with ¢ ~ Q sin g)
T

@ Bosonic part invariant under SO(4) x SO(4) .



Worldsheet fields

@ Worldsheet fields (embedding coordinates in AdSsxS>)

T, &, Y™, Z™, fermions
can be represented as bispinors SO(4) ~ (SU(2) x SU(2))/Zs
Yoo = (Um)aa Ym’ Laa = (O-/L)Oééz As a,a,oc,=1,2

@ Bosons and fermions form bi-fundamental representation of PSU(2(2);, x PSU(2|2) g

/ \ PSU(2,2), x PSU(2,2)
\ / od SU(2) x SU(2) x SU(2) x SU(2)

@ Formal definition of a bi-fundamental supermultiplet &, ;, A = (ala) A = (a|d)

providing a basis for the definition of the S-matrix.



Worldsheet S-matrix

@ Two-particle S-matrix is 256 x 256

CCDD

$12,4i(P)Ppp(P)) = [Pce(P)Ppp(P) S, ips (P P)

-

@® Integrability predicts

S=ses , $UPY0p p) =S58(p,p)SE (p,p)

® S-matrices parametrized in terms of the basic SU(2) invariants
..,462(5;,’ -+ Bo‘;fdg
D&Y% + B85
Sgg — Cepe?  Fe,ge®
Go¢ (5?3 H (55(%
Loysd  Ko%o¢

and similar for the dotted one.



Worldsheet S-matrix: explicit perturbative evaluation

@ Expansion of worldsheet S-matrix in coupling: defines the T-matrix

Y15

1 1 .
SZH+TT(O)+A—2T<1)+...:1—I—T g =
9 g

@ Tree level result: first non trivial order in the perturbative expansion
Obtained applying LSZ reduction to quartic vertices of the lagrangean.

[Klose McLoughlin Roiban Zarembo 06]

]. m — 2 /
= |[(1— 2a)(e'p —ep’) + ({) P) -1 ® 1+ — s , (Il P+P®1)
2 'p — ep £'p — ep

v’ Coincide with the related expansion of the exact spin chain S-matrix.

v Atest of group factorization

@ One-loop result via standard Feynman diagrammatics: not existing!
unsuccessful attempts (non-cancellation of UV divergences).

[ McLoughlin Roiban 07]



Worldsheet S-matrix at one loop via unitarity cuts: result

SSE (p1,p2) = exp (iva(p1,p2)) SGE

1 1
— €Xp ( — Q—g(€2pl —e1p2)(a — %) —+

pe —@(p1,p2)) SS +O(g )

where

and

S ) 1 pip3((€ap1 — €1p2) — (€162 — p1p2) arsinh[eap; — €1pa])
21D L - -

v" All logarithmic dependence encoded in the scalar factor (as required from integrability!)

v Al gauge dependence encoded in the scalar factor (as required from physical arguments!)

V' All rational dependence coincides with related expansion of EXACT worldsheet S-matrix



