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Motivation



Why F-theory?

F-theory                      =             Type IIB
✤ non-perturbative: 

regions of large gs!
✤ consistent: 

- back-reaction  ✔  
- tadpoles  ✔

✤ elliptically fibered  
Calabi-Yau manifold
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Effective theories from F-theory
F-theory engineers effective theories of quantum gravity:!

!

!

➡Use F-theory for classification of gauge theory sectors in N=1 SUGRA theories.!

✤  Need to develop and extend geometry/physics dictionary of F-theory!

➡F-theory realization of many consistent SUGRA theories still unknown:  
More than four U(1)’s, discrete gauge groups, singlets with U(1)-charges q>2…!

✤ Have to understand the constraints imposed by quantum gravity!

➡Theories, that are consistent according to QFT, may violate currently unknown 
quantum gravity consistency constraints: are automatically obeyed in F-theory.

F-theory Calabi-Yau 
geometry  (+ G4-flux,…)

N=1 SUGRA effective 
theories in 6D & 4D

Geometry    Physics



Goals of this talk
1. Enlarge the space of known F-theory vacua!

✤ construct models with       discrete gauge groups.      !

✤ provide models with higher U(1)-charges of singlets.!

✤ highlight compliance with known quantum gravity constraints.!

!

!

2. Investigate moduli space of these F-theory compactifications!

✤ all these Calabi-Yau manifolds connected by network of extremal  
transitions/Higgs effects in effective theories.

Zn

Vacua found by compactifying F-theory on all Calabi-Yau  
manifolds constructed as fibrations of the 16 toric hypersurface.



Outline

1) A brief review of F-theory!

2) Construction of toric hypersurface fibration for F-theory!

3) The effective theories of F-theory on toric hypersurface fibrations!

✤ Determine full 6D (+ non-chiral 4D) effective theory!

4) Global F-theory models with discrete gauge groups!

5) The Higgs network!

6) Conclusions & Outlook



1) A brief review of F-theory



F-theory = geometric,              -invariant formulation of Type IIB.!

✤ View Type IIB axio-dilaton                          as modular parameter of T2 !

!

✤ Two-torus            is invariant under modular transformations              . !

✤ “Size” of  T2 unphysical in Type IIB: formally set vol(T2)       0.!

✤ Non-trivial backgrounds of !

➡ in general singular T2-fibrations over space-time B.

F-theory vacua: the basic idea

1

[Vafa]

SL(2,Z)T 2(⌧)

T 2(⌧)

 S-duality invariance achieved by           T 2(⌧)

SL(2,Z)



Non-trivial profile of     in the presence of SUSY 7-branes.!

!

!

✤ 7-branes are global defects of space-time: deficit angle "/6. !

✤ 24 7-branes deficit angle 4":       compactified to S2. 

!

!

➡           -fibration over S2 is torus-fibered Calabi-Yau twofold K3.

F-theory vacua: the basic idea

[Greene,Shapere,Vafa,Yau;Vafa]

D7

D7

O7

(p,q)7

S2

T2(  )

Singularity at z=0.

⌧(z) z

T 2(⌧)

D7



S2      B:          -fibration is singular torus-fibered Calabi-Yau X over B!

!

!

!

!

!

!

  

T 2(⌧)

F-theory vacua in 6D, 4D

Matter in 6D :!
co-dim. two sing.!
(intersec. 7-branes)

 B

4D chiral matter: 
G4-flux   

Gauge theory in 8D: !
co-dim. one sing. over    !
(7-branes)

4D Yukawa: co-dim three!
	
  	
  	
  

Singularities of Calabi-Yau X setup of intersecting 7-branes	
  

[Katz,Vafa]



2) Construction of toric 
hypersurface fibrations for F-theory



1. Base B of X!

✤ here: do not choose specific B  

➡analysis base-independent!

2. Torus fiber T2 of X  !

✤ for applications: T2 = algebraic curve         
                                      of genus one    !

✤ can be brought into Weierstrass normal form!

❖ here:     has natural presentation as Calabi-Yau hypersurface in  
          of the 2D toric varieties associated to reflexive polyhedron.

Building blocks of torus-fibered Calabi-Yau X

C

B

T 2

X

8
>>>>>><

>>>>>>:

Related works: [Braun,Grimm,Keitel] Bl1P(112)&dP2: [Aldazabal,Font,Ibanez,Uranga; Klemm,Mayr,Vafa]

C



Toric variety        associated to 16 reflexive polytopes      in 2D: !

!

Toric varieties from reflexive polytopes
The toric polytopes

Jonas Reuter 8 / 28

PFi
Fi



✤ Combinatorics of      encodes geometry of toric variety        .          !
➡Representation as generalized projective space!

!

✤ Three different types of toric varieties  !

1) blow-ups of       up to        (13 cases),!

2)                   & its blow-up (2 cases),!

3)                (1 case).!
✤ Each        has corresponding genus-one curve       .       

Toric varieties from reflexive polytopes

Fi

PFi

PFi

CFiPFi

Dual Polytopes and Mirror Symmetry

the mirror dual polytopes are

F

⇤
i = {q 2 M ⌦ R|hy , qi � �1, 8y 2 Fi}

constructing the dual polytope for Fi leads to F17�i , 1  i  6

Fi , 7  i  10, are selfdual

smooth toric variety corresponding to polytopes defined by

PFi =
Cm+2\SR
(C⇤)m

= {xk ⇠
mY

a=1

�
`
(a)
k
a xk | x /2 SR ,�a 2 C⇤}

Calabi-Yau hypersurface obtained by Batyrev formula

pFi =
X

q2F⇤
i \M

aq

Y

k

x

hvk ,qi+1
k
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PFi

dP6P2

P2(1, 1, 2)

P1 ⇥ P1



Genus-one curve as toric hypersurfaces

Calabi-Yau hypersurfaces                                in                 !

➡ three different types of genus-one curves       .        !

1) cubic in blow-ups of       (13 cases)!

‣ most general cubic for     , remove one term from   
for each blow-up,!

2) quartic in                     and its blow-up (2 cases),!

3) biquadric in                 (1 case). 

CFi

PFi
CFi = {pFi = 0}

P2

P2 pFi = 0

P2(1, 1, 2)

P1 ⇥ P1



1. Ambient space: !

✤ Fibration completely determined by  
two divisors       and       on B !

‣ parametrize divisor classes of the two local coordinates on the fiber.!

2. Calabi-Yau hypersurface eq. of        !

✤ impose CY-eq.                : cut out !

✤ impose CY condition on total space !

➡get families of Calabi-Yau manifolds!

3. Derive the effective theory of F-theory for all these        .

3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

PFi
// PB

Fi
(S7,S9)

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤)m-action of the toric variety PFi to set m variables to transform in
the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.

Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which
the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K�1

PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F ⇤

1 = F16. By means of (2.23),
this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a

17
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S7 S9

pFi = 0

XFi

CFi ⇢ PFi
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CFi
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to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
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this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
certain specialization of the hypersurface of XF1 with some aq ⌘ 0. We will be more explicit
about this in the following subsection (Section 3.1.2).
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3) The effective theories of F-theory 
on toric hypersurface fibrations 



✤ Gauge theory located at zeros of discriminant                          :!

!

✤ Type of gauge group G determined using Kodaira classification!

➡ Cartan matrix of G realized by intersections in resolution.!

✤       has intrinsic gauge group        : read off from toric diagram!

➡ Points inside edges 
= nodes in Dynkin  
   diagram

Non-Abelian Gauge Group
� = 4f3 + 27g2

� ⇠ wn�0, n � 2

S = {w = 0}
➡ gauge symm. at

Singularities

XFi GFi

Figure 2: The 16 two dimensional reflexive polyhedra [16]. The polyhedron Fi and F17�i are
dual for i = 1 . . . 6 and self-dual for i = 7 . . . 10.

Every toric variety PFi has an associated Calabi-Yau hypersurface, i.e. a genus-one curve
CFi . It is defined as the generic section of its anti-canonical bundle K�1

PFi
. The Calabi-Yau

hypersurface in PFi is obtained by the Batyrev construction as the following polynomial [83]

pFi =
X

q2F ⇤
i \M

aq
Y

k

x
hvk,qi+1
k , (2.23)

where q denotes all integral points in F ⇤
i and the aq are coefficients in the field K.

We note that points vi interior to edges in Fi are usually excluded in the product (2.23)
because the corresponding divisors do not intersect the hypersurface CFi . However, when con-
sidering Calabi-Yau fibrations XFi of CFi as in Section 3 these divisors intersect XFi and resolve
singularities of XFi induced by singularities of its fibration, i.e. these divisors are related to
Cartan divisors DGI

i discussed above in Section 2.2.

3 Analysis of F-theory on Toric Hypersurface Fibrations

In this section we analyze the geometry of the Calabi-Yau manifolds XFi , that are constructed
as fibration of the genus-one curves CFi over a generic base B. For each manifold we calculate
the effective field theory resulting from compactifying F-theory on it. We calculate the gauge
group, the charged and neutral matter spectrum and the Yukawa couplings.

15

SU(3)xSU(2)!
⇢ GF11

e.g.

[Kodaira;Tate]

[Vafa;Morrison,Vafa;Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa]



Abelian Gauge Group
U(1)-symmetries                Mordell-Weil group of rational sections of  
                                              elliptic fibrations        :     see Cvetič’s talk!

✤ rational section is map  
induce by rational point Q on       . !

✤ number of U(1)’s/rational sections from toric diagram:!

➡number of U(1)’s = #(vertices of     )!
Example:  
 

✤ Some cases are more involved: for        section is non-toric; for       
section exist only in its Jacobian.

                  U(1):  !
              SU(3)xSU(2)xU(1)
4� 3 = 1

Figure 2: The 16 two dimensional reflexive polyhedra [16]. The polyhedron Fi and F17�i are
dual for i = 1 . . . 6 and self-dual for i = 7 . . . 10.
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3 Analysis of F-theory on Toric Hypersurface Fibrations

In this section we analyze the geometry of the Calabi-Yau manifolds XFi , that are constructed
as fibration of the genus-one curves CFi over a generic base B. For each manifold we calculate
the effective field theory resulting from compactifying F-theory on it. We calculate the gauge
group, the charged and neutral matter spectrum and the Yukawa couplings.
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XFi

CFi

ŝQ : B ! XFi

Fi �3

GF11 =

XF3 XF2

Toric MW-group: [Braun,Grimm,Keitel]

[Morrison,Vafa]



Gauge group        of all 16 toric hypersurface fibrations !

!

!

!

✤ up to three U(1)’s, non-simply connected & discrete gauge groups.!

✤ Key observations:   
    !

✤ 6D matter (= 4D non-chiral) spectrum & 4D Yukawas derived!
➡ ideal techniques: primary decomposition, Gröbener basis, etc.!

✤ all theories anomaly-free & obey quantum gravity constraints.

Effective theories of the 16 toric hypersurface fibrations

We start with a quick summary of some interesting results of this study. There are three
polyhedra leading to manifolds XFi without a section: F1, F2 and F4, see sections 3.2.1, 3.2.2
and 3.2.3, respectively. For three polyhedra we find associated gauge groups with Mordell-Weil
torsion: F13, F15 and F16, see sections 3.6.1, 3.6.2 and 3.6.3, respectively. The analysis of the
hypersurface XF3 and the corresponding effective theory of F-theory, whose spectrum contains
a charge three matter, can be found in section 3.3.1.

We obtain the following list of all the gauge groups GFi of F-theory on the XFi :

GF1 Z3 GF7 U(1)3

GF2 U(1)⇥Z2 GF8 SU(2)2⇥U(1) GF13 (SU(4)⇥SU(2)2)/Z2

GF3 U(1) GF9 SU(2)⇥U(1)2 GF14 SU(3)⇥SU(2)2⇥U(1)
GF4 (SU(2)⇥Z4)/Z2 GF10 SU(3)⇥SU(2) GF15 SU(2)4/Z2⇥U(1)
GF5 U(1)2 GF11 SU(3)⇥SU(2)⇥U(1) GF16 SU(3)3/Z3

GF6 SU(2)⇥U(1) GF12 SU(2)2⇥U(1)2

From this and as a simple consequence of (2.10), we see that there is the following rule of thumb
for computing the rank of a gauge group GFi : given a polyhedron Fi with 3+ n integral points
without the origin, we have a gauge group with total rank n.

Let us outline the structure of this section. In the first subsection 3.1 we briefly discuss
the three different representations of genus-one curves CFi realized as toric hypersurfaces: the
cubic, the biquadric and the quartic. There, we define the line bundles of the base B in which
the coefficients in these constraints have to take values in order to obtain a genus-one fibered
Calabi-Yau manifold. The functions f and g of the Weierstrass form (2.1) for the cubic, the
biquadric and the quartic can be found in Appendix B. By appropriate specializations of the
coefficients, one can obtain f , g and � = 4f 3 + 27g2 for all toric hypersurface fibration XFi .

In sections 3.2 to 3.6 we proceed to describe in detail each Calabi-Yau manifold XFi . In
each case we first discuss the genus-one curve CFi realized as a toric hypersurface in PFi . We
proceed to construct the corresponding genus-one fibered Calabi-Yau manifold XFi and analyze
its codimension one and two singularities from which we extract the non-Abelian gauge group
and matter spectrum. If XFi has a non-trivial MW-group, we determine all its generators,
their Shioda maps and the height pairing. For completeness, we also determine the Yukawa
couplings from codimension three singularities. In each case we show as a consistency check
that the necessary 6D anomalies (pure Abelian, gravitational-Abelian, pure non-Abelian, non-
Abelian gravitational, non-Abelian-Abelian and purely gravitational) are canceled implying
consistency of the considered effective theories.

We organize the Calabi-Yau manifolds XFi into five categories: those with discrete gauge
symmetries (Section 3.2), those with a gauge group of rank one and two but without discrete
gauge groups (Section 3.3), those with a gauge group of rank three, whose fiber polyhedra
happen to be also self-dual (Section 3.4), those with gauge groups of rank four and five without
MW-torsion (Section 3.5) and those XFi with MW-torsion (Section 3.6). This arrangement is
almost in perfect agreement with the labeling of the polyhedra Fi in Figure 2 which facilitates
the navigation through this section. We name the subsection containing the analysis of the
specific manifold XFi by its corresponding fiber polyhedron Fi.

16

GFi XFi

Non-simply connected groups: [Aspinwall,Morrison;Mayrhofer,Morrison,Till,Weigand]

rk(GFi) + rk(G⇤
Fi
) = 6

rk(GF�i) = #(points 2 Fi)� 4

with      dual to     . F ⇤
i Fi



1. Standard-Model-like theory:  
 
 
 

✤ U(1)Y from rank one MW-group of          . !

✤ All gauge invariant 4D Yukawas realized.!

2. Pati-Salam-like theory:               correct         , reps & Yukawas.!

3. Trinification-like theory:                 correct         , reps & Yukawas. !

✤ Singlet of charge q=3:          with non-toric MW-group  

➡ Quantum gravity constraint: charge lattice fully populated  ✔

Interesting examples 

Representation

Multiplicity

Representation Multiplicity Splitting Locus

(3,2)1/6 S9([K
�1
B ] + S7 � S9) V (I(1)) := {s3 = s9 = 0}

(1,2)�1/2
([K�1

B ] + S7 � S9)

(6[K�1
B ]� 2S7 � S9)

V (I(2)) := {s3 = 0

s2s
2
5 + s1(s1s9 � s5s6) = 0}

(3̄,1)�2/3 S9(2[K
�1
B ]� S7) V (I(3)) := {s5 = s9 = 0}

(3̄,1)1/3 S9(5[K
�1
B ]� S7 � S9)

V (I(4)) := {s9 = 0

s3s
2
5 + s6(s1s6 � s2s5) = 0}

(1,1)1
(2[K�1

B ]� S7)

(3[K�1
B ]� S7 � S9)

V (I(5)) := {s1 = s5 = 0}

(8,1)0 1 + S9
S9�[K�1

B ]

2 Figure 19 s9 = 0

(1,3)0
1 + S7�S9

2

⇥([K�1
B ] + S7 � S9)

Figure 19 s3 = 0

Table 20: Charged matter representations under SU(3) ⇥ SU(2) ⇥ U(1) and corresponding
codimension two fibers of XF11 . The adjoint matter is included for completeness.

3.5.2 Polyhedron F12: GF12 = SU(2)2 ⇥ U(1)2

In this section, we analyze the elliptically fibered Calabi-Yau manifold XF12 with base B and
general elliptic fiber given by the elliptic curve E in PF12 . The toric data of PF12 can be
extracted from Figure 20, where the fiber polyhedron F12 together with a choice of homogeneous
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Table 20: Charged matter representations under SU(3) ⇥ SU(2) ⇥ U(1) and corresponding
codimension two fibers of XF11 . The adjoint matter is included for completeness.
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Table 20: Charged matter representations under SU(3) ⇥ SU(2) ⇥ U(1) and corresponding
codimension two fibers of XF11 . The adjoint matter is included for completeness.

3.5.2 Polyhedron F12: GF12 = SU(2)2 ⇥ U(1)2

In this section, we analyze the elliptically fibered Calabi-Yau manifold XF12 with base B and
general elliptic fiber given by the elliptic curve E in PF12 . The toric data of PF12 can be
extracted from Figure 20, where the fiber polyhedron F12 together with a choice of homogeneous
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XF3

Representation Multiplicity Splitting Locus
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Table 20: Charged matter representations under SU(3) ⇥ SU(2) ⇥ U(1) and corresponding
codimension two fibers of XF11 . The adjoint matter is included for completeness.

3.5.2 Polyhedron F12: GF12 = SU(2)2 ⇥ U(1)2

In this section, we analyze the elliptically fibered Calabi-Yau manifold XF12 with base B and
general elliptic fiber given by the elliptic curve E in PF12 . The toric data of PF12 can be
extracted from Figure 20, where the fiber polyhedron F12 together with a choice of homogeneous
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4) Global F-theory models with 
discrete gauge groups



Global Models with discrete gauge groups

C
C

Q1, . . . , Qn

XFi

Q(n) = Q1 + . . .+Qn

Q

P

Q1

Q2

Zn

[DeBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison,Sethi]

CIf genus one curve     has no rational points, only point of degree n!
➡        genus-one fibrations without section, only multi-section. !

✤ locally (over   ): n distinct points  
                     on   .!

✤ globally: points are interchanged !
➡only sum well-defined globally  

Obstruction to gluing points together globally: Tate-Shafarevich group !
➡ subset of discrete gauge group of F-theory.!

Three toric hypersurface fibrations have discrete groups      with 
matter carrying only discrete charges.



Global Models with discrete gauge groups

C

C
C

Q1, . . . , Qn

XFi

Q(n) = Q1 + . . .+Qn

Q

P

Branch cut Q1

Q2

Zn

[DeBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison,Sethi]

If genus one curve     has no rational points, only point of degree n!
➡        genus-one fibrations without section, only multi-section. !

✤ locally (over   ): n distinct points  
                     on   .!

✤ globally: points are interchanged !
➡only sum well-defined globally  

Obstruction to gluing points together globally: Tate-Shafarevich group !
➡ subset of discrete gauge group of F-theory.!

Three toric hypersurface fibrations have discrete groups      with 
matter carrying only discrete charges.



Example:         has                                 .!

✤ Fiber        is general biquadric in              : only degree two pt.       !
➡ construct Jacobian fibration: continuous gauge symmetry is U(1).!

✤ Find codimension two singularities (matter): Massless M2-branes there do 
not carry U(1)-charge. Carry any quantum numbers?!

 Try to assign quantum number q to M2-branes on curves ci !

✤ charge conjugation: !

✤ monodromy:                 !

➡                    , i.e.              . !

✤ M2-branes carries       quantum number & q should be non-trivial: !
➡      -gauge symmetry associated to pt.       .

Global Models with discrete gauge groups

Q(2)

XF2 GF2 = U(1)⇥ Z2

CF2 P1 ⇥ P1

Representation Multiplicity Fiber Locus

1(0,�) 6[K�1
B ]2 + 4[K�1

B ](S7 + S9)� 2S2
7 � 2S2

9 V (I(1))

1(1,�) 6[K�1
B ]2 + 4[K�1

B ](S9 � S7) + 2S2
7 � 2S2

9 V (I(2))

1(1,+) 6[K�1
B ]2 + 4[K�1

B ](S7 � S9)� 2S2
7 + 2S2

9 V (I(3))

Table 2: Charged matter representations under U(1)⇥Z2 and corresponding codimension two
fibers of XF2 .

the charge under Z2 is computed using (2.13) together with the divisor class (3.36), showing
that both curves in the I2-fiber have Z2-charge (�). Thus, the representation at the locus
V (I(1)) is 1(0,�) as shown in Table 2.

The second type of factorization of (3.12) into two polynomials of degrees (1, 0) and (1, 2),
respectively, takes the following explicit form

pF2

!
= b1

⇥
y + ↵1s

⇤⇥
(y + �1s)x

2 + (�2y + �3s)xt+ (�4y + �5s)t
2
⇤
, (3.38)

where ↵1 and the �k are six unknown polynomials. We compute again the elimination ideal,
denote I(2), that is generated by eight polynomials in the bi and check that it is codimension
two in the ring. The corresponding codimension two locus in B supporting this type of I2-fiber
is denoted by V (I(2)). The intersection pattern of the two-sections with the I2-fiber is shown in
the second entry of Table 2. The U(1)- and Z2-charges readily follow as discussed before and
we find the representation at this locus to be 1(1,�).

Finally, the last type of factorization corresponds to a split of (3.12) into two polynomials
of degrees (0, 1) and (2, 1). It can be written down explicitly and takes a similar form as (3.38).
The codimension two elimination ideal corresponding to this factorization, denoted by I(3), is
generated by eight polynomials and its vanishing set is denoted by V (I(3)). The intersection
pattern of the two-sections with this type of I2-fiber is shown in the last entry of Table 2.
Using the charge formula (2.13) and the Shioda map (3.32), we show that the representation
at V (I(3)) is 1(1,+).

As a confirmation of the completeness of our analysis of codimension two singularities of
XF2 supporting U(1)-charged matter, we recall that the codimension two locus supporting
all I2-singularities associated to a U(1) is given by (2.14). In the case at hand we have to

29

Q(2)

c1 c2

Codimension 2 fiber:
q(c1)

!
= �q(c2)

c1 $ c2 ) q(c1) = q(c2) ⌘ q

q + q = 0 q 2 Z2

Z2

Z2

Q(2)



Global Models with discrete gauge groups

Full spectrum                             of        worked out:!

!

!

✤       -charge is denoted by    .!

✤ all gauge invariant Yukawas exist, including      selection rules.!

Similar explicit results (spectra,      -selection rules) for !
✤          :                   ,!

✤          :                                             .

XF2

Z2

GF2 = U(1)⇥ Z2

±

Representation

Multiplicity

Representation Multiplicity Fiber Locus

1(0,�) 6[K�1
B ]2 + 4[K�1

B ](S7 + S9)� 2S2
7 � 2S2

9 V (I(1))

1(1,�) 6[K�1
B ]2 + 4[K�1

B ](S9 � S7) + 2S2
7 � 2S2

9 V (I(2))

1(1,+) 6[K�1
B ]2 + 4[K�1

B ](S7 � S9)� 2S2
7 + 2S2

9 V (I(3))

Table 2: Charged matter representations under U(1)⇥Z2 and corresponding codimension two
fibers of XF2 .

Using the charge formula (2.13) and the Shioda map (3.32), as well as (3.36) we show that the
representation at V (I(3)) is 1(1,+).

As a confirmation of the completeness of our analysis of codimension two singularities of
XF2 supporting U(1)-charged matter, we recall that the codimension two locus supporting
all I2-singularities associated to a U(1) is given by (2.14). In the case at hand we have to
evaluate this constraint for the rational sections of J(X2) with coordinates [x1 : y1 : z1] given
in (3.31). We calculate all associated prime ideals of the obtained complete intersection using
Singular [88] and indeed find precisely the two prime ideals I(2) and I(3) corresponding to the
two representations 1(1,�) and 1(1,+) found previously using the elimination ideal technique.

As a next step, we calculate the homology classes in B for the three codimension two
loci supporting the I2-fibers, which determine, according to Section 2.3, the multiplicities of
6D charged hyper multiplets in the corresponding representations. We begin with the vari-
ety V (I(3)), whose multiplicity we denote by x1(1,+)

, supporting the representation 1(1,+). Its
homology class is computed by taking two constraints of the ideal I(3) and computing the ho-
mology class of the complete intersection described by them. Then, we subtract (with their
corresponding orders) those components that are inside this complete intersection but do not
satisfy the other generators of the ideal I(3). We obtain:

x1(1,+)
=[b22b

2
10] · [b10b2b5]� 2([b2b10] · [b2b7]� [b2] · [b3]) ,

=6[K�1
B ]2 + 4[K�1

B ](S7 � S9)� 2S2
7 + 2S2

9 .
(3.39)

The multiplicity of V (I(2)), denoted by x1(1,�)
, can be calculated in a similar way. It is given in

the third row of Table 2. As a consistency check, we calculate the sum of both multiplicities
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Using the charge formula (2.13) and the Shioda map (3.32), as well as (3.36) we show that the
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As a next step, we calculate the homology classes in B for the three codimension two
loci supporting the I2-fibers, which determine, according to Section 2.3, the multiplicities of
6D charged hyper multiplets in the corresponding representations. We begin with the vari-
ety V (I(3)), whose multiplicity we denote by x1(1,+)

, supporting the representation 1(1,+). Its
homology class is computed by taking two constraints of the ideal I(3) and computing the ho-
mology class of the complete intersection described by them. Then, we subtract (with their
corresponding orders) those components that are inside this complete intersection but do not
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, can be calculated in a similar way. It is given in
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B ](S7 + S9)� 2S2
7 � 2S2

9 V (I(1))

1(1,�) 6[K�1
B ]2 + 4[K�1

B ](S9 � S7) + 2S2
7 � 2S2

9 V (I(2))

1(1,+) 6[K�1
B ]2 + 4[K�1

B ](S7 � S9)� 2S2
7 + 2S2

9 V (I(3))

Table 2: Charged matter representations under U(1)⇥Z2 and corresponding codimension two
fibers of XF2 .

Using the charge formula (2.13) and the Shioda map (3.32), as well as (3.36) we show that the
representation at V (I(3)) is 1(1,+).

As a confirmation of the completeness of our analysis of codimension two singularities of
XF2 supporting U(1)-charged matter, we recall that the codimension two locus supporting
all I2-singularities associated to a U(1) is given by (2.14). In the case at hand we have to
evaluate this constraint for the rational sections of J(X2) with coordinates [x1 : y1 : z1] given
in (3.31). We calculate all associated prime ideals of the obtained complete intersection using
Singular [88] and indeed find precisely the two prime ideals I(2) and I(3) corresponding to the
two representations 1(1,�) and 1(1,+) found previously using the elimination ideal technique.

As a next step, we calculate the homology classes in B for the three codimension two
loci supporting the I2-fibers, which determine, according to Section 2.3, the multiplicities of
6D charged hyper multiplets in the corresponding representations. We begin with the vari-
ety V (I(3)), whose multiplicity we denote by x1(1,+)

, supporting the representation 1(1,+). Its
homology class is computed by taking two constraints of the ideal I(3) and computing the ho-
mology class of the complete intersection described by them. Then, we subtract (with their
corresponding orders) those components that are inside this complete intersection but do not
satisfy the other generators of the ideal I(3). We obtain:

x1(1,+)
=[b22b

2
10] · [b10b2b5]� 2([b2b10] · [b2b7]� [b2] · [b3]) ,

=6[K�1
B ]2 + 4[K�1

B ](S7 � S9)� 2S2
7 + 2S2

9 .
(3.39)

The multiplicity of V (I(2)), denoted by x1(1,�)
, can be calculated in a similar way. It is given in

the third row of Table 2. As a consistency check, we calculate the sum of both multiplicities

30

+2S2
7 � 2S2

9 �2S2
7 + 2S2

9

6[K�1
B ]2 + 4[K�1

B ](S7 � S9)

GF1 = Z3XF1

XF4 GF4 = (SU(2)⇥ Z4)/Z2

Zn

For Z2, related works: [Braun,Morrison; Morrison,Taylor!
Anderson,García-Etxebarria,Grimm,Keitel; García-
Etxebarria,Grimm,Keitel;Mayrhofer,Palti,Till,Weigand]

Z2



5) The Higgs network



Higgs transitions between toric hypersurface fibrations

All toric hypersurface fibrations        are connected by extremal 
transitions in fiber !
➡ induced by blow-down in toric ambient space        of fiber        

& subsequent complex structure deformation.!
✤ Toric diagram:  Cutting corners 
 

Corresponds to Higgsing in effective field theory!
➡worked out full network of all such Higgsings,!
➡generates only subbranch of moduli space of field theory: 

“toric Higgs branch”.

PFi

XFi

CFi

CFi

Subtleties: SL(2,Z) transformations

after geometric transition generically the polytopes do not trivially
match with one of the 16 polytopes, but structure agrees

find SL(2,Z) transformation which maps the polytopes to each other

thereby: the structure needs to be mapped correctly (inner points and
rational sections)

amounts to redefinition of bundles

Jonas Reuter 19 / 28



✤ matched full 6D spectrum 
(charged & uncharged).!

✤ all theories obtained from 
maximal ones from F13, F15, F16.!

✤ all models with discrete gauge 
groups arise from Higgsing 
gauged U(1)’s:!

➡e.g.      in        from          with 
Higgs of charge q=3.!

➡quantum gravity constraint: 
any global symmetry has to 
be gauged ✔

Toric Higgs branch
Arrow: extremal transitions !
              in fiber/Higgsing 

10 2 3

1

0

2

3

4

5

6

Figure 1: The network of Higgsings between all F-theory compactifications on toric hypersur-
face fibrations XFi . The axes show the rank of the MW-group and the total rank of the gauge
group of XFi . Each Calabi-Yau XFi is abbreviated by Fi and its corresponding gauge group is
shown. The arrows indicate the existence of a Higgsing between two Calabi-Yau manifolds.

two and three singularities are analyzed, and the number of their complex structure moduli is
computed. The F-theory gauge group, matter spectrum and Yukawa couplings are extracted
from these results. Section 4 is devoted to the study of the toric Higgs branch of F-theory
compactified on the XFi . One particular Higgsing is discussed in detail in order to illustrate
the relevant techniques. Here we also present the Higgsings leading to the effective theories
with discrete gauge groups. We further elaborate on the details of the entire Higgsing chain
in Appendices D and E. Our conclusions can be found in Section 5. This work contains ad-
ditional Appendices on 6D anomalies (Appendix A), additional geometrical data of the XFi

(Appendix B) and the explicit Euler numbers of all Calabi-Yau threefolds XFi (Appendix C).

6

XF1 XF3Z3

(SU(2)⇥ Z4)/Z2

U(1)

For Z2-case: [Morrison,TaylorAnderson,García-Etxebarria,Grimm,Keitel; !
García-Etxebarria,Grimm,Keitel;Mayrhofer,Palti,Till,Weigand]



6) Conclusions & Outlook



1. Summary!

✤ Constructed & analyzed all genus-one fibrations with fiber       in 
toric varieties associated to 16 2D reflexive polytopes Fi.!

➡ Full effective theory in 6D (= non-chiral 4D) determined!

➡ non-trivial gauge groups & matter content: discrete gauge 
groups, singlets with charge q=3, SM, Pati-Salam, Trinification!

✤ Network of Higgsings relating all effective theories studied!

2. Outlook!

✤ Construction of 4D chiral models!

➡ G4-flux constructions following e.g.!

✤ Explore phenomenology of toric hypersurface fibrations.

CFi

[Cvetič,Grassi,DK,Piragua]


