The String Theory Universe, Mainz 22nd of September, 2014

Global F-theory models with U(1)'s and discrete gauge symmetries

Denis Klevers

arXiv:1408.4808: D.K., D. Mayorga Peña, P. Oehlmann, H. Piragua, J. Reuter → see Paul Oehlmann's poster

Motivation

F-theory * elliptically fibered Calabi-Yau manifold

Type IIB

=

- non-perturbative:
 regions of large g_s
- consistent:
 - back-reaction 🖌
 - tadpoles 🖌

- back-reaction
- tadpoles 🖌

Effective theories from F-theory

F-theory engineers effective theories of quantum gravity:

→ Use F-theory for classification of gauge theory sectors in *N*=1 SUGRA theories.

- Need to develop and extend geometry / physics dictionary of F-theory
 - F-theory realization of many consistent SUGRA theories still unknown: More than four U(1)'s, discrete gauge groups, singlets with U(1)-charges q>2...
- Have to understand the constraints imposed by quantum gravity
 - Theories, that are consistent according to QFT, may violate currently unknown quantum gravity consistency constraints: are automatically obeyed in F-theory.

Goals of this talk

- 1. Enlarge the space of known F-theory vacua
 - * construct models with \mathbb{Z}_n discrete gauge groups.
 - provide models with higher U(1)-charges of singlets.
 - highlight compliance with known quantum gravity constraints.

Vacua found by compactifying F-theory on all Calabi-Yau manifolds constructed as fibrations of the 16 toric hypersurface.

- 2. Investigate moduli space of these F-theory compactifications
 - all these Calabi-Yau manifolds connected by network of extremal transitions/Higgs effects in effective theories.

Outline

- 1) A brief review of F-theory
- 2) Construction of toric hypersurface fibration for F-theory
- 3) The effective theories of F-theory on toric hypersurface fibrations
 - Determine full 6D (+ non-chiral 4D) effective theory
- 4) Global F-theory models with discrete gauge groups
- 5) The Higgs network
- 6) Conclusions & Outlook

1) A brief review of F-theory

F-theory vacua: the basic idea

F-theory = geometric, $SL(2, \mathbb{Z})$ -invariant formulation of Type IIB. [Vafa]

• View Type IIB axio-dilaton $\tau \equiv C_0 + ig_s^{-1}$ as modular parameter of T^2

* Two-torus $T^2(\tau)$ is invariant under modular transformations $SL(2,\mathbb{Z})$.

 \implies S-duality invariance achieved by $\tau \longrightarrow T^2(\tau)$

- * "Size" of T^2 unphysical in Type IIB: formally set vol(T^2) → 0.
- * Non-trivial backgrounds of au
 - \Rightarrow in general singular T^2 -fibrations over space-time *B*.

F-theory vacua: the basic idea

Non-trivial profile of τ in the presence of SUSY 7-branes.

* 7-branes are global defects of space-time: deficit angle $\pi/6$.

* 24 7-branes deficit angle 4π : \mathbb{R}^2 compactified to S^2 .

[Greene,Shapere,Vafa,Yau;Vafa]

 \Rightarrow $T^2(\tau)$ -fibration over S^2 is torus-fibered Calabi-Yau twofold K3.

F-theory vacua in 6D, 4D

 $S^2 \rightarrow B: T^2(\tau)$ -fibration is singular torus-fibered Calabi-Yau X over B

Singularities of Calabi-Yau *X* setup of intersecting 7-branes

2) Construction of toric hypersurface fibrations for F-theory

Building blocks of torus-fibered Calabi-YauX

1. Base *B* of *X*

here: do not choose specific B

analysis base-independent

- 2. Torus fiber T^2 of X
 - for applications: $T^2 = algebraic curve C$ of genus one

$$\Rightarrow y^2 = x^3 + fxz^4 + gz^6$$

 <u>here:</u> C has natural presentation as Calabi-Yau hypersurface in of the 2D toric varieties associated to reflexive polyhedron.
 <u>Related works:</u> [Braun,Grimm,Keitel] Bl₁P(112)&dP₂: [Aldazabal,Font,Ibanez,Uranga; Klemm,Mayr,Vafa]

Toric varieties from reflexive polytopes

Toric variety \mathbb{P}_{F_i} associated to 16 reflexive polytopes F_i in 2D:

Toric varieties from reflexive polytopes

- * Combinatorics of F_i encodes geometry of toric variety \mathbb{P}_{F_i} .
- Representation as generalized projective space

$$\mathbb{P}_{F_i} = \frac{\mathbb{C}^{m+2} \backslash \mathsf{SR}}{(\mathbb{C}^*)^m}$$

- * Three different types of toric varieties \mathbb{P}_{F_i}
 - 1) blow-ups of \mathbb{P}^2 up to dP_6 (13 cases),
 - 2) $\mathbb{P}^2(1,1,2)$ & its blow-up (2 cases),
 - 3) $\mathbb{P}^1 \times \mathbb{P}^1$ (1 case).

* Each \mathbb{P}_{F_i} has corresponding genus-one curve \mathcal{C}_{F_i} .

Genus-one curve as toric hypersurfaces

- Calabi-Yau hypersurfaces $C_{F_i} = \{p_{F_i} = 0\}$ in \mathbb{P}_{F_i}
- \Rightarrow three different types of genus-one curves C_{F_i} .
- 1) cubic in blow-ups of \mathbb{P}^2 (13 cases)
 - most general cubic for \mathbb{P}^2 , remove one term from $p_{F_i} = 0$ for each blow-up,
- 2) quartic in $\mathbb{P}^2(1,1,2)$ and its blow-up (2 cases),
- 3) biquadric in $\mathbb{P}^1 \times \mathbb{P}^1$ (1 case).

Construction of toric hypersurface fibration X_{F_i}

- 1. Ambient space:
- Fibration completely determined by two divisors S₇ and S₉ on B
 - parametrize divisor classes of the two local coordinates on the fiber.
- 2. <u>Calabi-Yau hypersurface eq. of X_{F_i} </u>
- * impose CY-eq. $p_{F_i} = 0$: cut out $\mathcal{C}_{F_i} \subset \mathbb{P}_{F_i}$
- * impose CY condition on total space X_{F_i}
 - \Rightarrow get families of Calabi-Yau manifolds $X_{F_i}(\mathcal{S}_7, \mathcal{S}_9)$
 - 3. Derive the effective theory of F-theory for all these X_{F_i} .

3) The effective theories of F-theory on toric hypersurface fibrations

Non-Abelian Gauge Group

• Gauge theory located at zeros of discriminant $\Delta = 4f^3 + 27g^2$:

 $\Delta \sim w^n \Delta', \ n \ge 2$ ⇒ gauge symm. at $S = \{w = 0\}$

[Vafa;Morrison,Vafa;Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa]

- Type of gauge group G determined using Kodaira classification
 [Kodaira;Tate]
- ➡ Cartan matrix of G realized by intersections in resolution.
- * X_{F_i} has intrinsic gauge group G_{F_i} : read off from toric diagram
 - Points inside edges
 nodes in Dynkin diagram

Abelian Gauge Group

U(1)-symmetries \longrightarrow Mordell-Weil group of rational sections of [Morrison, Vafa] elliptic fibrations X_{F_i} : \bigwedge see Cvetič's talk

★ rational section is map ŝ_Q : B → X_{F_i}
 induce by rational point Q on C_{F_i}.

Toric MW-group: [Braun,Grimm,Keitel]

number of U(1)'s / rational sections from toric diagram:

⇒ number of U(1)'s = #(vertices of F_i)-3

Example:

4 - 3 = 1 U(1): $G_{F_{11}} =$ **SU(3)**x**SU(2)**xU(1)

• Some cases are more involved: for X_{F_3} section is non-toric; for X_{F_2} section exist only in its Jacobian.

Effective theories of the 16 toric hypersurface fibrations

Gauge group G_{F_i} of all 16 toric hypersurface fibrations X_{F_i}

G_{F_1}	\mathbb{Z}_3	G_{F_7}	$U(1)^{3}$		
G_{F_2}	$\mathrm{U}(1) \times \mathbb{Z}_2$	G_{F_8}	$SU(2)^2 \times U(1)$	$G_{F_{13}}$	$(\mathrm{SU}(4) \times \mathrm{SU}(2)^2) / \mathbb{Z}_2$
G_{F_3}	U(1)	G_{F_9}	$SU(2) \times U(1)^2$	$G_{F_{14}}$	$SU(3) \times SU(2)^2 \times U(1)$
G_{F_4}	$\left (\mathrm{SU}(2) \times \mathbb{Z}_4) / \mathbb{Z}_2 \right $	$G_{F_{10}}$	$SU(3) \times SU(2)$	$G_{F_{15}}$	$\mathrm{SU}(2)^4/\mathbb{Z}_2 \times \mathrm{U}(1)$
G_{F_5}	$U(1)^{2}$	$G_{F_{11}}$	SU(3)×SU(2)×U(1) $ $	$G_{F_{16}}$	$\mathrm{SU}(3)^3/\mathbb{Z}_3$
G_{F_6}	$SU(2) \times U(1)$	$G_{F_{12}}$	$SU(2)^2 \times U(1)^2$		

 * up to three U(1)'s, non-simply connected & discrete gauge groups. Non-simply connected groups: [Aspinwall,Morrison;Mayrhofer,Morrison,Till,Weigand]
 * Key observations: rk(G_{F-i}) = #(points ∈ F_i) - 4

 $\operatorname{rk}(G_{F_i}) + \operatorname{rk}(G_{F_i}^*) = 6 \quad \text{with } F_i^* \text{ dual to } F_i.$

- 6D matter (= 4D non-chiral) spectrum & 4D Yukawas derived
 - ideal techniques: primary decomposition, Gröbener basis, etc.
- all theories anomaly-free & obey quantum gravity constraints.

Interesting examples

1. <u>Standard-Model-like theory:</u> $X_{F_{11}}$

Representation	$({f 3},{f 2})_{1/6}$	$(ar{f 3}, {f 1})_{-2/3}$	$(ar{3}, m{1})_{1/3}$	$({f 1},{f 2})_{-1/2}$	$(1,1)_{-1}$
Multiplicity	$\mathcal{S}_9([K_B^{-1}] + \mathcal{S}_7 - \mathcal{S}_9)$	$\mathcal{S}_9(2[K_B^{-1}] - \mathcal{S}_7)$	$\mathcal{S}_9(5[K_B^{-1}] - \mathcal{S}_7 - \mathcal{S}_9)$	$([K_B^{-1}] + \mathcal{S}_7 - \mathcal{S}_9) \times (6[K_B^{-1}] - 2\mathcal{S}_7 - \mathcal{S}_9)$	$(2[K_B^{-1}] - \mathcal{S}_7) \times (3[K_B^{-1}] - \mathcal{S}_7 - \mathcal{S}_9)$

- * U(1)_Y from rank one MW-group of $X_{F_{11}}$.
- All gauge invariant 4D Yukawas realized.
- 2. <u>Pati-Salam-like theory:</u> $X_{F_{13}}$ \rightarrow correct $G_{F_{14'}}$ reps & Yukawas.
- 3. <u>Trinification-like theory</u>: $X_{F_{16}} \rightarrow \text{correct } G_{F_{16'}}$ reps & Yukawas.
- * Singlet of charge q=3: X_{F_3} with non-toric MW-group
- Quantum gravity constraint: charge lattice fully populated

4) Global F-theory models with discrete gauge groups

If genus one curve C has no rational points, only point of degree n

- \Rightarrow X_{F_i} genus-one fibrations without section, only multi-section.
- * locally (over \mathbb{C}): *n* distinct points Q_1, \ldots, Q_n on \mathcal{C} .
- ★ globally: points are interchanged
 ➡ only sum well-defined globally
 Q⁽ⁿ⁾ = Q₁ + ... + Q_n

Obstruction to gluing points together globally: <u>Tate-Shafarevich group</u> ⇒ subset of <mark>discrete gauge group of F-theory</mark>.

[DeBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison,Sethi] Three toric hypersurface fibrations have discrete groups \mathbb{Z}_n with matter carrying only discrete charges.

If genus one curve C has no rational points, only point of degree n

- \Rightarrow X_{F_i} genus-one fibrations without section, only multi-section.
- * locally (over \mathbb{C}): *n* distinct points Q_1, \ldots, Q_n on \mathcal{C} .
- ★ globally: points are interchanged
 ➡ only sum well-defined globally
 Q⁽ⁿ⁾ = Q₁ + ... + Q_n

Obstruction to gluing points together globally: <u>Tate-Shafarevich group</u> → subset of discrete gauge group of F-theory.

[DeBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison,Sethi] Three toric hypersurface fibrations have discrete groups \mathbb{Z}_n with matter carrying only discrete charges.

<u>Example:</u> X_{F_2} has $G_{F_2} = U(1) \times \mathbb{Z}_2$.

- ◆ Fiber C_{F2} is general biquadric in P¹ × P¹: only degree two pt. Q⁽²⁾
 → construct Jacobian fibration: continuous gauge symmetry is U(1).
- Find codimension two singularities (matter): Massless M2-branes there do not carry U(1)-charge. Carry any quantum numbers?

Try to assign quantum number q to M2-branes on curves c_i

- charge conjugation: $q(c_1) \stackrel{!}{=} -q(c_2)$
- * monodromy: $c_1 \leftrightarrow c_2 \Rightarrow q(c_1) = q(c_2) \equiv q$
- ightarrow q+q=0 , i.e. $q\in\mathbb{Z}_2$.

M2-branes carries Z₂ quantum number & *q* should be non-trivial:

 Z₂ -gauge symmetry associated to pt. Q⁽²⁾

Full spectrum $G_{F_2} = U(1) \times \mathbb{Z}_2$ of X_{F_2} worked out:

Representation	$1_{(0,-)}$	${f 1}_{(1,+)}$	${f 1}_{(1,-)}$
Multiplicity	$6[K_B^{-1}]^2 + 4[K_B^{-1}](\mathcal{S}_7 - \mathcal{S}_9) -2\mathcal{S}_7^2 - 2\mathcal{S}_7^2$	$6[K_B^{-1}]^2 + 4[K_B^{-1}](\mathcal{S}_9 - \mathcal{S}_7) + 2\mathcal{S}_7^2 - 2\mathcal{S}_9^2$	$ \begin{bmatrix} 6[K_B^{-1}]^2 + 4[K_B^{-1}](\mathcal{S}_7 - \mathcal{S}_9) \\ -2\mathcal{S}_7^2 + 2\mathcal{S}_9^2 \end{bmatrix} $

- * \mathbb{Z}_2 -charge is denoted by \pm .
- * all gauge invariant Yukawas exist, including \mathbb{Z}_2 selection rules.

Similar explicit results (spectra, \mathbb{Z}_n -selection rules) for

$$\bullet \quad X_{F_1}: G_{F_1} = \mathbb{Z}_3,$$

* $X_{F_4}: G_{F_4} = (SU(2) \times \mathbb{Z}_4)/\mathbb{Z}_2$. For Z₂, related works: [Braun, Morrison; Morrison, Taylor Anderson, García-Etxebarria, Grimm, Keitel; García-Etxebarria, Grimm, Keitel; García-Etxebarria, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand]

5) The Higgs network

Higgs transitions between toric hypersurface fibrations

All toric hypersurface fibrations X_{F_i} are connected by extremal transitions in fiber C_{F_i}

- induced by blow-down in toric ambient space \mathbb{P}_{F_i} of fiber \mathcal{C}_{F_i} & subsequent complex structure deformation.
- Toric diagram: Cutting corners

Corresponds to Higgsing in effective field theory

- worked out full network of all such Higgsings,
- generates only subbranch of moduli space of field theory: "toric Higgs branch".

Toric Higgs branch

- matched full 6D spectrum (charged & uncharged).
- all theories obtained from
 maximal ones from F₁₃, F₁₅, F₁₆.
- all models with discrete gauge groups arise from Higgsing gauged U(1)'s:
 - ⇒ e.g. \mathbb{Z}_3 in X_{F_1} from X_{F_3} with Higgs of charge q=3.
 - quantum gravity constraint: any global symmetry has to be gauged

For Z₂-case: [Morrison, TaylorAnderson, García-Etxebarria, Grimm, Keitel; García-Etxebarria, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand]

6) Conclusions & Outlook

1. <u>Summary</u>

- Constructed & analyzed all genus-one fibrations with fiber C_{Fi} in toric varieties associated to 16 2D reflexive polytopes F_i.
 - → Full effective theory in 6D (= non-chiral 4D) determined
 - non-trivial gauge groups & matter content: discrete gauge groups, singlets with charge q=3, SM, Pati-Salam, Trinification
- Network of Higgsings relating all effective theories studied
- 2. <u>Outlook</u>
- Construction of 4D chiral models
 - ➡ G₄-flux constructions following e.g. [Cvetič, Grassi, DK, Piragua]
- Explore phenomenology of toric hypersurface fibrations.