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Why F-theory?
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Effective theories from F-theory

E-theory engineers effective theories of quantum gravity:

N=1 SUGRA effective
theories in 6D & 4D

= Use F-theory for classification of gauge theory sectors in N=1 SUGRA theories.

F-theory Calabi-Yau
geometry (+ G,-flux,...)

+ Need to develop and extend geometry / physics dictionary of F-theory

= F-theory realization of many consistent SUGRA theories still unknown:
More than four U(1)’s, discrete gauge groups, singlets with U(1)-charges g>2...

+ Have to understand the constraints imposed by quantum gravity

= Theories, that are consistent according to QFT, may violate currently unknown
quantum gravity consistency constraints: are automatically obeyed in F-theory.



Goals of this talk

1. Enlarge the space of known F-theory vacua
+ construct models with Z,, discrete gauge groups.
+ provide models with higher U(1)-charges of singlets.

+ highlight compliance with known quantum gravity constraints.

b Vacua found by compactifying F-theory on all Calabi-Yau
manifolds constructed as fibrations of the 16 toric hypersurface.

2. Investigate moduli space of these F-theory compactifications

+ all these Calabi-Yau manifolds connected by network of extremal
transitions/Higgs effects in effective theories.



Outhne

1) Abrief review of F-theory

2) Construction of toric hypersurface fibration for F-theory
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+ Determine full 6D (+ non-chiral 4D) effective theory

4) Global F-theory models with discrete gauge groups
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6) Conclusions & Outlook



1) A brief review of F-theory




I'-theory vacua: the basic 1dea

F-theory = geometric, SL(2, Z)-invariant formulation of Type IIB. [Vafal

+ View Type IIB axio-dilaton 7 = Cy + ig; 'as modular parameter of T°
T ‘ T2 (7_)
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+ Two-torus T~ (7)is invariant under modular transformations SL(2, Z).

=) | S-duality invariance achieved by 7 — T (7)

+ “Size” of T’ unphysical in Type IIB: formally set vol(T*)—> 0.

+ Non-trivial backgrounds of T

= in general singular T"-fibrations over space-time B.



I'-theory vacua: the basic 1dea

Non-trivial profile of 7 in the presence of SUSY 7-branes.
RQ

T — T+ 1
= 7(2) = =1In(2),
Singularity at z=0.

+ 7-branes are global defects of space-time: deficit angle /6.

# 24 7-branes deficit angle 47t: R? compactified to S,

T2(T) [Greene,Shapere,Vafa,Yau;Vafa]

S2

= T2(7)-fibration over S is torus-fibered Calabi-Yau twofold K3.



I'-theory vacua in 6D, 4D

§°—> B: T?(7)-fibration is singular torus-fibered Calabi-Yau X over B

Gauge theory in 8D: Matter in 6D :
co-dim. one sing. over .S “ co-dim. two sing.
(7-branes) (intersec. 7-branes)

[Katz, Vafal

4D chiral matter:
G,-flux

4D Yukawa: co-dim three
pt=5NS"nNSs"




2) Construction of toric

hypersurface fibrations for I¥-theory




Building blocks of torus-tibered Calabi-Yau X

1. Base B of X T2 °

+ here: do not choose specific B

= analysis base-independent X

2. Torus fiber TZ of X

% for applications: T" = algebraic curve C

of genus one

+ can be brought into Weierstrass normal form

= yzzajg—l—fxz4+gz6|

= here: C has natural presentation as Calabi-Yau hypersurface in

of the 2D toric varieties associated to reflexive polyhedron.
Related works: [Braun,Grimm, Keitel] Bl,P(112)&dP;: [Aldazabal,Font,Ibanez,Uranga; Klemm,Mayr, Vafal]



Toric varieties from reflexive polytopes

Toric variety [P associated to 16 reflexive polytopes F; in 2D:

Fis Fie

47
V'




Toric varieties from reflexive polytopes

+ Combinatorics ot [jencodes geometry of toric variety Pp, .
= Representation as generalized projective space

»_ C™2\SR
Fi — *\m
(C*)

+ Three different types of toric varieties P,
1) blow-ups of P*up to dPs (13 cases),
2) P°(1,1,2) & its blow-up (2 cases),
3) P! x P! (1 case).

+ Each Pg, has corresponding genus-one curve Cr..



(Genus-one curve as toric hypersurfaces

Calabi-Yau hypersurfaces Cr, = {pr, =0} in Pp,

= three different types of genus-one curves Cg..

1) cubic in blow-ups of P? (13 cases)

» most general cubic for P% remove one term from pr, = 0
for each blow-up,

2) quarticin P#(1,1,2) and its blow-up (2 cases),

3) biquadricin P! x P! (1 case).



Construction of toric hypersurface fibration X,

1. Ambient space: Pr — P2 (S7, Sy)
+ Fibration completely determined by l
two divisors &7 and Sg on B B

» parametrize divisor classes of the two local coordinates on the fiber.

2. Calabi-Yau hypersurface eq. of X, Cr, C Pp, — XF,
+ impose CY-eq. pr, = O: cutout Cp, C Pp, l
B

+ impose CY condition on total space X,

= oet families of Calabi-Yau manifolds X . (57, Sg)

3. Derive the effective theory of F-theory for all these XF..




3) The effective theories of IF-theory

on toric hypersurface fibrations




Non-Abehan Gauge Group

+ Gauge theory located at zeros of discriminant A = 4f°% + 27¢°:

A ~ " A/, n > 2 - — Singularities
\
S

= gauge symm. at @
S ={w =0}

[Vafa;Morrison,Vafa;Bershadsky,Intriligator,Kachru,Morrison,Sadov, Vafa]

+ Type ot gauge group G determined using Kodaira classification
[Kodaira;Tate]

= Cartan matrix of G realized by intersections in resolution.

+ X has intrinsic gauge group G r;: read off from toric diagram

= Points inside edges e.g. Fi
= nodes in Dynkin SUB)xSU(2)
diagram / c Gp,,




Abelian Gauge Group

U(1)-symmetries 6 Mordell-Weil group of rational sections of
[Morrison, Vafal elliptic fibrations X g : f see Cvetic’s talk

Q

+ rational sectionismap sg : B — XF,

induce by rational point Q on Cp.,.

+ number of U(1)’s/rational sections from toric diagram:

. Toric MW-group: [Braun,Grimm, Keitel]
= number of U(1)’s = #(vertices of F;)—3

Example: Fiy 4—-3=1U®1):
G, = SUB)xSU2)xU(1)

+ Some cases are more involved: for X g, section is non-toric; for Xz,
section exist only in its Jacobian.




Effective theories

of the 16 toric hypersurface fibrations

6 toric hypersurface fibrations X,

Gauge group G, of all
Gr, Zs
G, U(1)xZs4
Gr, U(1)
Gr, | (SU(2)XZy4)/Zs
Gr, U(1)?
Gr, | SU(2)xU(1)

Gr. U(1)?
G r SU(2)?xU(1) Gr., | (SU4)xSU(2)%)/Zs,
Gr, SU(2)xU(1)? Gr, | SUB)xSU(2)*xU(1)

Gr, SU(3)xSU(2) Gr. | SU(2)*/ZyxU(1)
Gr, | SUB)xSU((2)xU(1) || Gp, SU(3)? /Zs
GF12 SU(2)2XU(1)2

+ up to three U(1)’s, non-simply connected & discrete gauge groups.
y
Non-simply connected groups: [Aspinwall,Morrison;Mayrhofer,Morrison,Till, Weigand]

+ Key observations:

rk(Gp_;) = #(points € F;) — 4
rk(GF,) +rk(GF,) = 6 with F;"dual to F;.

+ 6D matter (= 4D non-chiral) spectrum & 4D Yukawas derived

= ideal techniques: primary decomposition, Grobener basis, etc.

+ all theories anomaly-free & obey quantum gravity constraints.



Interesting examples

1. Standard-Model-like theory: X .

Representation (37 2)1/6 (§7 1)_2/3 (:3), ]_)1/3 (]_7 2)_1/2 (]_, ]_)_1

Multiplicity [So([K5'] +S7 — So)| So(2[K 5] — S7) |So(B[K "] - S7 = o)

(K5'1+S8 =8 | (2lKp']—S)
X(6|K5'] — 287 — So)|x(3[K5'] — S7 — Sy)

+ U(1)y from rank one MW-group of X, ,.

+ All gauge invariant 4D Yukawas realized.

2. Pati-Salam-like theory: X r,.—>correct G, ,, reps & Yukawas.

3. Trinification-like theory: X g, . — correct G, ,, reps & Yukawas.

+ Singlet of charge g=3: X g,with non-toric MW-group

= Quantum gravity constraint: charge lattice fully populated ¢/




4) Global F-theory models with

discrete gauge groups




Global Models with diserete gauge groups

If genus one curve C has no rational points, only point of degree n

= X . genus-one fibrations without section, only multi-section.

+ locally (over C): n distinct points

@
Q17°-° ,QnonC. °Q1

+ globally: points are interchanged

= only sum well-defined globally

Obstruction to gluing points together globally: Tate-Shafarevich group
= subset of discrete gauge group of F-theory.

[DeBoer,Dijkgraaf,Hori, Keurentjes,Morgan,Morrison,Sethi]
Three toric hypersurface fibrations have discrete groups Z,,with

matter carrying only discrete charges.
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Global Models with diserete gauge groups

Example: X, has Gp, = U(1) X Zs.

+ Fiber Cp, is general biquadric in Pt x P only degree two pt. Q(Q)
= construct Jacobian fibration: continuous gauge symmetry is U(1).

+ Find codimension two singularities (matter): Massless M2-branes there do
not carry U(1)-charge. Carry any quantum numbers?

Try to assign quantum number g to M2-branes on curves c;

. : ! Codimension 2 fiber:
+ charge conjugation: ¢ (Cl) = (CQ)

% monodromy: ¢ <> Co = q(c1) = (](02) = q @

-q—|—q:(),16q622 C1 C2

+ M2-branes carries Z, quantum number & g should be non-trivial:
= 7o -gauge symmetry associated to pt. Q@



Global Models with diserete gauge groups

Full spectrum Gp, = U(1) x Zyof X g worked out:

Representation ]—(O,—) 1(1,_|_) 1(1 —)

iolici 6[K 5"+ 4[K5'(S7 — So)|6[K5'])? +4[K5'(So — S7)|6[K5 '] + 4[ ](57 Sy)
Multiplicity ~282 — 282 +282 — 282 982 4 252

+ Z.o-charge is denoted by =+.

+ all gauge invariant Yukawas exist, including Z» selection rules.

Similar explicit results (spectra, Z,-selection rules) for
< Xpli GFl == Zg,

ofe X o G P, = (SU( ) X Z 4 ) / Z 2.For Z, related works: [Braun,Morrison; Morrison,Taylor

Anderson,Garcia-Etxebarria, Grimm, Keitel; Garcia-
Etxebarria,Grimm, Keitel;Mayrhofer,Palti, Till, Weigand]



o) The Higgs network




Higgs transitions between toric hypersurface fibrations

All toric hypersurface fibrations X g, are connected by extremal
transitions in fiber Cp,

= induced by blow-down in toric ambient space [P, of fiber Cr,
& subsequent complex structure deformation.

+ Toric diagram: Cutting corners

>

Corresponds to Higgsing in effective field theory

= worked out full network of all such Higgsings,

= generates only subbranch of moduli space of field theory:
“toric Higgs branch”.



lorie Higgs branch

+ matched full 6D spectrum
(charged & uncharged).

+ all theories obtained from
maximal ones from Fi3, Fi5, Fqg.

+ all models with discrete gauge
groups arise from Higgsing
gauged U(1)’s:

= e.g. Zsin X p,from X g, with
Higgs of charge g=3.

= quantum gravity constraint:

any global symmetry has to
be gauged v/

Gauge group rank
w ESN

N

A

Arrow: extremal transitions
Fig SU®)/Z; in fiber /Higgsing

(SU(4) x SU(2)2)/Z, SU(3) x SU(2)? x U(1)
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For Z,-case: [Morrison, TaylorAnderson,Garcia-Etxebarria, Grimm,Keitel;

Garcia-Etxebarria,Grimm,Keitel;Mayrhofer,Palti, Till, Weigand]



6) Conclusions & Outlook




1. Summary

+ Constructed & analyzed all genus-one fibrations with fiber Cr, in
toric varieties associated to 16 2D reflexive polytopes F;.

= Full effective theory in 6D (= non-chiral 4D) determined

= non-trivial gauge groups & matter content: discrete gauge
groups, singlets with charge g=3, SM, Pati-Salam, Trinification

+ Network of Higgsings relating all effective theories studied

2. Outlook

%+ Construction of 4D chiral models
= Gy-flux constructions following e.g. [Cveti¢,Grassi, DK, Piragual

+ Explore phenomenology of toric hypersurface fibrations.



