Minimal Warped Holography

Blaise Rollier

work in progress with Diego Hofman

Blaise Rollier (U. of Amsterdam)

String Theory Universe

Mainz Sept. 22th, 2014

Introduction

- A Lorentz invariant QFT couples to a (pseudo)-Riemannian metric $(g_{\mu\nu}, \mathcal{M})$.
- A Galilean invariant QFT couples to a Newton-Cartan geometry $(\tau_{\mu}, h^{\mu\nu}, v^{\mu}, A_{\mu}, \mathcal{M})$. [Son, 2013] [Jensen, 2014]
- In the AdS/CFT context these structures arise as the boundary geometry of some dual space-time.
 - Newton-Cartan arises at the boundary of Lifshitz space-times [Hartong, Kiritsis, Obers, 2014]

The goals

- A Lorentz invariant QFT couples to a (pseudo)-Riemannian metric $(g_{\mu\nu}, \mathcal{M})$.
- A Galilean invariant QFT couples to a Newton-Cartan geometry $(\tau_{\mu}, h^{\mu\nu}, v^{\mu}, A_{\mu}, \mathcal{M})$. [Son, 2013] [Jensen, 2014]
- In the AdS/CFT context these structures arise as the boundary geometry of some dual space-time.
 - Newton-Cartan arises at the boundary of Lifshitz space-times [Hartong, Kiritsis, Obers, 2014]
- What background geometry does a Warped CFT (WCFT) couple to ?
- 2 Construct a minimal framework to realize a WCFT holographically.

Warped AdS₃ space-times

AdS₃ has isometry group $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$. We pick a Killing vector $\xi^a \in SL(2,\mathbb{R})_R$. A warped AdS₃ space is obtained by the deformation

$$ds^2_{{
m AdS}_3}
ightarrow ds^2_{{
m WAdS}_3} = ds^2_{{
m AdS}_3} + \xi_a \otimes \xi_a$$

- The remaining isometries are $SL(2,\mathbb{R})_L imes U(1)_R$.
- The norm (length) of ξ^a generates a time-like, space-like (stretched or squashed) or null WAdS₃.
- Not a vacuum solution of Einstein gravity but a solution to many theories, e.g. Topologically Massive Gravity.

In the holographic context

• The asymptotic symmetry algebra is Virasoro \oplus Kac-Moody [Compère, Detournay, 2008].

What is a Warped CFT

In 2D, scale invariance implies conformal invariance (for a unitary, Poincaré invariant theory with discrete non-negative scaling spectrum). [Polchinski, 1988]

Consider a 2D QFT invariant under translations and a chiral (left) scaling (assuming locality, unitarity and a discrete non-negative dilatation spectrum)

$$x^- \to \lambda x^- + \epsilon^-, \quad x^+ \to x^+ + \epsilon^+.$$

- The left moving scaling and translation get enhanced to a full left conformal symmetry.
- The right moving translation becomes either
 - ▶ a right conformal symmetry, Virasoro_L \oplus Virasoro_R, a regular CFT
 - ▶ a left current algebra, Virasoro_L \oplus Kac-Moody_L, a Warped CFT

[Hofman, Strominger, 2011]

Introduction

- The zero modes generate a global $SL(2,\mathbb{R}) imes U(1)$ symmetry.
 - ► The zero mode of the U(1) current algebra corresponds to a space-time translation.
 - There is a higher mode that corresponds to a Galilean boost.
- A WCFT is invariant under transformations of the form

$$x^-
ightarrow f(x^-), \quad x^+
ightarrow x^+ + g(x^-)$$

for arbitrary functions $f(x^{-})$ and $g(x^{-})$.

A WCFT can be seen as a sort of geometrization of a U(1) current algebra.

Background geometry I

Consider a 2D QFT with two translations and one Galilean boost

$$[H, P] = 0$$
, $[H, G] = P$, $[P, G] = 0$.

Introduce a gauge field τ_μ, e_μ and ω_μ for each symmetry (H, P, G).
 We think of τ_μ, e_μ as vielbeins and introduce inverses τ^μ, e^μ with

$$au_{\mu} au^{\mu}=1, \ \ au_{\mu}e^{\mu}=0, \ \ e_{\mu} au^{\mu}=0, \ \ e_{\mu}e^{\mu}=1.$$

• The transformations of the gauge fields under the Galilean boost are

$$\delta \tau_{\mu} = \mathbf{0} \,, \quad \delta \mathbf{e}_{\mu} = \lambda \tau_{\mu} \,, \quad \delta \omega_{\mu} = \partial_{\mu} \lambda \,.$$

• The boost invariant objects are τ_{μ} , e^{μ} and $\tau_{[\mu}e_{\nu]}$.

- The volume form does contain the same information as au_{μ} and e^{μ} .

Background geometry I

Consider a 2D QFT with two translations and one Galilean boost

$$[H, P] = 0$$
, $[H, G] = P$, $[P, G] = 0$.

Introduce a gauge field τ_μ, e_μ and ω_μ for each symmetry (H, P, G).
 ▶ We think of τ_μ, e_μ as vielbeins and introduce inverses τ^μ, e^μ with

$$au_{\mu} au^{\mu}=1, \ \ au_{\mu}e^{\mu}=0, \ \ e_{\mu} au^{\mu}=0, \ \ e_{\mu}e^{\mu}=1.$$

- We define a covariant derivative \mathcal{D}_{μ} and we impose a vielbein postulate

$$\begin{array}{rcl} 0 & = & \mathcal{D}_{\mu}\tau_{\nu} & = & \nabla_{\mu}\tau_{\nu} \, , \\ 0 & = & \mathcal{D}_{\mu}\mathbf{e}_{\nu} & = & \nabla_{\mu}\mathbf{e}_{\nu} - \omega_{\mu}\tau_{\nu} \, , \end{array}$$

• $abla_{\mu}e^{
u}=0$ follows, hence $abla_{\mu}$ is compatible with (au_{μ},e^{μ}) .

Background geometry ||

The field strengths are

$$\begin{array}{rcl} {\cal R}_{H} & = & d\tau \, , \\ {\cal R}_{P} & = & de + \tau \wedge \omega \, , \\ {\cal R}_{G} & = & d\omega \, . \end{array}$$

Background geometry ||

The field strengths are

 $\begin{array}{lll} R_H &=& d\tau\,, \\ R_P &=& de + \tau \wedge \omega\,, \\ R_G &=& d\omega\,. \end{array}$

- We keep a non-trivial curvature only in R_P, as a non-trivial torsion.
- The conditions $R_H = 0$ and $R_G = 0$ imply that R_P is fully gauge invariant, $\delta R_P = 0$.
- We solve $R_G=0$ using a Weitzenböck connection, $\omega_{\mu}=0$.
 - Intrinsically no metric formulation.
 - Parallel transport of vectors is path independent.
 - Related to the current algebra of the WCFT.

Proposal

A WCFT couples to a background $(\mathcal{M}, g_{\mu\nu}, e^{\mu})$ in a way that is invariant under reparametrizations, Galilean boosts and chiral Weyl transformations.

- The object $g_{\mu\nu}$ must satisfy $g_{\mu\nu}e^{\nu} = 0$. It is a boost invariant degenerate metric, $g_{\mu\nu} = \tau_{\mu}\tau_{\nu}$ in 2D.
- This geometry can be thought of as a conjugated version of a Newton-Cartan geometry.

Let us consider a small variations of the background, schematically

$$\delta {\cal S} = \int {
m det}(e^a_\mu) {T^a}_\mu \delta e^\mu_{a}\,.$$

- Invariance under chiral Weyl rescalings, $\tau_{\mu} \rightarrow \Lambda \tau_{\mu} \ e_{\mu} \rightarrow e_{\mu}$, and Galilean boosts imply $T^{\mu}{}_{\nu} = e^{\mu}J_{\nu}$ where $T^{\mu}{}_{\nu} \equiv e^{\mu}_{a}T^{a}{}_{\nu}$.
 - > The background couples to the two components of J_{μ} .
 - These are morally the components of the currents that generate the left conformal and left current algebras.

Blaise Rollier (U. of Amsterdam)

String Theory Universe

Null Warped AdS₃

The conjugated Newton-Cartan geometry is expected to be the relevant geometry at the boundary of any WAdS space-time.

This is compatible with the boundary conditions on a null WAdS₃ space-time. A null WAdS₃ space can always be written as

$$ds^{2} = \left(-e^{+}_{\mu}e^{+}_{\nu} - e^{+}_{\mu}e^{-}_{\nu} - e^{+}_{\nu}e^{-}_{\mu}\right)dx^{\mu}dx^{\nu} + rac{dr^{2}}{r^{2}},$$

with boundary conditions $e_{\mu}^{+} = r^{-2}e_{(0)\mu}^{+} + \dots, e_{\mu}^{-} = e_{(0)\mu}^{-} + \dots$

- Bulk SO(1,2) local Lorentz transformations that leave $e_{\mu}^{r} = r^{-1}\delta_{\mu}^{r}$ inert act on the boundary as Galilean boosts. [Hartong, Rollier, 2013]
- The chiral scaling follows from the boundary conditions.

Extension of the geometry in the bulk

- We add a space-like direction to form a bulk in a way that is conjugated to Newton-Cartan
 - ▶ The additional vielbein "behaves morally" like τ_{μ} , we form the combinations τ_{μ}^{\pm} .
 - ► The invariant degenerate metric is extended $g_{\mu\nu} = \tau^+_{\mu}\tau^-_{\nu} + \tau^+_{\nu}\tau^-_{\mu}$ and still satisfies $g_{\mu\nu}e^{\nu} = 0$.
- The symmetries are extended in a natural way
 - ▶ Two Galilean boosts acting on $(\tau^{\pm}_{\mu}, e_{\mu})$ respectively.
 - One relativistic boost acting on $(\tau_{\mu}^+, \tau_{\mu}^-)$ leaving e_{μ} invariant.
- We impose vanishing Galilean curvature and vanishing torsion on $g_{\mu
 u}$
 - > Weitzenböck connections are associated to the Galilean boosts.
 - A usual spin connection is associated to the relativistic boost.

• This allows us to solve for the space-time connection

$$\Gamma^{
ho}_{\mu
u}=rac{1}{2}g^{
ho\sigma}\left(\partial_{\mu}g_{
u\sigma}+\partial_{
u}g_{\mu\sigma}-\partial_{\sigma}g_{\mu
u}
ight)+e^{
ho}\partial_{\mu}e_{
u}\,,$$

where $g^{\mu
u} = au_{+}^{\mu} au_{-}^{
u} + au_{+}^{
u} au_{-}^{\mu}$.

- This connection satisfies $abla_{\mu}g_{
 u
 ho}=
 abla_{\mu}e^{
 u}=0$.
- The bulk splits into Riemannian/Weitzenböck parts.
- We would like to allow for non-trivial curvature in the Riemannian part $(g_{\mu\nu})$ and non-trivial torsion in the Weitzenböck part (e_{μ}) .

Outlook

- We constructed a new holographic framework to study WCFT's.
- Our framework can be expressed in terms of a Chern-Simons theory.
- For example, if we add a cosmological constant for $g_{\mu\nu}$ and consider vanishing torsion in the Weitzenböck part, the equations of motion become those of an $SL(2,\mathbb{R}) \times U(1)$ Chern-Simons theory.
- In contrast to higher spin Chern-Simons theories we do not have an sl(2, ℝ) ⊕ sl(2, ℝ) subalgebra.

Outlook

- The solutions to this theory will have $SL(2,\mathbb{R}) imes U(1)$ global isometries.
- We expect to recover the charges of the WCFT and to reproduce a Virasoro×Kac-Moody asymptotic symmetry group.
- Can this full holographic framework be embedded in a larger theory such as Topologically Massive Gravity or an other theory of gravity ?