"May I be excused for saying with banality that the forest hides the trees, for those who think that they disengage themselves from *atomistics* by the consideration of differential equations." "May I be excused for saying with banality that the forest hides the trees, for those who think that they disengage themselves from *atomistics* by the consideration of differential equations."

— Ludwig Boltzmann, Populäre Schriften (1905).

Exact Quantum Black hole entropy: a macroscopic window into quantum gravity

Sameer Murthy King's College London

The String Theory Universe Mainz, Sep 25, 2014

Black holes in string theory

Macroscopic

Bekenstein-Hawking '74

$$S_{\rm BH}^{\rm class} = \frac{A_H}{4\ell_{\rm Pl}^2} = \pi\sqrt{N}$$

Black holes in string theory are ensembles of microscopic excitations

Microscopic

Macroscopic

Strominger-Vafa '96

$$d_{\rm micro}(N) = e^{\pi\sqrt{N}} + \cdots (N \to \infty)$$

Bekenstein-Hawking '74

$$S_{\rm BH}^{\rm class} = \frac{A_H}{4\ell_{\rm Pl}^2} = \pi\sqrt{N}$$

Black holes in string theory are ensembles of microscopic excitations

Microscopic

Macroscopic

$$d_{\rm micro}(N) = e^{\pi\sqrt{N}} + \cdots (N \to \infty)$$

$$S_{\rm BH}^{\rm class} = \frac{\pi_H}{4\ell_{\rm Pl}^2} = \pi\sqrt{N}$$

$$\log d_{\rm micro} = S_{\rm BH}^{\rm class} + \cdots$$

Black holes in string theory are ensembles of microscopic excitations

Microscopic

Macroscopic

$$\log d_{\rm micro} = S_{\rm BH}^{\rm class} + \cdots \rightarrow S_{\rm BH}^{\rm quant}$$
 (finite N)

What is new? Finite size quantum effects!

$$S_{\rm BH}^{\rm quant} = \frac{1}{4}A + a_0 \log(A) + a_1 \frac{1}{A} + a_2 \frac{1}{A^2} + \cdots + b_1(A)e^{-A} + \cdots$$

What is new? Finite size quantum effects!

$$S_{\rm BH}^{\rm quant} = \frac{1}{4}A + a_0 \log(A) + a_1 \frac{1}{A} + a_2 \frac{1}{A^2} + \cdots + b_1(A)e^{-A} + \cdots$$

Questions

- 1. What is the physics of these corrections?
- 2. How to compute them in a concrete model?
- 3. Can we compare them to a similar expansion in the microscopic theory?

What is new? Finite size quantum effects!

$$S_{\rm BH}^{\rm quant} = \frac{1}{4}A + a_0 \log(A) + a_1 \frac{1}{A} + a_2 \frac{1}{A^2} + \cdots + b_1(A)e^{-A} + \cdots$$

Finite size corrections arise from quantum fluctuations in the black hole

Wald Entropy formalism

(c.f. talk of J. Camps)

- Obeys the first law of thermodynamics
- Extends Bekenstein-Hawking area law in GR
- Applicable to any *local* effective action of gravity
- Successfully applied to BH models in supergravity

(Cardoso, de Wit, Mohaupt '99)

Finite size corrections arise from quantum fluctuations in the black hole

Wald Entropy formalism

(c.f. talk of J. Camps)

- Obeys the first law of thermodynamics
- Extends Bekenstein-Hawking area law in GR
- Applicable to any *local* effective action of gravity
- Successfully applied to BH models in supergravity

(Cardoso, de Wit, Mohaupt '99)

We still need a good formalism to study Quantum BH entropy including non-analytic and non-local terms.

"If you want to study quantum gravity, then you better study AdS/CFT."

- R. Emparan, at lunch on Monday.

"If you want to study quantum gravity, then you better study AdS/CFT." - R. Emparan, at lunch on Monday. Note! Quantum gravity = 1/N effects.

Supersymmetric black holes develop a near-horizon AdS_2 factor

4d extremal Reissner-Nordstrom solution \implies near-horizon geometry $AdS_2 \times S^2$.

Bekenstein-Hawking-Wald entropy recast as a minimization problem. (Sen '05, c.f. attractor mechanism Ferrara, Kallosh, Strominger '95)

Quantum BH entropy is a functional integral over AdS_2 configurations (Sen '08)

$$\exp(S_{BH}^{qu}(q_I)) \equiv Z_{AdS_2}(q_I) = \left\langle \exp\left[-i\,q_I \oint A^I\right] \right\rangle_{AdS_2}^{reg}$$

Quantum BH entropy is a functional integral over AdS_2 configurations (Sen '08)

$$\exp(S_{BH}^{\mathrm{qu}}(q_I)) \equiv Z_{AdS_2}(q_I) = \left\langle \exp\left[-i\,q_I \oint A^I\right] \right\rangle_{\mathrm{AdS}_2}^{\mathrm{reg}}$$

- Boundary conditions fixed by classical BH configuration
- Logarithmic one-loop corrections can be computed. (Sen + Banerjee, Gupta, Mandal, '10-'14, c.f. talk of R. Gupta)

Dual theory for BPS BH is a collection of supersymmetric ground states

Dual CFT_1 obtained as IR limit of brane configuration that makes up the black hole.

In d=0+1, no space for long-wavelength fluctuations. $Z_{CFT_1}(q) = Tr_{\mathcal{H}(q)} 1 = d_{micro}(q).$

Set up for the QE functional integral

$$\exp(S_{BH}^{\mathrm{qu}}(q_I)) \equiv Z_{AdS_2}(q_I) = \left\langle \exp\left[-i\,q_I \oint A^I\right] \right\rangle_{\mathrm{AdS}_2}^{\mathrm{reg}} .$$

Supercharge Q with $Q^2 = L_0 - J_0$.

- \mathcal{M} : Field space of supergravity.
- $d\mu$: Measure on this field space.

Euclidean $\mathbf{AdS_2}\times\mathbf{S^2}$

- \mathcal{O} : Wilson line.
- $\ensuremath{\mathcal{S}}$: Action of graviton and other massless fields.

Localization

Witten '88, Duistermaat-Heckmann '82, Atiyah-Bott '84, Pestun '07

An integral of a Q-invariant operator \mathcal{O}

$$I := \int_{\mathcal{M}} d\mu \, \mathcal{O} \, e^{-\mathcal{S}} \, .$$

localizes onto the submanifold \mathcal{M}_Q of solutions of the off-shell BPS equations $Q\,\Psi=\!0$

$$I = \int_{\mathcal{M}_Q} d\mu_Q \,\mathcal{O} \, e^{-\mathcal{S}}$$

•

How to compute the functional integral

(A.Dabholkar, J.Gomes, S.M. '10, '11, '14)

- 1. Formalism: N=2 off-shell supergravity. (de Wit, van Holten, Van Proeyen '80)
- 2. Find all solutions of localization equations $Q \Psi = 0$, subject to $AdS_2 \times S^2$ boundary conditions. (R.Gupta, S.M. '12)
- Evaluate action on these solutions (including all higher derivative terms). Compute the measure.
- 4. Only chiral-superspace integrals in the action contribute. These are exactly known in string theory. (V.Reys, S.M. '13)

Prototype: N=8 string theory in 4d (macro) (Cremmer, Julia '78)

Macroscopic description: d=4 supergravity coupled to 28 U(1) gauge fields + superpartner scalars + fermions.

1/8 BPS dyonic BH solutions. (Cvetic, Youm '96)

BH Charges (q_I, p^I) Quartic U-duality invariant N(q, p)

Classical BH Entropy $S_{BH} = \pi \sqrt{N} + \cdots$

Prototype: N=8 string theory in 4d (macro) (Cremmer, Julia '78)

Macroscopic description: d=4 supergravity coupled to 28 U(1) gauge fields + superpartner scalars + fermions.

1/8 BPS dyonic BH solutions. (Cvetic, Youm '96)

BH Charges (q_I, p^I) Quartic U-duality invariant N(q, p)

Classical BH Entropy $S_{BH} = \pi \sqrt{N} + \cdots$

Microscopic degeneracies $d_{\rm micro}(N)$ computed using representation as D1-D5-P-K system in Type II string theory. (Maldacena, Moore, Strominger '99)

Evaluation of the functional integral

- Truncation of N=8 to N=2 theory with 7 vector multiplets.
- QG path integral reduces to an 8-dimensional integral.
- 7 of the integrals are Gaussian.

Evaluation of the functional integral

- Truncation of N=8 to N=2 theory with 7 vector multiplets.
- QG path integral reduces to an 8-dimensional integral.
- 7 of the integrals are Gaussian.

$$e^{S_{BH}^{qu}}(N) = \int \frac{d\sigma}{\sigma^{9/2}} \exp\left(\sigma + \pi^2 N/4\sigma\right) = \tilde{I}_{7/2}(\pi\sqrt{N})$$

A quantitative test

Ν	$d_{\rm micro}(N)$	$\exp(S^{\rm cl}({\rm N}))$
3	8	230.76
4	12	535.49
7	39	4071.93
8	56	7228.35
	152	33506.14
12	208	53252.29
15	513	192400.81
•••	•••	•••
10^5	exp(295.7)	exp(314.2)

 $\log(d_{\text{micro}}) \xrightarrow{\Delta \to \infty} S_{BH}^{\text{cl}}$.

A quantitative test

(A.Dabholkar, J.Gomes, S.M. '11)

Ν	$d_{\rm micro}(N)$	$\exp(S^{\mathrm{qu}}(\mathbf{N}))$	$\exp(S^{\rm cl}({\rm N}))$
3	8	7.97	230.76
4	12	12.2	535.49
7	39	38.99	4071.93
8	56	55.72	7228.35
	152	152.04	33506.14
12	208	208.45	53252.29
15	513	512.96	192400.81
•••	•••	•••	•••
10^5	exp(295.7)	exp(295.7)	exp(314.2)

 $d_{\rm micro}(\Delta) = e^{S_{BH}^{\rm qu}(\Delta)} \left(1 + O(e^{-\pi\sqrt{\Delta}/2})\right)$

For the experts..

- D-terms, one-loop determinants (partial progress).
- Addition of hypermultiplets, gravitini mutiplets,
- Sub-leading saddle points (partial progress).

- Extension to higher dimensional black holes (partial progress).
- Extension to higher dimensional AdS/CFT (partial progress).
- Other observables in quantum gravity.

Conclusions and outlook

- Finite size effects in BH thermodynamics can be computed.
- Localization methods give us convergent perturbation expansions for the quantum gravity partition function.
- Emergence of quantum structure from continuum gravity, inclusion of sub-leading saddle points are important.

 Effective low-energy theory provides strong constraints on quantum theory of gravity.

Why does this work so well?

The Fourier series of the microscopic degeneracies

$$Z(\tau) \equiv \sum_{N} d_{\text{micro}}(N) \ e^{2\pi i N \tau} = \theta(\tau) / \eta(\tau)^{6}$$

is a modular form.

Strong-weak coupling symmetry: $Z(-1/\tau) = \tau^{5/2}Z(\tau)$

Exact formula for degeneracies

Hardy-Ramanujan-Rademacher expansion

$$d_{\text{micro}}(N) = \sum_{c=1}^{\infty} c^{-9/2} K_c(N) \widetilde{I}_{7/2} \left(\frac{\pi \sqrt{N}}{c}\right)$$
$$= \widetilde{I}_{7/2} (\pi \sqrt{N}) + O(e^{-\pi \sqrt{N}/2})$$

Exact formula for degeneracies

Hardy-Ramanujan-Rademacher expansion

$$\begin{split} d_{\rm micro}(N) &= \sum_{c=1}^{\infty} c^{-9/2} \, K_c(N) \, \widetilde{I}_{7/2} \left(\frac{\pi \sqrt{N}}{c}\right) \\ &= \widetilde{I}_{7/2} (\pi \sqrt{N}) + O(e^{-\pi \sqrt{N}/2}) \\ &= e^{\pi \sqrt{N}} \left(1 - \frac{15}{4} \log N + O(\frac{1}{N})\right). \end{split}$$

Exact formula for degeneracies

Hardy-Ramanujan-Rademacher expansion

$$d_{\text{micro}}(N) = \sum_{c=1}^{\infty} c^{-9/2} K_c(N) \widetilde{I}_{7/2} \left(\frac{\pi \sqrt{N}}{c}\right)$$

= $\widetilde{I}_{7/2}(\pi \sqrt{N}) + O(e^{-\pi \sqrt{N}/2})$ Orbifolds of AdS₂
= $e^{\pi \sqrt{N}} \left(1 - \frac{15}{4} \log N + O(\frac{1}{N})\right)$. (A.Dabholkar, J.Gomes, S.M. arXiv:1404.0033)
Bekenstein-Hawking One-loop corrections

Mock modular forms provide the answer

(A.Dabholkar, S.M., D.Zagier '12)

These functions were described by Ramanujan, who gave a list of examples, but did not give a definition!

Their definition and structural properties were finally understood by S. Zwegers in 2000.

Mock modular forms provide the answer

(A.Dabholkar, S.M., D.Zagier '12)

These functions were described by Ramanujan, who gave a list of examples, but did not give a definition!

Their definition and structural properties were finally understood by S. Zwegers in 2000.

Surprisingly, this is exactly what we need to solve the BH wall-crossing problem.

For the N=4 theory, we could solve it fully (based on formula due to Dijkgraaf, Verlinde, Verlinde '96), and explicitly compute the partition function of a single BH as a function of its charges.

What is the partition function of a singlecentered black hole?

We have a canonical decomposition of the partition function:

$$Z_{\rm micro}(\tau) = Z_{\rm BH}(\tau) + Z_{\rm multi}(\tau)$$

- $Z_{\text{multi}}(\tau)$ contains all the wall-crossing information.
- $Z_{\rm BH}(\tau)$ is the partition function of the single centered BH. It is a mock modular form.

One can now use modular symmetry to make Rademacher expansions as before. (e.g. Manschot, Bringmann '13).

Many new explorations have opened up as a result. e.g. Large discrete symmetry groups (moonshine) of BHs in string theory (J. Harvey, S.M. '13)