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Exact Quantum Black hole entropy:
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What is new? Finite size quantum effects!

1. What is the physics of these corrections?

2. How to compute them in a concrete model?

3. Can we compare them to a similar  
    expansion in the microscopic theory?

Questions
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Mock modular forms

Exact AdS/CFT
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Finite size corrections arise from quantum 
fluctuations in the black hole

•Extends Bekenstein-Hawking area law in GR

•Obeys the first law of thermodynamics
Wald Entropy formalism

•Applicable to any local effective action of gravity

(Cardoso, de Wit, Mohaupt ’99)
•Successfully applied to BH models in supergravity

(c.f. talk of J. Camps)
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fluctuations in the black hole

•Extends Bekenstein-Hawking area law in GR

We still need a good formalism to  
study Quantum BH entropy including  
non-analytic and non-local terms.

•Obeys the first law of thermodynamics
Wald Entropy formalism

•Applicable to any local effective action of gravity

(Cardoso, de Wit, Mohaupt ’99)
•Successfully applied to BH models in supergravity

(c.f. talk of J. Camps)



“If you want to study quantum gravity, 
then you better study                  .”AdS/CFT

— R. Emparan, at lunch on Monday.
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— R. Emparan, at lunch on Monday.

Quantum gravity = 1/N effects.
Note! 



Supersymmetric black holes develop a     
near-horizon           factorAdS2

r

L0

Euclidean AdS2 � S2

J0

4d extremal Reissner-Nordstrom solution  
        near-horizon geometry  AdS2 � S2 .

Bekenstein-Hawking-Wald entropy recast as a minimization 
problem. (Sen ’05, c.f. attractor mechanism Ferrara, Kallosh, Strominger ’95)



Quantum BH entropy is a functional integral 
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Quantum BH entropy is a functional integral 
over          configurationsAdS2 (Sen ’08)

exp(Squ
BH(qI)) ⇥ ZAdS2(qI) =
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exp
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AI

⇥⌅reg

AdS2

• Boundary conditions fixed by classical BH configuration 

• Saddle point evaluation         classical Wald entropy

• Logarithmic one-loop corrections can be computed.
(Sen + Banerjee, Gupta, Mandal, ’10-’14, c.f. talk of R. Gupta)



Dual theory for BPS BH is a collection of 
supersymmetric ground states

Dual           obtained as IR limit of brane configuration 
that makes up the black hole.

CFT1

AdS/CFT correspondence 
� ZAdS2(q) = dmicro(q)

In d=0+1, no space for long-wavelength fluctuations.
ZCFT1(q) = TrH(q) 1 = dmicro(q) .



 Supercharge    with Q2 = L0 � J0 .Q

Set up for the QE functional integral

exp(Squ
BH(qI)) ⇥ ZAdS2(qI) =

⇤
exp

�
� i qI

⇧
AI

⇥⌅reg

AdS2

.

L0

Euclidean AdS2 � S2

J0: Field space of supergravity.M
dµ : Measure on this field space.

O : Wilson line.
S : Action of graviton and other massless fields.



Localization Witten ’88, Duistermaat-Heckmann ’82,   
Atiyah-Bott ’84,   Pestun ’07

Q�An integral of a       invariant operator    O

I :=
�

M
dµO e�S .

localizes onto the submanifold         of solutions of the off-
shell BPS equations             

MQ

Q� =0

I =
�
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How to compute the functional integral 
(A.Dabholkar, J.Gomes, S.M. ’10, ’11, ’14)

3. Evaluate action on these solutions (including all higher 
    derivative terms). Compute the measure. 

1. Formalism: N=2 off-shell supergravity. (de Wit, van Holten,  
           Van Proeyen ’80)

2. Find all solutions of localization equations               ,  
    subject to                  boundary conditions.AdS2 � S2 (R.Gupta, S.M. ’12)

Q = 0

4. Only chiral-superspace integrals in the action contribute.  
    These are exactly known in string theory.  (V.Reys, S.M. ’13)



Prototype: N=8 string theory in 4d (macro)

Classical BH Entropy SBH = �
�

N + · · ·

Macroscopic description: d=4 supergravity coupled to  
28 U(1) gauge fields + superpartner scalars + fermions.

(Cremmer, Julia ’78)

BH Charges 

1/8 BPS dyonic BH solutions. (Cvetic, Youm ’96)

Quartic U-duality invariant  N(q, p)(qI , p
I)
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Classical BH Entropy SBH = �
�
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Macroscopic description: d=4 supergravity coupled to  
28 U(1) gauge fields + superpartner scalars + fermions.

(Cremmer, Julia ’78)

BH Charges 

1/8 BPS dyonic BH solutions. (Cvetic, Youm ’96)

Quartic U-duality invariant  N(q, p)

Microscopic degeneracies                 computed using 
representation as D1-D5-P-K system in Type II  
string theory.

dmicro(N)

(Maldacena, Moore, Strominger ’99)

(qI , p
I)



Evaluation of the functional integral 

• QG path integral reduces to an 8-dimensional integral. 

• 7 of the integrals are Gaussian.

• Truncation of N=8 to N=2 theory with 7 vector multiplets.



Evaluation of the functional integral 

• QG path integral reduces to an 8-dimensional integral. 

• 7 of the integrals are Gaussian.
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• Truncation of N=8 to N=2 theory with 7 vector multiplets.
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3 8 7.97 230.76

4 12 12.2 535.49

7 39 38.99 4071.93

8 56 55.72 7228.35

11 152 152.04 33506.14

12 208 208.45 53252.29

15 513 512.96 192400.81

... ... ... ...

exp(295.7) exp(295.7) exp(314.2)105

A quantitative test (A.Dabholkar, J.Gomes, S.M. ’11)
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For the experts..

• D-terms, one-loop determinants (partial progress).  

• Extension to higher dimensional AdS/CFT 
(partial progress). 

• Sub-leading saddle points (partial progress).

• Addition of hypermultiplets, gravitini mutiplets,         

•Other observables in quantum gravity. 

• Extension to higher dimensional black holes 
(partial progress). 



Conclusions and outlook

•Finite size effects in BH thermodynamics can be computed.

•Localization methods give us convergent perturbation 
expansions for the quantum gravity partition function. 

•Emergence of quantum structure from continuum gravity, 
inclusion of sub-leading saddle points are important. 

•Effective low-energy theory provides strong constraints on 
quantum theory of gravity. 



Z(⇤) �
�

N

dmicro(N) e2�iN⇥ = ⇥(⇤)/�(⇤)6

Why does this work so well?

Z(�1/�) = �5/2Z(�)Strong-weak coupling symmetry:

SL2(Z)
� � � + 1
� ⇥ �1/� .

Modular symmetry 
          group

Highly constraining

The Fourier series of the microscopic degeneracies

is a modular form.   



Hardy-Ramanujan-Rademacher expansion 

Exact formula for degeneracies
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Orbifolds of 
AdS2

(A.Dabholkar,  
J.Gomes, S.M.   
arXiv:1404.0033)
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Wall-crossing and BH phase transitions

ΔS

N

Serious problem: throwing out multi-
centered BHs destroys the modular 
symmetry. (Denef-Moore 2007) 
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Mock modular forms provide the answer
(A.Dabholkar, S.M., D.Zagier ’12)

These functions were described by Ramanujan, who gave a 
list of examples, but did not give a definition! 

Their definition and structural properties were finally 
understood by S. Zwegers in 2000. 



Mock modular forms provide the answer
(A.Dabholkar, S.M., D.Zagier ’12)

These functions were described by Ramanujan, who gave a 
list of examples, but did not give a definition! 

Their definition and structural properties were finally 
understood by S. Zwegers in 2000. 

Surprisingly, this is exactly what we need to solve the BH 
wall-crossing problem.

For the N=4 theory, we could solve it fully (based on formula due to 

Dijkgraaf, Verlinde, Verlinde ’96), and explicitly compute the partition 
function of a single BH as a function of its charges. 



We have a canonical decomposition of the partition function:

•                contains all the wall-crossing information.

•              is the partition function of the single centered BH.  
   It is a mock modular form.

Zmulti(�)

ZBH(�)

Zmicro(�) = ZBH(�) + Zmulti(�)

What is the partition function of a single-
centered black hole?

One can now use modular symmetry to make Rademacher 
expansions as before. 

Many new explorations have opened up as a result.  
e.g.  Large discrete symmetry groups (moonshine) of  
BHs in string theory (J. Harvey, S.M. ’13)

(e.g. Manschot, Bringmann ’13).


