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Intro Field theory Microscopics Torsion The Wilderness Conclusions

What is duality?
Duality comes in two flavors:

Exact duality: The same quantum theory has various
different descriptions, which become tractable in different
regions of parameter space:

AdS/CFT
T-duality and mirror symmetry
IIB/N = 4 (Montonen-Olive) S-duality

Seiberg (IR) duality: Various different UV theories flow to
the same IR fixed point. For example, it may happen that one
description becomes strongly coupled in the IR (confining
description) while a dual description becomes free in the IR
(confined description).

In many (but not all) cases we can explicitly identify various dual
perturbative descriptions of the same theory. In some cases we can

only identify dual descriptions of the IR fixed points.
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dualities in a large class of N = 1 theories.
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Montonen-Olive N = 4 duality

Given a 4d N = 4 field theory with gauge group G and gauge
coupling τ = θ + i/g2, there is a completely equivalent description
with gauge group G∨ and coupling −1/τ (for θ = 0 this is
g ↔ 1/g). Examples:

G G∨

U(1) U(1)
U(N) U(N)
SU(N) SU(N)/ZN

SO(2N + 1) Sp(2N)

Very non-perturbative duality, exchanges gauge bosons with
monopoles! (So, the usual field theory tools are not particularly
illuminating here.)
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Field theories from solitons

If we want to construct four dimensional
field theories from string theory, we
want solitons with a four dimensional
core. These can be constructed in type
IIB string theory via D3 branes.

We also have that g24d = gs.
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Field theories from solitons

Key idea
Since the resulting theory is determined by the geometry, one can
determine robust results without knowing much of the dynamical

details of the duality acting on the core of the soliton.

One just needs to know how the duality acts at infinity (which is
just the simple action on IIB).

We then reconstruct the dual theory as that living in the soliton
with the right (dual) charge as infinity.
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The duality as seen from string theory
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Montonen-Olive duality from string theory

Just “engineer” the field theory one wants in string theory, and
apply the IIB S-duality dictionary to the construction.

For example, N = 4 U(N) theory is the low energy description of
N D3s on flat space. Using the duality dictionary, one gets
U(N)∨ = U(N). (g2YM = gs)

More interestingly, SO(2N + 1) is the low energy theory for 2N

D3s on top of a Õ3−. Applying the duality dictionary, this is 2N
D3s on top of a O3+, which at low energies gives
SO(2N + 1)∨ = Sp(2N).

Beautiful field theory insights follow trivially from the duality
dictionary. For example, the gauge boson! monopole map
follows easily from the F1! D1 duality dictionary entry.
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D3s on top of a Õ3−. Applying the duality dictionary, this is 2N
D3s on top of a O3+, which at low energies gives
SO(2N + 1)∨ = Sp(2N).

Beautiful field theory insights follow trivially from the duality
dictionary. For example, the gauge boson! monopole map
follows easily from the F1! D1 duality dictionary entry.



Intro Field theory Microscopics Torsion The Wilderness Conclusions

Montonen-Olive duality from string theory

Just “engineer” the field theory one wants in string theory, and
apply the IIB S-duality dictionary to the construction.

For example, N = 4 U(N) theory is the low energy description of
N D3s on flat space. Using the duality dictionary, one gets
U(N)∨ = U(N). (g2YM = gs)

More interestingly, SO(2N + 1) is the low energy theory for 2N
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Montonen-Olive duality from string theory
There are four versions of the O3 plane in string theory,
distinguished by discrete RR and NSNS 2-form fluxes B2, C2 in
the transverse space: [Witten:hep-th/9805112]

H3(S5/Z2, Z̃) = Z2 .

(0, 0) : O3− +N D3s −→ SO(2N)

(0, 1) : Õ3− +N D3s −→ SO(2N + 1)

(1, 0) : O3+ +N D3s −→ USp(2N)

(1, 1) : Õ3+ +N D3s −→ USp(2N)

IIB SL(2,Z) exchanges the configurations.

Under S-duality

Õ3− ←→ O3+ : SO(2N + 1)←→ USp(2N)
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Beyond N = 4

Montonen-Olive is defined for N = 4, but IIB S-duality is believed
to hold in general. Can we get some mileage out of this?

New N = 1 dualities
Engineer certain N = 1 theories in IIB, develop the S-duality

dictionary as needed, and read the effect of strong/weak duality on
N = 1 theories.
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Duality engineering
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Orientifolding C3/Z3
Orbifolding N = 4 duality

Consider the orientifold action with generators {R, I Ω(−1)FL}:
R : (x, y, z) −→ (ωx, ωy, ωz)

I : (x, y, z) −→ (−x,−y,−z)
with ω = exp(2πi/3).

1

23
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A proposed N = 1 duality

USp(Ñ + 4) SU(Ñ) SU(3) U(1)R Z3

Ai 2
3 − 2

Ñ
1

Bi 1 2
3 + 4

Ñ
−2

(here Ñ ∈ 2Z) is dual to

SO(N − 4) SU(N) SU(3) U(1)R Z3

Ai 2
3 + 2

N 1

Bi 1 2
3 − 4

N −2

in both cases with W = 1
2εijkTrAiAjBk.

Global anomalies, the moduli spaces and the spectrum of operators

match if Ñ = N − 3 . (As far as we have been able to check so far.)
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Superconformal index matching
A very powerful and refined indicator of duality comes from putting the
theory on S3 × R, and computing the index [Di Pietro, Martelli]
[Romelsberger:hep-th/0510060,0707.3702],
[Kinney, Maldacena, Minwalla, Raju:hep-th/0510251]:

I(t, x, f) =

∫
dgTr (−1)F e−βHtRx2J3fg , (1)

with 2H = {Q,Q†}. Romelsberger gave a procedure for computing the
index from weak coupling quantities. Start with the “letter”:

iT (t, x, g, f) =
(2t2 − t(x+ x−1))χAdj(g)

(1− tx)(1− tx−1)

+

∑
i

(
triχRi

G
(g)χRi

F
(f)− t2−riχ

Ri
G

(g)χ
Ri

F

(f)
)

(1− tx)(1− tx−1)
.

and then take the plethystic exponential:

IT (t, x, f) =

∫
dg exp

[ ∞∑
k=1

1

k
iT (tk, xk, gk, fk)

]
.
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Superconformal index matching
For SO(3)× SU(7)↔ USp(8)× SU(4) we get:

ISO/USp(t, x, f) = 1 + t
2
3

[
χ0,2(f) + χ4,0(f)

]
+ t

4
3

[
2χ0,4(f) + 2χ2,0(f) + χ3,1(f) + 2χ4,2(f) + χ8,0(f)

]
+ t

5
3 (x+ x−1)

[
χ0,2(f) + χ4,0(f)

]
+ t2

[
3χ0,6(f) + χ12,0(f) + χ1,4(f) + 5χ2,2(f) + 3χ3,3(f)

+ 2χ4,1(f) + 3χ4,4(f) + χ5,2(f) + 4χ6,0(f) + χ6,3(f)

+ χ7,1(f) + 2χ8,2(f) + 4
]

+ . . .

We have checked up to order t11/3 for this value of N , higher
orders for other values of N , and to all orders in the large N limit:

A conjecture about elliptic hypergeometric functions
(See Spiridonov et al.)

IUSp = ISO
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Stringy interpretation

Forgetting the change in rank, this seems to be essentially a
SO ↔ USp duality, as in N = 4 under S-duality.

What is going on microscopically?
Why the change in rank? (Ñ = N − 3)
Can we derive the duality from the known properties of IIB
under S-duality?
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Can we derive the duality from the known properties of IIB
under S-duality?



Intro Field theory Microscopics Torsion The Wilderness Conclusions

1 Introduction

2 A new duality

3 Microscopic description of C3/Z3

4 A torsion argument

5 Into the Wilderness

6 Conclusions



Intro Field theory Microscopics Torsion The Wilderness Conclusions

Branes at singularities as large volume objects

We can think of the fractional branes at the singularity as large
volume D-branes continued to small volume, receiving strong α′

corrections.

These α′ corrections affect the conditions for supersymmetry, and
the masses of states, but we can still think of the object in large
volume terms, and compute the chiral spectrum in that picture.
[Douglas:hep-th/0011017]
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Compact C3/Z3 orientifold

Ω[1]

O(−2)[2]O(−1)[0]

The three branes become mutually supersymmetric at B = J = 0.
[Aspinwall:hep-th/0403166]

The branes are exchanged exactly as predicted by
[Diaconescu,Garcia-Raboso,Karp,Sinha:hep-th/0606180].
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O7+ at strong coupling

We need to understand the strongly coupled limit of the O7+ in
flat space. In F-theory, the O7+ is given by a (frozen) singularity
with D8 monodromy. [Witten:hep-th/9712028]

Such a monodromy can be achieved by considering a BCA8 system,
where A is a (1, 0) 7-brane (a D7), B a (1, 1) 7-brane, and C a (1,−1)
7-brane.

Under S-duality, this configuration becomes CBX8
(0,1). We want to

describe this as a O7− plane plus other 7-branes.
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O7+ at strong coupling

S-duality

O7+ ←→ O7− + 4A+ 4X(0,1)

USp(Ñ + 4)× SU(Ñ)←→ SO(Ñ − 1)× SU(Ñ + 3)
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Discrete torsion argument for N = 4

Recall the N = 4 case: O3± +D3 s. [Witten:hep-th/9805112] The
charge of the system is classified by the cohomology on the
S5/Z2 = RP5 that surrounds the configuration. For fields even under the
orientifold action, we have:

H•(RP5,Z) = {Z, 0,Z2, 0,Z2,Z} ,

while for fields odd under the orientifold action:

H•(RP5, Z̃) = {0,Z2, 0,Z2, 0,Z2} .

This is (co)homology with local coefficients. Working on the S5 covering
space k ⊗ C ' γk ⊗ γC. For coefficients in Z we have γk = k while for
coefficients in Z̃ we have γk = −k. Ordinary (co)homology theory
otherwise: H• = ker ∂/ im ∂.
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Discrete torsion argument for N = 4
In particular, H3 = dBNSNS and F3 = dC2 belong to
H3(RP5, Z̃) = Z2, classifying the orientifold types.
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The C3/Z3 orbifold
We did the computation for the orientifold of C3/Z3, with horizon
manifold X = RP5/Z3 ∼ (S5/Z3)/Z̃2.

It is easier to work in homology and use Poincare duality

H i(X, Z̃) = Hdim(X)−i(X, Z̃) .

We are thus looking for elements of H2(X, Z̃). Can be conveniently
computed using a long exact sequence: [Hatcher]

. . . Hi(X, Z̃) Hi(Y,Z) Hi(X,Z)

Hi−1(X, Z̃) Hi−1(Y,Z) Hi−1(X,Z) . . .

pi∗

pi−1
∗

H•(X, Z̃) = {Z2, 0,Z2, 0,Z2, 0}

22 = 4 choices of torsion =⇒ SL(2,Z) singlet plus triplet.
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Generalization to other orbifolds

The proposal generalizes straightforwardly to C3/Zn singularities,
as long as the singularity is isolated (so n ∈ 2Z + 1). Everything
works beautifully in these cases too.
[Bianchi,Inverso,Morales,Pacifi:1307.0466], [I.G.-E., Heidenreich,
Wrase:1307.1701]

What lies beyond susy orbifolds?
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General case
By a computation in algebraic topology one can see that for a toric
O3/O7 orientifold of a toric CY3 cone, with

k sides
isolated conical singularity of the cone
fixed points of the orientifold only at the conical singularity

H3(X, Z̃) = Zk−2
2

For example, for CC(dP1) = CR(Y 2,1)

H3
(
Y 2,1/Z2, Z̃

)
= Z2 ⊕ Z2

so there are 22·2 = 16 orientifold types:
1 SL(2,Z) singlet, 3 triplets, 1 sextet.
 10 different weakly coupled limits.
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Orientifold phases for dP1

More graphically, the duality structure of these theories can be
depicted as

[F ]

[H] ⌧ ! �1/⌧

⌧ ! ⌧ + 1

Our task is to map the dots to theories!
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Known orientifolds of dP1

The previously known orientifolds for branes at the dP1 singularity
can be obtained via dimer methods
[Franco,Hanany,Krefl,Park,Uranga,Vegh:0707.0298]
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Known orientifolds of dP1

Anomaly and SCI matching tell us that theories IA and IB are dual
to each other iff N is odd (and N = Ñ + 2). Furthermore,
partially resolving dP1 → C3/Z3 + C3 allows us to read where the
type I orientifolds are located in the torsion diagram:

? ? ? ?

IB− IB+ IB− IB+

IA− IA− IA+ IA+

? ? ? ?

S

(Sign = −(−1)N )



Intro Field theory Microscopics Torsion The Wilderness Conclusions

Known orientifolds of dP1

Anomaly and SCI matching tell us that theories IA and IB are dual
to each other iff N is odd (and N = Ñ + 2). Furthermore,
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New orientifolds from “inconsistent” tilings

Where are the missing theories?

Here is a first proposal for a class of theories describing the IR of
the missing theories:

1 Start from an inconsistent tiling of dP1.
[Davey,Hanany,Pasukonis:0909.2868]

2 Not really known to be inconsistent, maybe just subtle. (Negative
a-maximized R-charges.) Orientifolding an inconsistent theory can
give a consistent theory. (R charges consistent with unitarity
bounds.)

3 Looking to the classification in [0909.2868] we find an “inconsistent”
tiling that admits an involution.
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Here is a first proposal for a class of theories describing the IR of
the missing theories:

1 Start from an inconsistent tiling of dP1.
[Davey,Hanany,Pasukonis:0909.2868]

2 Not really known to be inconsistent, maybe just subtle. (Negative
a-maximized R-charges.) Orientifolding an inconsistent theory can
give a consistent theory. (R charges consistent with unitarity
bounds.)

3 Looking to the classification in [0909.2868] we find an “inconsistent”
tiling that admits an involution.
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New orientifolds from “inconsistent” tilings
The candidate from [Davey,Hanany,Pasukonis:0909.2868]:

3

1 2

4 5

This almost works, but we need to add some flavors to make the IR
physics match with the predictions of duality. We denote this theory
(with flavors) as Phase II.
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New orientifolds from deconfinement

One can generalize the procedure in
[Davey,Hanany,Pasukonis:0909.2868] by reinterpreting it in terms of
deconfinement [Berkooz:hep-th/9505067].

Schematically, if we have a theory with a two index representation, such
as , , or ( , ) we can view this rep as being the meson of a confining
theory, and work directly with the confining theory.

Combining this with Seiberg duality, we find a number of new IR
equivalent descriptions of the same quiver, which admit orientifold
involutions. We have identified, in addition to phase II before, also a
phase III with the right duality properties.
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New orientifolds from deconfinement

III+ III− III− III+

IB− IB+ IB− IB+

IA− IA− IA+ IA+

II++ II−− II−+ II+−

Perfect agreement between SCIs, agrees with partial resolution, etc.
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Conclusions

We find very strong evidence for the existence of an extension
of Montonen-Olive duality to interesting N = 1 theories:
non-conformal, chiral, . . .
The best understood cases are isolated orientifolds of orbifolds,
and some of the non-orbifold theories.
We find evidence for the existence of a large class of hitherto
unknown N = 1 theories for orientifolded singularities.
For some of these more involved theories we can construct a
description of the IR fixed point, but not yet of the UV theory
(which must, nevertheless, exist, but it may be intrinsically
non-perturbative).



Vielen
Dank!
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