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Gauged Supergravities

• Consistent truncations of higher dim. models
Solution generation, test of compactification schemes, 
Black Holes physics & AdS/CFT||CMT, …

• e.g. 11d sugra on S7 → N=8 SO(8) gauged supergravity:  
AdS4xS7, physics of M2 branes, deformations of ABJ(M)

• Extended SUSY → relation with U-dualities of String/M-theory
U-dualities in gauged sugra turn on ‘non-geometric fluxes’

• Challenge/guide study of generalised geometry / ‘non-geometry’

Gianluca Inverso, Mainz 2014
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‘Symplectic deformations’

• SO(8) gauged N=8 sugra is not unique! ‘ω deformation’

Challenge for uplift: Generalised Geometry,  Exceptional Field Theory,…? 
[de Wit, Nicolai; Godazgar Godazgar Nicolai; Lee, Strickland-Constable, Waldram; Hohm, Samtleben; 

Aldazabal, Grana, Marques, Rosabal; … ]

Challenge for 3d dual: 
~ ABJ(M) with N=8 susy,  large-N parity breaking, residual em dualities

• Similar deformations for many other models, not only N=8! 

de Roo–Wagemans, 
some N=2 truncations of SO(8) → extra tools in lower N?
some N=2 truncations of SO(8) → Black holes, domain walls, …

• Confusion on non-triviality, range, discrete duality symmetries

A correct understanding is crucial to discuss uplifts/3d duals

[Dall’Agata, GI, Trigiante]

Still today!

Gianluca Inverso, Mainz 2014



‘Symplectic deformations’

Can we precisely characterize ‘ω-like’ deformations 
for general Ggauge, N≤8?

Gianluca Inverso, Mainz 2014



Plan

• Review: inequivalent SO(8) gauged maximal supergravities

• Symplectic deformations for general gaugings

Gianluca Inverso, Mainz 2014



A D V I S O R Y
P A R E N T A L

CONTAINS EMBEDDING TENSOR



SO(8) gauged maximal supergravities

11D Supergravity

Maximal D=4 Supergravity
SO(8) Gauge Group

[De Wit, Nicolai ‘80s]

Expectation: unique
Surprise: there’s ∞-ely many!!

[Dall’Agata, GI, Trigiante ’12]

(AdS4 x) S7

AdS4/CFT3; ABJ(M)

‘Top-Down’ AdS/CMT 

Test for our understanding 
 of compactifications!

Gianluca Inverso, Mainz 2014



What is an ‘ω-deformation’ of the de Wit–Nicolai theory?

An SL(2,R) twist of the E7(7)/SU(8) coset reprs V(Φ):

SO(8) gauged maximal supergravities

SL(2,R) 6⇢ E7(7)

V(�) �!
�
a b
c d

�
V(�)

By change of symplectic frame, 
equivalent to e.m. rotation of vector fields in gauge connection:

Dµ ⌘ @µ � g
�
cos!AAB

µ + sin!A(dual)

µAB

�
tSO(8)

AB

…plus rescalings of gauge coupling and constant θ-term
Z

TrF ^ F

[Dall’Agata, GI, Marrani]

[Dall’Agata, GI, Trigiante]
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Physical effects: AdS4 vacua

ω = 0 ω = π/8

SO(8) N=8: AdS4 x S7 SO(8) N=8: AdS4 x ...‘S7’?

V(φ) V(φ)

[Dall’Agata, GI, Trigiante][de Wit, Nicolai;  Warner]

Further: vacua, domain walls, black holes, … [Borghese Dibitetto Guarino Roest  Varela’12; Dall’Agata GI ’12;
 Guarino’13; Varela Tarrio’13; Anabalon Astefanesei’13]



Discrete dualities/identifications

CRUCIAL: range of ω-parameter

How can I figure it out a priori, and/or for other Ggauge?

Some confusion in the literature: parity? triality?

More confusion: N<8 truncations, meaning of ω

subgroups of E
7(7)

. Similarly to the SO(8) gaugings, all other G
gauge

⇢ SL(8,R) are defined by
two matrices ✓

AB

, ⇠AB with in the 360 and 36 of SL(8,R) [35, 36, 34]. The embedding tensor
reads

⇥
AB

C

D

= �C
[A

✓
B]D

, ⇥ABC

D

= �[A
D

⇠B]C , (5.1)

and the consistency constraints impose ✓
AC

⇠CB / �B
A

or ✓
AC

⇠CB = 0. The deformations of the
gauge connections that we are going to discuss in the next sections can be always interpreted in
terms of an ! parameter ‘rotating’ ✓ and ⇠, as in the SO(8) case:

✓
AB

! cos! ✓
AB

, ⇠AB ! sin! ⇠AB. (5.2)

Similar expressions for the SU⇤(8) case, in terms of tensors in the 36 and 36 irreps, can be
defined. We will show that the range of the ! parameter, when it is allowed, can be very
different from model to model.

Before embarking ourselves in this task, however, we may ask whether another well-known
class of gaugings of maximal D = 4 supergravity admits such deformations: the Scherk–Schwarz
and Cremmer–Scherk–Schwarz gaugings (CSS for brevity) [37–39]. The formalism of equations
(2.4), with t

r

defined in terms of the four CSS mass parameters as explained in [39], allows to
quickly identify the space S

red

of deformations of the gauge connection. Unfortunately, we find
that for the CSS models no such deformation exists, as the connection #

M

r is unique up to the
obvious overall rescaling, which is itself a modulus of the theory. Therefore, the full S space of
the CSS gaugings consists exclusively of deformations of the ✓-angle of the gauged U(1) vector
field and of a large set of symplectic redefinitions of the ungauged ones.

5.1 SO(p, q) gaugings

The S space for the non-compact forms of SO(8) can be derived by analytic continuation of
the SO(8) theories. Most of the analysis of Section 4 is unchanged, only with the off-diagonal
blocks of the matrices in (4.21–4.23) being proportional to the Cartan–Killing invariant form
⌘
⇤⌃

instead of
28

. One subtlety regards the outer automorphisms of SO(p, q): the analytic
continuation will generally map the �(2) matrices used to define the S

3

generators to complex
matrices. In particular, only for SO(4, 4) it is possible to reconstruct a real �

sc

matrix that
can be used to define the T transformation, as was already noted in [34]. Other outer auto-
morphisms would be quotiented away in any case, therefore this is the only transformation that
can affect the final result. The explicit construction of �

sc

for SO(4, 4) shows that the resulting
T transformation does indeed belong to E

7(7)

. We conclude that the SO(4, 4) gauging has the
same (reduced) space of symplectic deformations as SO(8), namely:

SO(8), SO(4, 4) : S

red

= S1/D
8

, fundamental domain: ! 2 [0,⇡/8]. (5.3)

The full S space also contains a gauge invariant shift in the theta term proportional to ⌘
�⌃

.
For p, q 6= 4, the analysis is still very similar to SO(8), but the T transformation in equation

(4.25) must be substituted with the centralizer i�
2

⌦ ⌘. This means that now ! is identified to
±! + k⇡/2, k 2 Z and we obtain the space

SO(p, 8� p), p 6= 0, 4 : S

red

= S1/D
4

, fundamental domain: ! 2 [0,⇡/4]. (5.4)

20
NB: ω rotation is not the missing U(1) in R-symmetry!

(ω is not a field redefinition)



For fixed Ggauge in E7(7), we want to classify inequivalent gauged theories

THM*: all gauged theories for same chosen, fixed Ggauge in E7(7) 

THM*: are parameterized by symplectic twists in the coset reprs:

The general case (N=8)

V(�) �! SV(�), S 2 NSp(56,R)(Ggauge)

[Dall’Agata, GI, Marrani]

Normalizer

Must remove local field redefinitions: • E7(7) on scalars (SU(8) on fermions)
• GL(#vectors, R) on vectors

When we turn on a gauging, the quotient (1.1) still parameterizes a set of consistent La-
grangians, provided that we let Sp(56,R) also act on the ‘gauging parameters’, defined in terms
of the embedding tensor formalism as a set of generators (X

M

)
N

P 2 e

7(7)

. The resulting theories
are again equivalent at the level of the equations of motion. There is instead a set of symplec-
tic transformations that can act on the fields of the theory only, not acting on X

M

, and still
give a fully consistent gauged supergravity. We dub these transformations ‘symplectic deforma-
tions’, and we will prove that they provide the correct generalization of the !-deformation of
the SO(8) theory. The space of symplectic deformations is the normalizer of the gauge group
N

Sp(56,R)(Ggauge

), quotiented by a proper set of transformations that can be reabsorbed in field
redefinitions. If we define our gauged theory in an electric frame, or alternatively if we inte-
grate out and gauge fix the extra vector and tensor fields that may appear in a generic choice
symplectic frame, effectively switching back to an electric frame [27], then we have a consistent
notion of local redefinitions of the physical vector fields, and we can quotient by them together
with redefinitions of the scalars. The space of inequivalent deformations turns out to be

S ⌘ S
GL(28,R)(X) \ N

Sp(56,R)(Ggauge

) / NZ2nE7(7)
(G

gauge

), (1.2)

where N
G

(G
gauge

) is the normalizer of G
gauge

in G, while S
GL(28,R)(X) is the group of GL(28,R)

transformations that stabilize X
MN

P up to overall rescalings. With this definition we do not dis-
criminate between theories that differ only in the value of the gauge coupling constant. However,
if we insist on regarding them as distinct models, we can simply take the left denominator in
(1.2) to be the stabilizer of X

MN

P in GL(28,R). The Z
2

factor in the right quotient denotes the
outer automorphism of E

7(7)

, whose action is strictly related to a parity transformation [22,23],
and is quite subtle in this context. The precise definitions will be given in the next sections. In
some cases, including G

gauge

= SO(8) in the standard SL(8,R) frame, we find that the classifica-
tion of symplectic deformations can be carried out using group theoretical methods exclusively.
In this way, we will re-analyze the SO(8) case in detail as an instructive exercise, also providing
a complementary proof that the range of ! is [0,⇡/8] [1, 6].

We stress that the definition of S depends on the choice of electric frame, because the set of
local field redefinitions depends on this choice. However, some of the transformations in S do
not affect the symplectic embedding of the gauge connection and as a consequence they do not
affect the equations of motion. For example, we find that (1.2) consistently encodes the fact that
the standard electric action of SO(8) gauged maximal supergravity admits the introduction of
a field-independent, gauge invariant shift in the ✓-angle of the (gauged) field strengths. Even if
such terms can be physically relevant at the quantum level, we can choose to define a ‘reduced’
S-space that is completely independent from the choice of symplectic frame and classifies all
and only the deformations that do affect the equations of motion. This space is

S

red

⌘ S
Sp(56,R)(X) \ N

Sp(56,R)(Ggauge

) / NZ2nE7(7)
(G

gauge

). (1.3)

This definition treats as equivalent also those Lagrangians that are mapped to each other by a
non-local redefinition of the physical vector fields, as long as this redefinition does not affect the
gauge connection (and hence the minimal couplings with other fields), nor any other couplings

3

Stabilizer Embedding tensor = ‘gauging parameters’

Sp(56,R): most general duality redefinitions of vector fields

Gianluca Inverso, Mainz 2014

[Gaillard, Zumino]



Symplectic Deformations are:

Symplectic twists of the coset representatives of the NLSM

or equivalently

Different (e.m. dual) choices of vectors in gauge connection

Compatibility with the structure of the same gauging is required

Gianluca Inverso, Mainz 2014
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of the embedding tensor formalism as a set of generators (X

M

)
N

P 2 e
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. The resulting theories
are again equivalent at the level of the equations of motion. There is instead a set of symplec-
tic transformations that can act on the fields of the theory only, not acting on X
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, and still
give a fully consistent gauged supergravity. We dub these transformations ‘symplectic deforma-
tions’, and we will prove that they provide the correct generalization of the !-deformation of
the SO(8) theory. The space of symplectic deformations is the normalizer of the gauge group
N
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), quotiented by a proper set of transformations that can be reabsorbed in field
redefinitions. If we define our gauged theory in an electric frame, or alternatively if we inte-
grate out and gauge fix the extra vector and tensor fields that may appear in a generic choice
symplectic frame, effectively switching back to an electric frame [27], then we have a consistent
notion of local redefinitions of the physical vector fields, and we can quotient by them together
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(G
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in G, while S
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MN

P in GL(28,R). The Z
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factor in the right quotient denotes the
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7(7)

, whose action is strictly related to a parity transformation [22,23],
and is quite subtle in this context. The precise definitions will be given in the next sections. In
some cases, including G
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= SO(8) in the standard SL(8,R) frame, we find that the classifica-
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We stress that the definition of S depends on the choice of electric frame, because the set of
local field redefinitions depends on this choice. However, some of the transformations in S do
not affect the symplectic embedding of the gauge connection and as a consequence they do not
affect the equations of motion. For example, we find that (1.2) consistently encodes the fact that
the standard electric action of SO(8) gauged maximal supergravity admits the introduction of
a field-independent, gauge invariant shift in the ✓-angle of the (gauged) field strengths. Even if
such terms can be physically relevant at the quantum level, we can choose to define a ‘reduced’
S-space that is completely independent from the choice of symplectic frame and classifies all
and only the deformations that do affect the equations of motion. This space is

S

red

⌘ S
Sp(56,R)(X) \ N

Sp(56,R)(Ggauge

) / NZ2nE7(7)
(G

gauge

). (1.3)

This definition treats as equivalent also those Lagrangians that are mapped to each other by a
non-local redefinition of the physical vector fields, as long as this redefinition does not affect the
gauge connection (and hence the minimal couplings with other fields), nor any other couplings

3

• Constructive definition of all deformations & identifications!

• Scary? We can actually compute       !!!!!

SO(8) gauging: (SL(2,R)/Z2)/Z8,  ggauge, ω, constant θ-term

remove ggauge rescalings and θ-term: 

done for most of the known gaugings of N=8

The general case (N=8) [Dall’Agata, GI, Marrani]

S

Stabilizer Embedding tensor = ‘gauging parameters’

subgroups of E
7(7)

. Similarly to the SO(8) gaugings, all other G
gauge

⇢ SL(8,R) are defined by
two matrices ✓

AB

, ⇠AB with in the 360 and 36 of SL(8,R) [35, 36, 34]. The embedding tensor
reads

⇥
AB

C

D

= �C
[A

✓
B]D

, ⇥ABC

D

= �[A
D

⇠B]C , (5.1)

and the consistency constraints impose ✓
AC

⇠CB / �B
A

or ✓
AC

⇠CB = 0. The deformations of the
gauge connections that we are going to discuss in the next sections can be always interpreted in
terms of an ! parameter ‘rotating’ ✓ and ⇠, as in the SO(8) case:

✓
AB

! cos! ✓
AB

, ⇠AB ! sin! ⇠AB. (5.2)

Similar expressions for the SU⇤(8) case, in terms of tensors in the 36 and 36 irreps, can be
defined. We will show that the range of the ! parameter, when it is allowed, can be very
different from model to model.

Before embarking ourselves in this task, however, we may ask whether another well-known
class of gaugings of maximal D = 4 supergravity admits such deformations: the Scherk–Schwarz
and Cremmer–Scherk–Schwarz gaugings (CSS for brevity) [37–39]. The formalism of equations
(2.4), with t

r

defined in terms of the four CSS mass parameters as explained in [39], allows to
quickly identify the space S

red

of deformations of the gauge connection. Unfortunately, we find
that for the CSS models no such deformation exists, as the connection #

M

r is unique up to the
obvious overall rescaling, which is itself a modulus of the theory. Therefore, the full S space of
the CSS gaugings consists exclusively of deformations of the ✓-angle of the gauged U(1) vector
field and of a large set of symplectic redefinitions of the ungauged ones.

5.1 SO(p, q) gaugings

The S space for the non-compact forms of SO(8) can be derived by analytic continuation of
the SO(8) theories. Most of the analysis of Section 4 is unchanged, only with the off-diagonal
blocks of the matrices in (4.21–4.23) being proportional to the Cartan–Killing invariant form
⌘
⇤⌃

instead of
28

. One subtlety regards the outer automorphisms of SO(p, q): the analytic
continuation will generally map the �(2) matrices used to define the S

3

generators to complex
matrices. In particular, only for SO(4, 4) it is possible to reconstruct a real �

sc

matrix that
can be used to define the T transformation, as was already noted in [34]. Other outer auto-
morphisms would be quotiented away in any case, therefore this is the only transformation that
can affect the final result. The explicit construction of �

sc

for SO(4, 4) shows that the resulting
T transformation does indeed belong to E

7(7)

. We conclude that the SO(4, 4) gauging has the
same (reduced) space of symplectic deformations as SO(8), namely:

SO(8), SO(4, 4) : S

red

= S1/D
8

, fundamental domain: ! 2 [0,⇡/8]. (5.3)

The full S space also contains a gauge invariant shift in the theta term proportional to ⌘
�⌃

.
For p, q 6= 4, the analysis is still very similar to SO(8), but the T transformation in equation

(4.25) must be substituted with the centralizer i�
2

⌦ ⌘. This means that now ! is identified to
±! + k⇡/2, k 2 Z and we obtain the space

SO(p, 8� p), p 6= 0, 4 : S

red

= S1/D
4

, fundamental domain: ! 2 [0,⇡/4]. (5.4)

20
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Symplectic deformations of N=8 gaugings
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General gaugings in SL(8,R), SU*(8):

Again, a shift in the ✓-angle is also possible. The absence of the triality identification is also
further confirmed by an analysis of the vacua of the SO(6, 2) ' SO⇤(8) and SO(7, 1) theories
carried out in [34, 18]: both these gaugings admit vacua preserving their maximal compact
subgroups only for ! = ⇡/4, which therefore cannot be equivalent to ! = 0.

5.2 The CSO(p, q, r) and CSO⇤(2p, 2r) gaugings

A large class of gaugings that descend from SO(p, q) are Inönü–Wigner contractions of SO(p, q)

and SO⇤(8), defined in the SL(8,R) and SU⇤(8) electric frames respectively [40–43]. Using
the techniques described above, it is rather straightforward to calculate that most of these
gaugings do not admit deformations of the gauge connection #

M

r. The only exceptions are the
gaugings ISO(p, 7�p) ' CSO(p, 7�p, 1) ⇢ SL(8,R) that, as we will now prove, admit a discrete
deformation corresponding to the ‘dyonic’ gauging of their seven translational symmetries (with
respect to the SL(8,R) frame). That most CSO and CSO⇤ gaugings have a trivial reduced S

space may come as a surprise, since all of them admit two singlets in the decomposition of the
embedding tensor representation 912. One singlet corresponds to the ✓

AB

matrix that defines
the gauging (or its equivalent in the 36 of SU⇤(8)); the second singlet is given by ⇠AB such
that ✓

AC

⇠CB = 0 (and, again, its analogue for SU⇤(8)). Contrary to the SO(p, q) case, however,
turning on ⇠AB does not generally correspond to a mere deformation of the gauge connection,
because it also introduces new gauge couplings, giving rise to the families of gaugings [34,18]

[SO(p, q)⇥ SO(p0, q0)]nN r ⇢ SL(8,R), (5.5)

[SO⇤(2p)⇥ SO⇤(2p0)]nN r ⇢ SU⇤(8). (5.6)

This shows how having more than one gauge singlet in the decomposition of the embedding tensor
is a necessary, but not sufficient, condition for having deformations of the gauge connection. We
will discuss the gaugings (5.5, 5.6) in the next section. The only case in which turning on ⇠AB

gives rise to a symplectic deformation is when ✓
AB

has only one vanishing eigenvalue, so that
turning on ⇠AB gauges the same seven nilpotent generators that were already gauged by ✓

AB

.
This gives rise to the ISO(p, 7� p) gaugings.

The above analysis is confirmed by solving explicitly the gauge connection constraints (2.4)
for the CSO(p, q, r) and CSO⇤(2p, 2r) gaugings: only ISO(p, 7 � p) admit more than one so-
lution up to overall rescalings. If we introduce a parameter ! such that ! = 0 corresponds
to the electric gauge connection in the SL(8,R) frame and ! 6= 0 corresponds to gauging the
seven nilpotent generators dyonically, then all non-vanishing values of ! are equivalent up to
an AutE

7(7)

transformation: in fact, ISO(p, q) admits a continuous outer automorphism cor-
responding to a rescaling of the nilpotent generators. This automorphism is realized in E

7(7)

as the only non-compact generator that is a singlet under SO(p, 7 � p). More explicitly, the
Cartan generators of E

7(7)

can be chosen as the diagonal elements of SL(8,R), and the relevant
generator has the form (taking ✓

A8

= 0)
 

7

�7

!
(5.7)
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in the fundamental representation of SL(8,R). It is clear that such generator would rescale ✓
AB

and ⇠AB separately. Finally, the sign of ⇠AB can be changed by a parity transformation, just
like in the SO(8) case. Therefore, the only inequivalent choices correspond to ⇠ = 0 or ⇠ 6= 0 or,
in the language of ‘! deformations’, to:

ISO(p, 7� p) : ! = 0 or ! 6= 0 (mod ⇡/2). (5.8)

A simple observation excludes the possibility that these two choices can be further identified by
some discrete transformation: the ! = 0 embedding tensors rescale homogeneously under the
action of (5.7), but not under any other non-compact generator of E

7(7)

, while turning on ! 6= 0

introduces non-homogeneous terms also under the action of (5.7).
The physical relevance of the symplectic deformation of these models is clear in the ISO(7)

case. On the one hand, by an argument given in [34], the ISO(p, 7 � p) theories with ! = 0

can at most admit Minkowski vacua (although none are known) because of the homogeneous
rescaling of the embedding tensor with respect to a non-compact generator of E

7(7)

. On the
other hand, the ISO(7) theory with ! 6= 0 is known to have an AdS vacuum [34], which is
possible precisely because ! 6= 0 breaks the homogeneity property of the embedding tensor.
Moreover, [9] identified another AdS vacuum of an ISO(7) gauging of maximal supergravity, and
we can now state that it also belongs to the ‘deformed’ model.

5.3 ‘Dyonic’ gaugings

The gaugings (5.5, 5.6), when defined in the SL(8,R) and SU⇤(8) symplectic frames, necessarily
involve magnetic vectors for gauging one semisimple factor, as well as a mix of electric and
magnetic vectors for the nilpotent generators. They are particularly relevant for the study of
Minkowski solutions of gauged maximal supergravity, as it has been found that all G

gauge

⇢
SU⇤(8), together with some more groups in SL(8,R), admit such vacua, with fully or partially
broken supersymmetry. Moreover, the models allowing for Minkowski vacua are connected to
the Cremmer–Scherk–Schwarz gaugings by singular limits in their moduli spaces [18].

Repeating the analysis of previous sections, we find that the only gaugings that admit a
symplectic deformation of their gauge connection that is not removed by E

7(7)

transformations
are of the form

Re(SO(4,C)⇥ SO(4,C))n T 16, (5.9)

where we can choose either two (p, q) real forms for the two factors (in which we obtain a subgroup
of SL(8,R)), or we can choose (SO⇤(4) ⇥ SO⇤(4)) n T 16 ⇢ SU⇤(8). The only deformation of
the gauge connection of these models corresponds to the separate rescaling of the couplings of
the two Re(SO(4,C)) factors (which also gives an electric-magnetic rotation of the vector fields
associated with T 16). As usual, it can be parameterized in terms of ! as in equations (5.1, 5.2).

Let us start with the analysis of the range of ! for SO(4,R)2 n T 16. In terms of (5.2),
! = 0 (mod⇡/2) corresponds to the ungauging of one semisimple factor, and therefore these
values must be excluded. Hence, any linear identification on ! must map Z⇡/2 to itself, which
means that at most we can expect the equivalence relation ! ' ±! + k⇡/2. We can in fact
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find the appropriate E
7(7)

transformations that yield this result: the change of sign is associated
as usual to the action of the outer automorphism of E

7(7)

, while a shift of ⇡/2 is induced by
i�

2

⌦
28

2 E
7(7)

combined with an SL(8,R) transformation mapping ✓
AB

into ⇠AB and vice-
versa. This transformation clearly exists since ✓

AB

and ⇠AB have the same signature in the
current case and it is clearly associated with the Z

2

outer automorphism that exchanges the
two SO(4,R) factors. The same result holds whenever we take the same two real forms in (5.9),
while in all other cases ✓

AB

and ⇠AB have different signatures, so that we lose one identification,
therefore we expect the range of the deformation to be ! ' ±! + k⇡. Summarizing, the range
of ! for these gaugings is

Re(SO(4,C)⇥ SO(4,C))n T 16 :

8
><

>:

! 2 (0,⇡/4] same real form,

! 2 (0,⇡/2) different real forms.
(5.10)

The physical relevance of ! is most clear for SO⇤(4)2 n T 16 ⇢ SU⇤(8). This gauging admits
Minkowski vacua with fully broken supersymmetry for any value of !, and the masses of all fields
are completely determined by a mass formula that effectively includes their moduli dependence
[17], [18]. The masses of the gravitini have even multiplicity, therefore we can define three
inequivalent mass ratios that determine the different scales of supersymmetry breaking (the
overall scale is set by the gauge coupling constant times the Planck mass). It turns out that
only two out of three of these mass ratios are governed by the expectation value of some moduli.
If we define the four independent gravitino masses to be M

1

, M
2

, M
3

, M
4

, the ratio that is
unrelated to any modulus can be taken to be M

1

M
2

/M
3

M
4

. We find that this ratio is governed
by the ! parameter according to

M
1

M
2

M
3

M
4

= tan!. (5.11)

The above discussion on the range of ! shows that it is exhaustive to consider this ratio to be in
the range (0, 1], as values greater than one can be mapped back to the fundamental domain by a
field redefinition that also has the effect of exchanging M

1

, M
2

with M
3

, M
4

. Sending ! ! 0 also
has a clear physical interpretation: on the one hand, it corresponds to restoring some amount of
supersymmetry, and on the other hand it corresponds to a gauge group contraction that yields
the model with CSO⇤(4, 4) ' SO⇤(4) n T 16 gauge symmetry, which indeed admits Minkowski
vacua with N = 4 supersymmetry [18].

A small puzzle arises when we notice that the algebras of (SO(4) ⇥ SO(2, 2)) n T 16 and of
SO⇤(4)2nT 16 are isomorphic. We may then ask if the above discussion also applies to the former
gauging, which can be seen as arising from a contraction of SO(6, 2)

!=⇡/4

along its moduli space
and indeed it admits non-supersymmetric Minkowski vacua [34], [18]. The mass spectra coincide
too, but the mass ratio M

1

M
2

/M
3

M
4

in the (SO(4) ⇥ SO(2, 2)) n T 16 model is not regulated
by its ! deformation, as the latter in fact breaks the vacuum condition. A full analysis of the
identifications between these Minkowski models goes beyond the scope of this paper, and we
leave it for future work.
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Focus on deformations relevant classically (eg no θ-terms)

Gianluca Inverso, Mainz 2014



Physical effects

• SO(4,4): slow roll dS vacua in maximal sugra!

• SO(6,2): existence of vacua only for ω=π/4, 
SO(6,2): leads to HUGE family of Minkowski models!

• ISO(7): existence of (AdS, stable) vacua 

• SO*(4)2 x T16, N=0 Minkowski vacuum with:

gravitini masses M1 (x2), M2 (x2), M3 (x2), M4 (x2).

Mi/Mj  are moduli      ,  except for
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[17], [18]. The masses of the gravitini have even multiplicity, therefore we can define three
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has a clear physical interpretation: on the one hand, it corresponds to restoring some amount of
supersymmetry, and on the other hand it corresponds to a gauge group contraction that yields
the model with CSO⇤(4, 4) ' SO⇤(4) n T 16 gauge symmetry, which indeed admits Minkowski
vacua with N = 4 supersymmetry [18].

A small puzzle arises when we notice that the algebras of (SO(4) ⇥ SO(2, 2)) n T 16 and of
SO⇤(4)2nT 16 are isomorphic. We may then ask if the above discussion also applies to the former
gauging, which can be seen as arising from a contraction of SO(6, 2)
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along its moduli space
and indeed it admits non-supersymmetric Minkowski vacua [34], [18]. The mass spectra coincide
too, but the mass ratio M
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in the (SO(4) ⇥ SO(2, 2)) n T 16 model is not regulated
by its ! deformation, as the latter in fact breaks the vacuum condition. A full analysis of the
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Hints at ω as truncated modulus (for this theory) 

[Dall’Agata, GI]

[Dall’Agata, GI;  
Catino, Dall’Agata, GI, Zwirner]

[Dall’Agata, GI; Borghese, Guarino, Roest]

Gianluca Inverso, Mainz 2014



Generic gauged theories

Can play same game for less/no supersymmetry, even rigid theories :

S = SGL(nV ,R)(X, ⇥matter) \ NSp(2nV ,R)(G
adj
gauge) / NGdoOut(Gd)(G

adj
gauge)

An elementary example:  YM theory with simple group: SU(N)

role of  cosets V(Φ) is taken by constant matrix related to gYM, θ:

       = choice of complex coupling τ  (not surprising)S

[Dall’Agata, GI, Marrani; and GI, to appear]

Gianluca Inverso, Mainz 2014

• Analysis for several truncations/new theories. Some surprises!



Concluding…

• Inequivalent gauged theories sharing same Ggauge, e.g. SO(8)
implications & challenges for uplifts, exceptional geometry

• A good understanding in D=4 is crucial for uplifts/3d duals!

• => Symplectic deformations for general gaugings
many physical effects: vacua, susy, slow roll, P, CP,  black holes, …

• Important step in classification of gaugings

• N < 8: some surprises; 
• extra tools? Evidence for uplifts/duals? Toy models?
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