# Symplectic deformations of d=4 gauged supergravities

Gíanluca Inverso

The String Theory Universe, Mainz 25/9/2014

Based on: 1209.0760 [Dall'Agata, GI, Trigante]; 1405.2437 [Dall'Agata, GI, Marrani]; + work in progress [GI]



## Gauged Supergravities

- Consistent truncations of higher dim. models Solution generation, test of compactification schemes, Black Holes physics & AdS/CFT||CMT, ...
- e.g. IId sugra on  $S^7 \rightarrow N=8$  SO(8) gauged supergravity: AdS<sub>4</sub>xS<sup>7</sup>, physics of M2 branes, deformations of ABJ(M)
- Extended SUSY → relation with U-dualities of String/M-theory U-dualities in gauged sugra turn on 'non-geometric fluxes'
- Challenge/guide study of generalised geometry / 'non-geometry'

### Gauged Supergravities

Lect. notes: Samtleben 0808.4076



## 'Symplectic deformations'

• SO(8) gauged N=8 sugra is not unique! 'ω deformation' [Dall'Agata, GI, Trigiante]

**Challenge for uplift:** Generalised Geometry, Exceptional Field Theory, ...? [de Wit, Nicolai; Godazgar Godazgar Nicolai; Lee, Strickland-Constable, Waldram; Hohm, Samtleben; Aldazabal, Grana, Marques, Rosabal; ... ]

Challenge for 3d dual:  $\sim$  ABJ(M) with  $\mathcal{N}=8$  susy, *large-N* parity breaking, residual *em dualities* 

• Similar deformations for many other models, not only N=8!

de Roo–Wagemans, some N=2 truncations of SO(8) → extra tools in lower N? → Black holes, domain walls, ...

✓ Still today!

Confusion on non-triviality, range, discrete duality symmetries
 A correct understanding is crucial to discuss uplifts/3d duals

#### 'Symplectic deformations'

# Can we precisely characterize ' $\omega$ -like' deformations for general G<sub>gauge</sub>, N $\leq$ 8?

#### Plan

- Review: inequivalent SO(8) gauged maximal supergravities
- Symplectic deformations for general gaugings

# PARENTAL ADVISIONSORY

#### CONTAINS EMBEDDING TENSOR

## SO(8) gauged maximal supergravities



## SO(8) gauged maximal supergravities

What is an ' $\omega$ -deformation' of the de Wit–Nicolai theory?

An  $\mathrm{SL}(2,R)$  twist of the  $\mathrm{E}_{7(7)}/\mathrm{SU}(8)$  coset reprs  $\mathcal{V}(\Phi)$ :

$$\mathcal{V}(\Phi) \longrightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mathcal{V}(\Phi)$$

$$[Dall'Agata, Gl, Trigiante]$$

$$[Dall'Agata, Gl, Marrani]$$

$$SL(2, \mathbb{R}) \not \subset E_{7(7)}$$

By change of symplectic frame,

equivalent to **e.m. rotation of vector fields** in gauge connection:

$$\mathcal{D}_{\mu} \equiv \partial_{\mu} - g \left( \cos \omega A_{\mu}^{AB} + \sin \omega A_{\mu AB}^{(\text{dual})} \right) t_{AB}^{\text{SO(8)}}$$

...plus rescalings of gauge coupling and constant  $\theta$ -term  $\int \text{Tr} F \wedge F$ 

#### Physical effects: AdS<sub>4</sub> vacua

![](_page_9_Figure_1.jpeg)

Further: vacua, domain walls, black holes, ...

[Borghese Dibitetto Guarino Roest Varela'12; Dall'Agata GI '12; Guarino'13; Varela Tarrio'13; Anabalon Astefanesei'13]

#### Discrete dualities/identifications

CRUCIAL: range of  $\omega$ -parameter

 $S^1/D_8$ , fundamental domain:  $\omega \in [0, \pi/8]$ 

How can I figure it out *a priori*, and/or for other G<sub>gauge</sub>?

Some **confusion** in the literature: parity? triality?

More confusion: N<8 truncations, meaning of  $\omega$ 

NB:  $\omega$  rotation is *not* the missing U(1) in R-symmetry!

 $(\boldsymbol{\omega} \text{ is not a field redefinition})$ 

### The general case (N=8)

[Dall'Agata, GI, Marrani]

For fixed  $G_{gauge}$  in  $E_{7(7)}$ , we want to classify inequivalent gauged theories

**THM**\*: all gauged theories for same chosen, fixed G<sub>gauge</sub> in E<sub>7(7)</sub> are parameterized by symplectic twists in the coset reprs:

$$\mathcal{V}(\Phi) \longrightarrow S\mathcal{V}(\Phi), \qquad S \in \mathcal{N}_{\mathrm{Sp}(56,\mathbb{R})}(\mathrm{G}_{\mathrm{gauge}})$$

 ${
m Sp}(56, {
m R})$ : most general duality redefinitions of vector fields [Gaillard, Zumino]

Must remove *local field redefinitions*:

- $E_{7(7)}$  on scalars (SU(8) on fermions)
- $GL(\#_{vectors}, R)$  on vectors

$$\mathfrak{S} \equiv \mathcal{S}_{\mathrm{GL}(28,\mathbb{R})}(X) \setminus \mathcal{N}_{\mathrm{Sp}(56,\mathbb{R})}(\mathrm{G}_{\mathrm{gauge}}) / \mathcal{N}_{\mathbb{Z}_{2} \ltimes \mathrm{E}_{7(7)}}(\mathrm{G}_{\mathrm{gauge}})$$

$$\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset$$

#### Symplectic Deformations are:

#### Symplectic twists of the coset representatives of the NLSM

or equivalently

#### Different (e.m. dual) choices of vectors in gauge connection

Compatibility with the structure of the same gauging is required

### The general case (N=8)

[Dall'Agata, Gl, Marrani]

$$\mathfrak{S} \equiv \mathcal{S}_{\mathrm{GL}(28,\mathbb{R})}(X) \setminus \mathcal{N}_{\mathrm{Sp}(56,\mathbb{R})}(\mathrm{G}_{\mathrm{gauge}}) / \mathcal{N}_{\mathbb{Z}_{2} \ltimes \mathrm{E}_{7(7)}}(\mathrm{G}_{\mathrm{gauge}})$$

$$\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}{\overset{\mathsf{Stabilizer}}}}} \mathcal{S}$$

- Constructive definition of *all* deformations & identifications!
- Scary? We can actually compute  $\mathfrak{S}$  !!!!!

SO(8) gauging:  $(SL(2,R)/Z_2)/Z_8$ ,  $g_{gauge}$ ,  $\omega$ , constant  $\theta$ -term

remove  $\mathbf{g}_{\mathsf{gauge}}$  rescalings and  $\mathbf{\theta}$ -term:  $S^1/\mathrm{D}_8$   $\checkmark$ 

done for most of the known gaugings of N=8

#### Symplectic deformations of N=8 gaugings

Focus on deformations relevant classically (eg no  $\theta$ -terms)

SO(8), SO(4,4):  $\mathfrak{S}_{red} = S^1/D_8$ , fundamental domain:  $\omega \in [0, \pi/8]$ . SO(p, 8 - p),  $p \neq 0, 4$ :  $\mathfrak{S}_{red} = S^1/D_4$ , fundamental domain:  $\omega \in [0, \pi/4]$ .

General gaugings in SL(8,R), SU\*(8):  $[SO(p,q) \times SO(p',q')] \ltimes N^r \subset SL(8,\mathbb{R}),$  $[SO^*(2p) \times SO^*(2p')] \ltimes N^r \subset SU^*(8).$ 

$$\begin{split} \mathrm{ISO}(p,7-p): \quad &\omega = 0 \quad \mathrm{or} \quad \omega \neq 0 \pmod{\pi/2}. \\ \mathrm{Re}(\mathrm{SO}(4,\mathbb{C})\times\mathrm{SO}(4,\mathbb{C})) \ltimes T^{16}: \quad \begin{cases} \omega \in (0,\pi/4] & \mathrm{same \ real \ form,} \\ \omega \in (0,\pi/2) & \mathrm{different \ real \ forms.} \end{cases} \end{split}$$

### Physical effects

- SO(4,4): slow roll dS vacua in maximal sugra!
- SO(6,2): existence of vacua only for ω=π/4, leads to HUGE family of Minkowski models!

[Dall'Agata, GI; Catino, Dall'Agata, GI, Zwirner]

[Dall'Agata, GI]

• ISO(7): existence of (AdS, stable) vacua

[Dall'Agata, GI; Borghese, Guarino, Roest]

- $SO^{*}(4)^{2} \times T^{16}$ , N=0 Minkowski vacuum with:
  - gravitini masses M₁ (x2), M₂ (x2), M₃ (x2), M₄ (x2).

• 
$$M_i/M_j$$
 are moduli  $\langle \phi \rangle$ , except for  $\frac{M_1 M_2}{M_3 M_4} = \tan \omega$ .

 $\odot$  Hints at  $\omega$  as truncated modulus (for this theory)

#### Generic gauged theories

[Dall'Agata, GI, Marrani; and GI, to appear]

Can play same game for less/no supersymmetry, even rigid theories :

 $\mathfrak{S} = \mathcal{S}_{\mathrm{GL}(n_V,\mathbb{R})}(X,\,\Theta^{\mathrm{matter}}) \setminus \mathcal{N}_{\mathrm{Sp}(2n_V,\mathbb{R})}(\mathrm{G}_{\mathrm{gauge}}^{\mathrm{adj}}) \,/\, \mathcal{N}_{\mathrm{G_d} \rtimes \mathrm{Out}(\mathrm{G_d})}(\mathrm{G}_{\mathrm{gauge}}^{\mathrm{adj}})$ 

An elementary example: **YM theory** with simple group: SU(N)

role of cosets  $\mathcal{V}(\Phi)$  is taken by constant matrix related to gym,  $\theta$ :

$$\mathfrak{S}$$
 = choice of complex coupling  $\tau$  (not surprising)

• Analysis for **several truncations/new theories**. Some surprises!

## Concluding...

- Inequivalent gauged theories sharing same G<sub>gauge</sub>, e.g. SO(8) implications & challenges for uplifts, exceptional geometry
- A good understanding in D=4 is crucial for uplifts/3d duals!

- => Symplectic deformations for general gaugings many physical effects: vacua, susy, slow roll, P, CP, black holes, ...
- Important step in **classification of gaugings**

- N < 8: some surprises;
- extra tools? Evidence for uplifts/duals? Toy models?

## Concluding...

- Inequivalent gauged theories sharing same G<sub>gauge</sub>, e.g. SO(8) implications & challenges for uplifts, exceptional geometry
- A good understanding in D=4 is crucial for uplifts/3d duals!

- => Symplectic deformations for general gaugings many physical effects: vacua, susy, slow roll, P, CP, black holes, ...
- Important step in **classification of gaugings**

- N < 8: some surprises;
- extra tools? Evidence for uplifts/duals? Toy models?

![](_page_18_Picture_7.jpeg)