

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

Orbifolds as Free Fermion Models

String Theory Universe 2014, Mainz 25th September

P. Athanasopoulos, A. E. Faraggi, S. Groot Nibbelink, Viraf M. Mehta

String Model Building The Heterotic String

- Closed string theory
- Synthesis of bosonic string and superstring
- Particle phenomenology widely explored most realistic string theory? _{Ohio, Pennsylvania, Oxford, Liverpool, Munich, Bonn,...}
- Many descriptions
 - Effective constructions
 - Worldsheet constructions

String Model Building The Heterotic String

- Closed string theory
- Synthesis of bosonic string and superstring
- Particle phenomenology widely explored most realistic string theory? Ohio, Pennsylvania, Oxford, Liverpool, Munich, Bonn,...
- Many descriptions

Effective constructions
Worldsheet constructions
Free fermions

Orbifolds and Free Fermions History

- Since Antoniadis-Bachas-Kounnas/Kawai-Lewellen-Tye `87 (FFF) and Dixon-Harvey-Vafa-Witten `85 (Orbifolds), worldsheet constructions have been widely explored
- Previous works have discussed a correspondence
 - Including Kounnas-Kiritsis `97, Donagi-Wendland `08,...

- However, model builder's dictionary still missing...
 - Computational comparison currently inaccessible!

Orbifolds

- Described by worldsheet bosonic degrees of freedom
- $X^{\mu,i}$ and \tilde{X}^{I} describe 10D spacetime and internal T^{16}
- Limited to gauge groups of rank-16

Orbifolds Model Building Tools

Ingredients:

- Point group $\longrightarrow \theta$ (discrete identifications)
- Space group $\longrightarrow g \ (\theta + \text{lattice vector})$
- Gauge embedding
 - Shift vectors $\longrightarrow V$
 - \blacktriangleright Wilson lines $\longrightarrow A$

Free Fermion Construction

Free Fermion Construction Model Building tools

Fermion boundary condition basis vectors \mathbf{b}_i

 $\alpha \in \Xi \sim \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \ldots$

• GSO projections

$$\left\{e^{i\pi(\mathbf{b}_i\cdot F_\alpha)} - \delta_\alpha c^* \left(\begin{array}{c} \alpha\\ \mathbf{b}_i \end{array}\right)\right\} |s\rangle_\alpha = 0$$

Fermions may be real or complex

As with bosons, real fermion pairs may be complexified

Fermionization/Bosonization

In 2D, known relationship between real bosons/fermions

$$y + iw =: e^{iX}:$$

Relate boundary conditions of compactified dimensions:

FermionBoson $\{y,w\} \rightarrow -\{y,w\}$ $X \rightarrow X + \pi$ "shift" $\{y,w\} \rightarrow \{y,-w\}$ $X \rightarrow -X$ "twist" $\{y,w\} \rightarrow \{-y,w\}$ $X \rightarrow -X + \pi$ "roto-translation"

up to lattice vector...

Comparison Worked example - The Extended NAHE set

Fermions that $\mathbb{1} = \{ALL\}$ appear are periodic *i.e.* do not transform $\mathbf{S} = \{\psi^{\mu}, \chi^{1,...,6}\}$ $\mathbf{x} = \{\psi^{1,\dots,5}, \eta^{1,2,3}\}$ $\mathbf{b}_{1} = \left\{ \psi^{\mu}, \chi^{12}, y^{3, \dots, 6} \,|\, \overline{y}^{3, \dots, 6}, \overline{\psi}^{1, \dots, 5}, \overline{\eta}^{1} \right\}$ $\mathbf{b}_{2} = \left\{ \psi^{\mu}, \chi^{34}, y^{1,2}, w^{5,6} \,|\, \overline{y}^{1,2}, \overline{w}^{5,6}, \overline{\psi}^{1,\dots,5}, \overline{\eta}^{2} \right\}$ $\mathbf{b}_{3} = \left\{\psi^{\mu}, \chi^{56}, w^{1,\dots,4} \,|\, \overline{w}^{1,\dots,4}, \overline{\psi}^{1,\dots,5}, \overline{\eta}^{3}\right\}$

 $\Rightarrow E_6 \times U(1)^2 \times E_8 \times SO(4)^3$

Comparison Worked example - The Extended NAHE set

Fermions that $\mathbb{1} = \{ALL\}$ appear are periodic *i.e.* do not transform $\mathbf{S} = \{\psi^{\mu}, \chi^{1,...,6}\}$ $\mathbf{x} = \{\psi^{1,...,5}, \eta^{1,2,3}\}$ $\mathbf{b}_{1} = \left\{ \psi^{\mu}, \chi^{12}, y^{3, \dots, 6} \,|\, \overline{y}^{3, \dots, 6}, \overline{\psi}^{1, \dots, 5}, \overline{\eta}^{1} \right\}$ $\mathbf{b}_{2} = \left\{\psi^{\mu}, \chi^{34}, y^{1,2}, w^{5,6} \,|\, \overline{y}^{1,2}, \overline{w}^{5,6}, \overline{\psi}^{1,\dots,5}, \overline{\eta}^{2}\right\}$ $\mathbf{b}_{3} = \left\{\psi^{\mu}, \chi^{56}, w^{1,\dots,4} \,|\, \overline{w}^{1,\dots,4}, \overline{\psi}^{1,\dots,5}, \overline{\eta}^{3}\right\}$

 $\Rightarrow E_6 \times U(1)^2 \times E_8 \times SO(4)^3$

Comparison

Worked example - The Extended NAHE set

- First basis vectors 1 and S correspond to g = (1, 0) with left spin structures identified
- \mathbb{Z}_2 orbifold action in $X^{3,\ldots,6}$ corresponds to \mathbf{b}_1
- In fact, $\mathbf{b}_1, \mathbf{b}_2$ and \mathbf{b}_3 corresponds to $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifolding
- These basis vectors thought to give "standard embedding"

BUT ONLY 24 GENERATIONS!! (Fixed points)

Comparison Worked example - The Extended NAHE set

- Geometrical backgrounds are different
- At fermionic point, lattice always "non-standard"?

Conclusions and Outlook

- Correspondence between $\mathbb{Z}_2 \times \mathbb{Z}_2$ "standard" embeddings
- Shifts, twists and roto-translations identified
- Compactification lattices *always* enhanced?
- Partition functions matched
- Significant rewriting of available code currently underway...

Danke für Ihre Aufmerksamkeit!