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• Tachyon vacuum means no D-branes: the shifted BRST operator, 
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!

 should have EMPTY COHOMOLOGY: contracting homotopy operator!

Qtv ⌘ Q + [ tv, ]

QtvA = 1

Qtv(A ) =  �AQtv 

A = B
1� F 2(K)

K

F (K) = 1 + F 0(0)K +O(K2)

• For the TV in the KBc algebra it is readily found

• Subtle: 1/K does not exist, but A is well defined (this defines the TV)
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• It remains to search for world-sheet local fields obeying
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• Factorization of the bcc’s, and time non-compactness implies (a time-like 
Wilson line is pure gauge) 
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• The orthogonality relation is

Defining row and column vectors

� =

0

@�1

�2

1

A ; � =
�
�1 �2

�
, (8.10)
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functions of � and � can be computed by elementary means, and even the Schnabl-gauge
solution (6.5) can plausibly be studied in a fairly explicit manner. Note that, contrary to
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A di↵erent approach to multibrane solutions, advanced in [67] and further explored in
[77, 78, 79, 80, 81, 82, 83, 84], requires only universal states generated by K,B and c.
However, the solution is quite singular and an adequate regularization has not been found.
Also, it is unclear in this approach how non-abelian gauge bosons emerge in the spectrum
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• Going up in energy doesn’t appear problematic, we don’t 
have to follow the world-sheet boundary RG flow (as in a 
sigma model approach, like BSFT)

• Fundamental and composite boundary conditions (multi-
branes) “fit in” in essentially the same way, Chan-Paton’s 
factors are dynamically generated.

• OSFT is finally liberated by the initial choice of 
background.
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• The solution is concretely defined by the OPE between the bcc 
operators. 

• It would be clearly important to understand what are the 
consequences of the OSFT equation of motion on the BCFT 
structure constants (a BCFT “equation of motion”?)

• Get rid of the auxiliary time-like Wilson line! Line-defects instead of 
point-like bcc operators?

• Extension to Berkovits WZW superstring field theory. RR charge 
should emerge as a topological OSFT charge.

Thank You!
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