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¢ To examine the generality of an interesting fact : that the closed toroidal
string partition function is the "holomorphic square root’ of that of a T-
duality covariant doubled sigma model.

(i) Motivations and background

(ii) General toroidal compactification
(iii) Higher string loops

(iv) Worldsheet supersymmetry

(v) Orbifolds (translational)



** Doubling dimension of target space in string’s sigma model
¢ Extra coordinates conjugate to string winding numbers
s Target space fields + its T-dual
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+* Toroidal compactification
Eg. O(d,d;Z) — T-duality group for toroidal compactifications
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s 'T-fold’: closed strings twisted by T-duality
¢ Torus fibrations with T-duality valued transition functions
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¢ Physical constraint: half of fields to be chiral and the other half to
be anti-chiral (choice of polarization)
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¢ Lagrangian formulation
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conserved current of T-duality transformations .J
¢ Invariant under
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** Non-T-folds but a basic consistency check (quantum)
s A re-interpretation of closed strings on a toroidal background

T2 — T-fold
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** Ordinary toroidal compactification. Trivial bundle connection

+* Constraint equations can be written very simply

« OX' = L' Hy;0X7 + L' J,y,
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+» Starting point: doubled string sigma model obtained after setting O(d,d;Z)
connection to be trivial

+* Compute partition function and study how this relates to the physical
partition function

Lpq = g%bdpa A xdP° + gn“ban A *dQp + Liop. T2



+»+ Literature background: doubled circle theory studied by Berman and
Copland (2006), one-loop vacuum amplitude computed

** The physical partition function is the "holomorphic square root’ of the
doubled one

SixS1  ——s  Physical

e Computational technicality mostly involves separating the stringy zero modes
* For oscillators’ modes, the determinant needs to be of the form |F(7) |2
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** General toroidal background

(i) Compute classical doubled theory’s action

(ii) Perform Poisson resummations of a subset of zero modes
I
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** General toroidal background

(i) Compute classical doubled theory’s action
(ii) Perform Poisson resummations of a subset of zero modes
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¢ Higher-genera worldsheets

*»* Period matrix characterizes complex structure of worldsheet

TaB = / wg, / wp = 0af, / dX* = 2mn,, / dX* = 2mm?,
Aoy ba Ay bCX



¢ Our previous result generalizes rather easily to higher-genera worldsheets
(apart from a subtlety arising from the non-zero modes)!
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** Instanton action: Poisson resummation (in ordinary torus theory)
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¢ We need to write the higher-loop determinants in a factorized form, for
chiral factorization to work.
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This turns out to rely on a description of Riemann surfaces by quotient of the
sphere using discrete subgroups of SL(2,C), or Schottky uniformization
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+* Doubled worldsheet fermions from worldsheet in superspace
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s Supersymmetrizing the constraint
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** Constraints on worldsheet fermions look simpler in a certain basis
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set to zero!

**Spin structures imposed by hand in Type Il and Heterotic strings
(similarly for chiral bosons)
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% Symmetric S /Zx twists
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% Symmetric S /Zx twists
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¢ Asymmetric Shift Orbifolds — could act as base manifolds for T-folds
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(c.f. symmetric orbifold)
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*¢ How does doubled sigma model see the winding number shift?

L=dX+ (n+d§)az+ (m+0")a,
L=dX + (a+0d)ay+ (m+06")a.

¢ Partition function of doubled sigma model
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¢ Doubled Sigma Model and Asymmetric Shift Orbifolds

(geometric orbifold)
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Thank you!



