
The black hole interior in AdS/CFT

and the information paradox

Kyriakos Papadodimas
CERN and University of Groningen

based on work with Suvrat Raju: 1211.6767, 1310.6334, 1310.6335 + in progress

with S. Banerjee (Groningen) and P. Samantray (ICTS, Bangalore), S. Raju



Does CFT describe BH interior?

What happens to the infalling observer?

What can we learn about the information paradox?



Inconsistent with unitary evolution



Size of Hilbert space is eSBH

Semiclassical-Hawking computation gives “ensemble average” of
coarse-grained observables

In this approximation radiation looks thermal

However, in typical pure state, these observables will differ from Hawking’s
computation by exponentially small deviations

Exponentially small corrections to Hawking’s computation (for simple
observables) can restore unitarity



Pure states vs Ensemble (Lloyd):

define ensemble averages of observable A

A = Tr(ρA)

and
A2 = Tr(ρA2)

then for typical pure microstate |Ψ〉 we have

Ensemble Variance of
[
〈Ψ|A|Ψ〉

]
=

1

eS

[
A2 −A

2
]

Expectation values of “simple” observables on typical pure states are
exponentially close to ensemble averages.



Entropy of subsystem (Page)
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Consider a large system of size dim(H) = eN . The entire system is in a
typical pure state |Ψ〉.

We consider a subsystem A of size dim(HA) = en. It will be in mixed state
with density matrix

ρA = TrA′(|Ψ〉〈Ψ|)
with entanglement entropy SA = −Tr(ρA log ρA)
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Define A = {Hawking radiation emitted up to some particular time }.

In general Hawking radiation is entangled with the remaining black hole.

SA = −Tr(ρA log ρA)

According to Page’s general analysis we expect the graph shown above, for
SA a function of # of emitted particles.



If we only look far from the horizon: there is no sharp information paradox

Exponentially small corrections to simple observables can restore unitarity



Quantum Cloning on “nice slices”

C
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Strong subadditivity theorem: for 3 independent systems A,B,C we
have

SAB + SBC ≥ SA + SC

For the Hawking pair production we have SBC ≈ 0 and SC = O(1) which
would imply

SAB > SA



Tension between

Unitarity

Locality

Smooth horizon

Can small corrections resolve the paradox?



Proposals to modify interior of black hole:
-Fuzzball
-Firewall
-....

infalling observer feels deviations from GR/burns-up when crossing the horizon



(small) Non-locality/Complementarity

⇒ can resolve the information paradox

No need for firewalls, (fuzzballs) or other exotic physics at the horizon....



BH interior is a scrambled copy of exterior

hence

no cloning problem
no subadditivity Mathur/AMPS problem

(since both were based on assumption that Hilbert space factorizes into
interior × exterior)

Is complementarity consistent with locality in effective field theory?

YES, we can have BH complementarity with only very small non-locality (not
detectable within effective field theory)



Consider the N = 4 SYM on S3 × time, at large N , large λ.
and typical pure state |Ψ〉 with energy of O(N2).

What is experience of infalling observer? ⇒ Need local bulk observables



Large N factorization allows us to write local∗ observables in empty AdS as
non-local observables in CFT (smeared operators)

φCFT(t, ~x, z) =

∫

ω>0
dω d~k

(
O

ω,~k
f
ω,~k

(t, ~x, z) + h.c.
)

where φCFT obeys EOMs in AdS, and [φCFT(P1), φCFT(P2)] = 0, if points
P1, P2 spacelike with respect to AdS metric
(based on earlier works: Banks, Douglas, Horowitz, Martinec, Bena, Balasubramanian,

Giddings, Lawrence, Kraus, Trivedi, Susskind, Freivogel Hamilton, Kabat, Lifschytz, Lowe,

Heemskerk, Marolf, Polchinski, Sully...)

∗ Locality is approximate:

1. (Plausibly) true in 1/N perturbation theory
2. Unlikely that [φCFT(P1), φCFT(P2)] = 0 to e−N2

accuracy
3. Locality may break down for high-point functions (perhaps no bulk

spacetime interpretation)



φCFT(t, ~x, z) =

∫
dt′d~x′ K( t, ~x, z ; t′, ~x′)O(t′, ~x′)

where K is some kernel — sometimes called the smearing function.

Subtleties: 1/N expansion, gauge invariance....



Consider typical QGP pure state |Ψ〉 (energy O(N2)). Single trace correlators
still factorize at large N

〈Ψ|O(x1)...O(xn)|Ψ〉 = 〈Ψ|O(x1)O(x2)|Ψ〉...〈Ψ|O(xn−1)O(xn)|Ψ〉+ ...

The 2-point function in which they factorize is the thermal 2-point function,
which is hard to compute, but obeys KMS condition

Gβ(−ω, k) = e−βωGβ(ω, k)



Local bulk field outside horizon of AdS black hole∗

φCFT(t,Ω, z) =
∑

m

∫ ∞

0
dωOω,m fβ

ω,m(t,Ω, z) + h.c.

At large N (and late times) the correlators

〈Ψ|φCFT(t1,Ω1, z1)...φCFT(tn,Ωn, zn)|Ψ〉
reproduce those of semiclassical QFT on the BH background (in
AdS-Hartle-Hawking state).

∗ Subtleties about the convergence of the sum/integral...



Need new modes

For free infall we expect

φCFT(t,Ω, z) =
∑

m

∫ ∞

0
dω

[
Oω,m e−iωtYm(Ω)g(1)ω,m(z) + h.c.

+ Õω,m e−iωt Ym(Ω) g(2)ω,m(z) + h.c.
]

where the modes Õω,m must satisfy certain conditions



The Õω,m’s (mirror or tilde operators) must obey the following conditions, in
order to have smooth interior:

1. For every O there is a Õ
2. The algebra of Õ’s is isomorphic to that of the O’s

3. The Õ’s commute with the O’s

4. The Õ’s are “correctly entangled” with the O’s

Equivalently:

Correlators of all these operators on |Ψ〉 must reproduce (at large N) those of
the thermofield-double state

|TFD〉 =
∑

i

e−βEi/2

√
Z

|Ei, Ẽi〉

〈Ψ|O(t1)...Õ(tk)..O(tn)|Ψ〉 ≈ 1

Z
Tr

[
O(t1)...O(tn)O(tk + i

β

2
)...O(tm + i

β

2
)
]



Main Question: Does the CFT contain the operators Õ with the desired
properties?

If so, we will declare that the CFT describes the interior of the black hole and
that we have free infall through the horizon.



Using bulk EFT evolution to find the Õ? ⇒ Trans-planckian problem...(?)



Exterior of AdS black hole ⇒ Described by “algebra of (products of) single
trace operators O”

Why do we get a second commuting copy Õ?



Exterior of AdS black hole ⇒ Described by “algebra of (products of) single
trace operators O”

Why do we get a second commuting copy Õ?

The doubling of the observables is a general phenomenon whenever we have:

A large (chaotic) quantum system in a typical state |Ψ〉

We are probing it with a small algebra A of observables

Under these conditions, the small algebra A is effectively “doubled”.



T

For us, |Ψ〉= BH microstate (typical QGP state of E ∼ O(N2)

A= “algebra” of small (i.e. O(N0)) products of single trace operators

A = span of{O(t1, ~x1), O(t1, ~x1)O(t2, ~x2), ...}

Here T is a long time scale and also need some UV regularization.



For any given microstate |Ψ〉 consider the linear subspace HΨ of the full
Hilbert space H of the CFT

HΨ = A|Ψ〉 = {span of : O(t1, ~x1)...O(tn, ~xn))|Ψ〉}



HΨ depends on |Ψ〉

HΨ ⇒ Contains states of higher and lower energies than |Ψ〉

Bulk EFT experiments around BH |Ψ〉 take place within HΨ (bulk observer
cannot easily see outside HΨ)



The “doubling” follows from the important property:

A|Ψ〉 6= 0 if A 6= 0, ∀A ∈ A

(we cannot annihilate the QGP microstate by the action of a few single trace
operators)

Physical interpretation:

“The state |Ψ〉 appears to be entangled when probed by the algebra A”.



Consider the Hilbert space of two spins, and A = operators acting on the first.
If the two spins are in the state

|Ψ〉 = | ↑↑〉

In this case there is no entanglement and indeed the previous condition is
violated since

s
(1)
+ |Ψ〉 = 0 while s

(1)
+ 6= 0

On the other hand consider the state

|Ψ〉 = 1√
2
(| ↑↑〉+ | ↓↓〉)

Now there is entanglement and, relatedly, there is no non-vanishing operator
acting on the first spin that annihilates the state.



D
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x

t

x

D

Reeh-Schlieder theorem: Minkowski vacuum |0〉M cannot be annihilated by
acting with local operators in D.

⇒
In |0〉M local operator algebras are entangled — (though, no proper
factorization of Hilbert space due to UV divergences)



Remember the important condition

A|Ψ〉 6= 0 for A 6= 0 (1)

Suppose that
dimA = n

Then from (1) follows that

dimHΨ = dim (spanA|Ψ〉) = n

However the algebra L(HΨ) of all operators that can act on HΨ has
dimensionality

dimL(HΨ) = n2

while the original algebra A had only dimA = n.
This suggests that

L(HΨ) = A⊗ Ã

where Ã is a “second copy” of A. We can choose basis so that [A, Ã] = 0



|Ψ〉= BH microstate (QGP microstate)
A = “algebra” of small products of single trace operators
Black Hole interior operators Õ must commute with A ⇒ They are
elements of the “commutant” A′ of the algebra.

What is A′ for the algebra of single trace operators A acting on a
typical QGP state?



Consider a von-Neumann algebra A acting on a Hilbert space H.

Question: what is the commutant A′?

In general, question is difficult. A′ could be trivial. However, if ∃ a state |Ψ〉
in H for which

i) States A|Ψ〉 span H
ii) A|Ψ〉 6= 0 for all A 6= 0

then

Theorem: (Tomita-Takesaki) The commutant A′ is isomorphic to A
(doubling!). There is a canonical isomorphism J acting on H such that

Õ = JOJ

see also early work of A.Connes



On the subspace HΨ we define the antilinear map S by

SA|Ψ〉 = A†|Ψ〉

This is well defined because of the condition A|Ψ〉 6= 0 for A 6= 0.
We manifestly have

S|Ψ〉 = |Ψ〉
and

S2 = 1

For any operator A ∈ A acting on HΨ we define a new operator acting on the
same space by

Â = SAS



The hatted operators commute with those in A:

B̂A|Ψ〉 = SBSA|Ψ〉 = SBA†|Ψ〉 = (BA†)†|Ψ〉 = AB†|Ψ〉

and also
AB̂|Ψ〉 = ASBS|Ψ〉 = AB†|Ψ〉

hence
[A, B̂]|Ψ〉 = 0

The “hatted” operators Â = SAS satisfy:

Their algebra is isomorphic to A
They commute with A

they are almost the mirror operators, but not quite (the mixed A-Â
correlators are not “canonically” normalized)



The mapping S is not an isometry. We define the “magnitude” of the
mapping

∆ = S†S

and then we can write
J = S∆−1/2

where J is (anti)-unitary. Then the correct mirror operators are

Õ = JOJ

The operator ∆ is a positive, hermitian operator and can be written as

∆ = e−K

where
K = “modular Hamiltonian′′

For entangled bipartite system A×B this construction would give
KA ∼ log(ρA) i.e. the usual modular Hamiltonian for A.



In the large N gauge theory and using the KMS condition for correlators of
single-trace operators we find that for equilibrium states

K = β(HCFT − E0)

To summarize, we have
SA|Ψ〉 = A†|Ψ〉

and
∆ = e−β(HCFT−E0)

We define the J by
J = S∆−1/2

Finally we define the mirror operators by

Õ = JOJ



Putting everything together we define the mirror operators by the following
set of linear equations

Õω|Ψ〉 = e−
βω

2 O†
ω|Ψ〉

and
ÕωO....O|Ψ〉 = O...OÕω|Ψ〉

These conditions are self-consistent because A|Ψ〉 6= 0, which in turns relies
on

1. The algebra A is not too large
2. The state |Ψ〉 is complicated (this definition would not work around the

ground state of CFT)



These “mirror operators” Õ obey the desired conditions mentioned several
slides ago, i.e. at large N they lead to

〈Ψ|O(t1)...Õ(tk)..O(tn)|Ψ〉 ≈ 1

Z
Tr

[
O(t1)...O(tn)O(tk + i

β

2
)...O(tm + i

β

2
)
]



Using the Oω’s and Õω’s we can reconstruct the black hole interior by
operators of the form

φCFT(t,Ω, z) =
∑

m

∫ ∞

0
dω

[
Oω,m e−iωtYm(Ω)g(1)ω,m(z) + h.c.

+Õω,m e−iωt Ym(Ω) g(2)ω,m(z) + h.c.
]

Low point functions of these operators reproduce those of effective field
theory in the interior of the black hole

⇒

∃ Smooth interior

Nothing dramatic when crossing the horizon



The operators Õ seem to commute with the O’s

This is only approximate: the commutator [O, Õ] = 0 only inside low-point
functions (by construction)

If we consider N2-point functions, then we find that the construction cannot
be performed since we will violate

A|Ψ〉 6= 0, for A 6= 0

or equivalently, in spirit, we will find that

[O, Õ] 6= 0

inside complicated correlators.

Relatedly, we can express the Õ’s as very complicated combination of O’s.



Spin chain example



Black Hole interior is not independent Hilbert space, but scrambled copy of
(part of) the exterior

C

A

In our construction:

Exterior of black hole ⇒ operators φ(x)
Interior of black hole ⇒ operators φ̃(y)
In low-point correlators φ, φ̃ seem to be independent
If we act with too many (order SBH) of φ’s we can “reconstruct” the φ̃’s

Complementarity can be realized consistently with locality in
effective field theory (commutator is small)



Our operators were defined to act on HΨ (they are sparse operators).

For given BH microstate and for an EFT observer placed near the BH |Ψ〉,
this part of the Hilbert space is the only relevant (for simple experiments)

For different microstate |Ψ′〉 the “same physical observables” will be acting
on a different part of the Hilbert space HΨ′ and (a priori) will be different
linear operators

Is it possible to define the Õω globally on the Hilbert space?



Why it seems unlikely that Õ can be defined to act on all microstates:

There are certain “counting” arguments against the existence of globally
defined Õ operators [Bousso, Almheiri, Marolf, Polchinski, Stanford, Sully]

State-dependence could explain why we automatically get “correct
entanglement” for typical states

Even outside the horizon, non-trivial(?) to get rid of state (background)
dependence

It may be that in Quantum Gravity all local observables are state-dependent

Hence, in quantum gravity local observables may be state dependent, in
general



In any case, no known sharp problem with state dependence



Suppose |Ψ0〉 is equilibrium state. Consider the state:

|Ψ〉 = U(O)|Ψ0〉

where U is a unitary corresponding to a wavepacket outside the horizon.

It is easy to detect that |Ψ〉 is non-equilibrium, since correlators of the algebra
A on |Ψ〉 differ from the thermal ones.



But what about the state
|Ψ′〉 = U(Õ)|Ψ0〉

〈Ψ′|O..O|Ψ′〉 = 〈Ψ0|U †O..OU |Ψ0〉 = 〈Ψ0|U †UO..O|Ψ0〉 = 〈Ψ0|O..O|Ψ0〉
where we used that [O, Õ] = 0 and U †U = 1.

Correlators of O’s on |Ψ′〉 look like equilibrium correlators, it is very hard to
detect the excitation behind the horizon.



Potential ambiguity (Marolf, Wall, Raamsdonk, Maldacena, Harlow..): what
happens to the infalling observer in state |Ψ′〉?

|Ψ′〉 = U(Õ)|Ψ0〉

If we define the Õ wrt to |Ψ0〉, we will predict that infalling observer finds
excitation behind the horizon.

If we define the Õ wrt to |Ψ′〉 we will predict an empty interior.

What is the right answer?



We can use the fact that
[H, Õ] 6= 0

to “detect” the excitation behind the horizon by measuring correlators of the
form

〈Ψ′|OO...Hk|Ψ′ >

This seems to resolve the ambiguity



Consider the state
|Ψ′〉 = U(Õ)|Ψ0〉

Intuitively, this is a non-equilibrium state — its hard, but possible, to detect
the “excitation behind the horizon”.

This may look like some kind of peculiar state, whose existence depends on
the “state-dependent operator construction”.

HOWEVER: remember that

Õω|Ψ0〉 ∼ e−
βω

2 O†
ω|Ψ0〉

Hence the state can also be written as

|Ψ′〉 = V (O)|Ψ0〉

where V is made out of O’s, but not necessarily unitary.



When |Ψ0〉 has sharp energy E0 and in the large N limit we can show that

|Ψ′〉 = U(Õ)|Ψ0〉 = e−β
(H−E0)

2 U(O)|Ψ0〉

Creating a wavepacket behind the horizon (starting from an equilibrium
state), can be achieved by considering the state

e−β
(H−E0)

2 U(O)|Ψ0〉

Notice that we can create this particle without having to talk about
state-dependent operators!
In any stat-mech system (chaotic/ergodic etc.) states of the form

e−β
(H−E0)

2 U(O)|Ψ0〉

are subtle non-equilibrium states, which are the analogue of states which
contain excitations behind the horizon.



On these states
e−β

(H−E0)

2 U(O)|Ψ0〉
correlation functions of usual observables look like they are in equilibrium, but
if we include H then we see that there is some non-equilibrium behavior.

Under time evolution the state settles down to equilibrium!

It might be interesting to further study these states from a more general
perspective in statistical mechanics

Notice that these are statements about the usual, normal operators (no state
dependent tilde operators here)



Observables obeying the Eigenstate Thermalization Hypothesis (ETH)

Aab = f(E)δab +Rab

where f(E) is a smooth function. Rab ∼ O(e−S/2) and have erratic phases.
Our modes

Aω = Rab

connect states of energy E to E + ω.

On equilibrium states we have

〈Ψ|Aω|Ψ〉 ≈ 0

A typical state

|Ψ〉 =
∑

i

ci|Ei〉

with random phases.



We have
〈Ψ|Aω|Ψ〉 =

∑

ij

c∗i cjRij ∼ O(e−S/2)

due to random cancellations of phases.

When we excite the state as

|Ψ′〉 = U(O)|Ψ〉

we can have
〈Ψ|U(O)†AωU(O)|Ψ〉 6= 0

Even if |Ψ〉 is in the microcanonical, the state |Ψ′〉 = U(O)|Ψ〉 has significant
spread in energy.



Define projection operators PE on energies between E and E + δE. We can
decompose our original state as

|Ψ′〉 =
∑

E

PE |Ψ′〉 =
∑

E

|Ψ′
E〉

then we have

〈Ψ′|Aω|Ψ′〉 =
∑

E

〈Ψ′
E−ω|Aω|Ψ′

E〉 =
∑

E

f(E)

If 〈Ψ′|Aω|Ψ′〉 ∼ O(1) then we also have f(E) ∼ O(1) (or at least, not
exponentially suppressed)



In states of the form
|Ψ′〉 = U(O)|Ψ〉

we get an O(1) answer for
〈Ψ′|Aω|Ψ′〉

because the phases of different energy bins are correlated — in relation to the
matrix element of A.

What about states of the form

U(Õ)|Ψ〉

Since [Aω, Õ] = 0 we also have [Aω, U(Õ)] = 0 and

〈Ψ|U(Õ)†AωU(Õ)|Ψ〉 = 〈Ψ|U(Õ)†U(Õ)Aω|Ψ〉 = 〈Ψ|Aω|Ψ〉 = 0



States of the form
U(Õ)|Ψ〉

look like equilibrium states for operators in the algebra A, but intuitively we
think of them as excited, non-equilibrium states.

Excitation can be detected by correlation functions involving the Hamiltonian
but let us also look at the phases. We have

U(Õ)|Ψ〉 = ... = e−β(H−E0)/2U(O)|Ψ〉

States created by acting with unitaries of the tildes can be expressed in terms
of ordinary unitaries, modulated by a function of the Hamiltonian.

Notice that the definition of these states is “state independent” — and
independent of the existence/definition of the tildes.



So the claim is that if |Ψ〉 is an equilibrium state then on the state

|Ψ′′〉 = e−β(H−E0)/2U(O)|Ψ〉

correlators of A are the same (to leading order in 1/N) with those on |Ψ〉.
This follows from the KMS condition of thermal correlators (and large N
factorization).

In particular we have
〈Ψ′′|Aω|Ψ′′〉 ≈ 0

Remember that in the original state |Ψ〉 we had

〈Ψ|Aω|Ψ〉 ≈ 0

due to the erratic phases. The reasons that 〈Ψ′′|Aω|Ψ′′〉 ≈ 0 is qualitatively
different.



〈Ψ′′|Aω|Ψ′′〉 = 〈Ψ|U(O)† e−β(H−E0)/2Aω e−β(H−E0)/2 U(O)|Ψ〉
Inserting again the projection operators in the coarse energy bins we find

〈Ψ′′|Aω|Ψ′′〉 =
∑

E

e−β(E−E0)f(E)

Notice that the f(E) are non-zero! The fact that this correlator is zero is
because of cancellations between different energy bins (and the KMS
condition). Comparing the states

U(O)|Ψ〉

and
e

−β(H−E0)
2 U(O)|Ψ〉

we see that they have the same microscopic phases, but in the second state
we have some sort of “population inversion”.



“Proper” equilibrium states
|Ψ〉

phases between different energy bins (relative to O’s) erratic.

States with particles outside the horizon

U(O)|Ψ〉

phases betweeen different energy bins correlated. Under time evolution the
phases decohere and the state equilibriates (particles get lost behind the
horizon).

States with particles behind the horizon

e−β
H−E0

2 U(O)|Ψ〉

phases betweeen different energy bins correlated. cancellations between
contributions from different bins.



We argued that there is a canonical class of “quasi-equilibrium” states, of the
form

e−β(H−E0)/2U(O)|Ψ〉
which are parametrized in a similar way as perturbations in region I (i.e. by
unitaries U(O)) — yet the perturbations are almost undetectable by single
trace operators.

This indicates the existence of a seemingly causally disconnected region of
spacetime in the bulk.

The tilde operators cause transitions between these states.

But the existence of these states is rather robust (no state-dependence, or
need to define the tildes)



1. Big AdS black holes have smooth interior, CFT can describe it

2. An infalling observer does not see any deviations from what is predicted
by semiclassical GR

3. By extrapolation, we conjecture the same for flat space black holes

4. Information paradox resolved by exponentially small corrections to EFT

5. Entanglement/cloning related paradoxes resolved by complementarity

6. Progress towards a mathematically precise realization of complementarity

7. Evidence that complementarity and locality in EFT are compatible

Important point to settle: state dependence and observables in Quantum Gravity

THANK YOU
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