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Defects in QFT
We have learned a lot by studying the BPS sector of 
susy QFTs

Susy QFTs have supersymmetric defects: line, surface, 
domain wall, divisor defects...

A new BPS sector opens up: BPS 
states can bound the defect

Understand the geometrical 
structures. Today: line defects



Line defects in class S

Theories of class S[A] arise from the 
compactification of the 6d N=(0,2) theory on 

Compute the BPS spectrum in many cases (aka 
decomposition of the KS operator)
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Line defects in class S
Add a line defect: new Hilbert space

Framed BPS states: a new index (PSC)
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BPS Quivers

We will consider SU(N+1)  

The ordinary BPS spectrum is captured by a low 
energy susy quiver quantum mechanics (SQQM)

The nodes are partonic (a basis of   ) constituents     
which interact via bi-fundamental fields (the 
arrows, given by          ) and a superpotential W

Ground states of this 
SQQM correspond to 
stable BPS particles
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Quivers and mutations
In certain chambers the mutation method gives an 
algorithm to solve the BPS spectral problem
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The assignment particle vs. antiparticle 
is arbitrary: white line

As we rotate it, the “partonic basis” 
changes by a mutation (Seiberg duality):

In finite chambers a full rotation generates the full 
spectrum (any stable state is fundamental in some 
duality frame)
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Cluster algebras and Q-systems

Every SU(N) quiver comes with a Q-system, a 
discrete integrable system (the cluster algebra of the 
quiver). Assign formal variables      to each node

Massaging this transformations we find the equation of 
the Q-system:

For any mutation we 
define the “partial 
evolution”
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The evolution of the Q-system is the sequence of 
mutation which generates the BPS spectrum
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Framed Quivers
Now incorporate line defects

We think of a line defect as an infinitely massive 
particle: modify the quiver adding a framing node

Construct the formal 
generating function
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Mutation symmetry of defects

Consider the sequence of mutations which generates 
the BPS spectrum 

It generates new defects!

Line defects come in cluster orbits

But for a Wilson line the framed quiver is invariant 

Wilson lines are the constants 
of motion of the Q-system

- explicit formulas! -

No exotic 
conjecture 
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Equivariant localization
Now consider the Witten index                    

We compute it with localization: fixed points + 
virtual tangent space (+ stability)

Natural toric action which rescales the fields in the 
SQQM (the arrows)

Combinatorial classification of the fixed points: 
pyramid partitions
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Equivariant localization

The weights of the toric action around a fixed 
point can be read from the deformation complex
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Conclusions
New structures appear with line defects

Line defects come in (cluster) families

Claim for                 : Wilson lines are constant of 
motions of the Q-system

Claim for                 : compute via localization

Many open questions: valid for any QFT? role of 
integrable systems? Hitchin moduli space 
interpretation? 
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