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Abstract: Whereas the usual Wigner-Inönü contrac-

tion c → ∞ of the Poincaré group yields the Galilei

group, another c → 0 contraction yields the “Carroll

group” of Lévy-Leblond. Both boost-invariant theories

are conveniently unified within the “Eisenhart-Duval”

framework. Plane gravitational waves carry a non-

trivially implemented Carroll symmetry with broken ro-

tations.
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Carroll group

J. M. Lévy-Leblond Carroll group ∗

constructed as novel type of contraction of Poincaré group

“Une nouvelle limite non-relativiste du group de Poincaré,”

Ann. Inst. H. Poincaré 3 (1965) 1

V. D. Sen Gupta , “On an Analogue of the Galileo

Group,” Il Nuovo Cimento 44 (1966) 512

no motion - no physics - mathematical curiosity

∗ Lewis Carroll Through the Look-

ing Glass and what Alice Found There (1871).
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NEWTON-CARTAN STRUCTURE

Fig. 1 : Galilean space-time, M , described by

(
x
t

)
.

Carries symmetric, contravariant non-negative [space-

co-] “metric” tensor γ, whose kernel is generated by

dt. Projects onto absolute time.
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Galilei boosts {
x′ = x+ b t
t′ = t

(1)

act as

Fig.2 Galilei boost acting on Galilei space-time
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CARROLL STRUCTURE

Lévy-Leblond 1965 :

Fig.2 : Carroll space-time, C described by

(
x
s

)
, is en-

dowed with vector ξ which generates kernel of (singular)

[space-] “metric” Ḡ = δAB dx
AdxB.
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Carroll group Carr(d+ 1) ∼ “Carrollian boosts”

{
x′ = x

s′ = s− b · x
(2)

NB : In NR QM wave fct transforms accord-

ing to:

ψ′(x, t) = ei(b·x−
1
2b

2t)ψ(x− bt, t) (3)
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Fig.3 Carroll boost acts on flat Carroll space-time

8



Carroll group represented by matrices R 0 c
−bTR 1 f

0 0 1

 (4)

where R ∈ O(d), b, c ∈ Rd, f ∈ R. Acts on x
s
1

 affinely by matrix action. Carroll Lie

algebra carr(d+ 1)

Z =

 ω 0 γ
−βT 0 ϕ

0 0 0

 (5)

ω ∈ so(d), β,γ ∈ Rd, and ϕ ∈ R acts on Carroll

space-time as

X = (ωAB x
B + γA)

∂

∂xA
+
(
ϕ −βA xA

) ∂
∂s
, (6)

where ω ∈ so(d), β,γ ∈ Rd, and ϕ ∈ R.

N.B. : Galilei Lie algebra gal ≡ gal(d+ 1)

X = (ωAB x
B + βAt + γA)

∂

∂xA
+ ε

∂

∂t
(7)

where ω ∈ so(d), β,γ ∈ Rd and ε ∈ R.
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Unification: Bargmann manifolds

A Bargmann manifold∗ is

(i) a (d+ 2)-dim manif B

(ii) endowed with metric G of signature (d+ 1,1)

(iii) carries nowhere vanishing, complete, null

“vertical” vector ξ, parallel-transported by Levi-

Civita connection, ∇.

L. P. Eisenhart, “Dynamical trajectories and geodesics”,

Annals. Math. 30 591-606 (1928).

J. Gomis and J. M. Pons, “Poincare Transformations

and Galilei Transformations,” Phys. Lett. A 66 (1978)

463.

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin,

“Bargmann Structures and Newton-Cartan Theory,”

Phys. Rev. D 31 (1985) 1841.

* Introduced by Duval et al as geometrical

structure underlying Bargmann [≡ centrally

extended Galilei] group.
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Fig. 4 : Bargmann space : (d+ 1,1) dim manifold with

Lorentz metric & coordinates (x, t, s), endowed with co-

variantly constant null vector ξ = ∂s.
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Flat Bargmann structure ∼ Minkowski space :

B = Rd × R× R =


 x
t
s


 , (8)

G = δAB dx
AdxB + 2dtds, (9)

ξ = ∂s . (10)

Both s & t light-cone (null), coords. t has

dimension of time, coordinate s has that of

action/mass.
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• Factoring out “vertical” translations along
ξ, (d+1)-dim quotient acquires Newton-Cartan
structure

Fig.5 : Bargmann sp projects to Galilean space-time.
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• Restriction to t = const turns off dtds in

metric (9), leaving singular “metric” δAB dx
AdxB

 admits flat Carroll structure embedded into

Bargmann space C =


 x

0
s




Fig.6 : t = const slice is “Carroll space-time” C embed-

ded into Bargmann space.
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Symmetries

ξ-preserving isometries of Bargmann :

a =


R b 0 c
0 1 0 e

−bTR −1
2b

2 1 f
0 0 0 1

 (11)

where R ∈ O(d), b, c ∈ Rd, and e, f ∈ R form

centrally extended Galilei [≡ Bargmann] group

Barg ≡ Barg(d+ 1). Boost : x
t
s

→
 x+ bt

t
s− b · x+ 1

2
b2t

 (12)

N.B. : lifting ordinary wave fct to equivariant

(≡ ∂sΨ = imΨ) on B-space, Galilei boost ac-

tion (3) is Bargmann action. Affine action on
x
t
s
1

  Bargmann algebra barg ≡ barg(d+ 1)

(ωAB x
B + βA t+ γA)

∂

∂xA
+ ε

∂

∂t
+ (ϕ− βA xA)

∂

∂s
(13)

where ω ∈ so(d), β, γ ∈ Rd, ε, ϕ ∈ R.
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Seen before: restriction of Bargmann space to

t = 0 is Carroll manifold C left invariant by re-

striction of Bargmann action (13) with e = 0 

action of Carr , embedded into Bargmann group,

 R 0 c
−bTR 1 f

0 0 1

 ↪→


R b 0 c
0 1 0 0

−bTR −1
2b

2 1 f
0 0 0 1


(14)

where R ∈ O(d), b, c ∈ Rd, f ∈ R.

Carr(d+ 1) : e = 0 subgroup of Barg(d+1) .

Infinitesimally:

(ωAB x
B + γA)

∂

∂xA
+ (ϕ− βA xA)

∂

∂s
(15)

ω ∈ so(d), β, γ ∈ Rd, ϕ ∈ R (seen before).

N.B. : for t = t0 Carroll boost acts as

v → v − b.x− 1
2b

2 t0 (16)
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Fig.7 Boost acting on flat Bargmann space
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Plane gravitational waves

In Brinkmann coordinates

ds2 = dX2 + 2dUdV −K(U,X) dU2 (17)

U and V light-cone coords, X = (X1, X2) ∼
transverse plane. Vacuum Einstein eqn satis-

fied with

K(U,X) = A(U)
(
X2

1 −X
2
2

)
+ 2B(U)X1X2.

(18)

Clue: (17) Bargmann space ∼ anisotropic oscillator .

P. M. Zhang, P. A. Horvathy, K. Andrzejewski, J. Gonera

and P. Kosinski, “Newton-Hooke type symmetry of anisotropic

oscillators,” Ann. Phys. 333 (2013) 335 [arXiv:1207.2875

[hep-th]].

Isometries : Bondi et al 1959. 5-parameters.

3 translations + 2 MYSTERIOUS (not writ-

ten explicitely). Torre 2006: solution of

Sturm-Liouville eqn.
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Souriau 1973 metric in BJR

(Baldwin-Jeffery-Rosen) coords :

ds2 = aij(u) dxidxj + 2dudv. (19)

Isometries : u→ u, completed with

x→ x+H(u)b + c, (20a)

v → v − b · x− 1
2b ·H(u)b + f (20b)

where H = (Hij) is 2× 2 matrix

H(u) =
∫ u
u0
a−1(w)dw. (21)

c ∈ R2 ∼ transverse-space transl, f ∼ null

translat along v coord.
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Group composition law: that of Carroll group
with no rotations. b ∈ R2 generates Carroll

boost, implemented as in (20).

Flat case : aij = δij ⇒

H(u) = (u− u0) Id (22)

choosing u0 = 0

x→ x+ ub, (23a)

u→ u, (23b)

v → v − b · x− 1
2b

2 u (23c)

Galilei boosts lifted to flat Bargmann space.

(See again at the end)
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Relation with Brinkmann-coords ?

1. Given B-profile K(U), solve Sturm-Liouville

P̈kj = KkrPrj (24)

for U-dept 2× 2 matrix Pkj(U) .

2. Putting

Xi = Pij x
j U = u (25a)

aij(u) = PriPrj, V = v −
1

4

daij

du
xixj

(25b)

allows to present metric (17) in BJR form

ds2 = aij(u) dxidxj + 2dudv

cf. (19) provided also P †Ṗ = Ṗ †P.

Quadratic “scalar potential” in B, KijX
iXj dU2

in (17), traded for “time”-dependent” trans-

verse metric aij(u) (while leaving U = u

unchanged).
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EXAMPLES

0. Restriction of flat Minkowski space

dr2 + 2dt ds

to t = 0 is Carroll manifold, upon which restric-
tion e = 0 of Bargmann group acts consistently
with Carroll action.

Fig.7bis Boost acting on flat Bargmann space
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Linearly polarized “sudden burst” ∼ Gaussian

profile (∼ anisotropic oscillator with time-dependent

frequency)

Kij(u)XiXj =
e−u

2

√
π

(
(X1)2 − (X2)2

)
. (26)

Fig.8 “Time” evolution of wave for “sudden burst” with

Gaussian profile A(u) = exp[−u2].

Sandwich wave: K(u) 6= 0 only in “wave zone”

Ui < U < Uf . Assumption : metric Minkowski

in “before-zone” U < Ui and flat in “after-

zone” Uf < U .
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Impulsive wave :

A(U) = 2k δ(U) (27)

k ∈ R. Wave zone suppressed, Ui = Uf = 0.
SL eqn. (24) solved by

P (u) = 1 + u θ(u) c0 (28)

where θ(u) Heaviside, c0 = 1
2ȧ(0+) initial “speed”

of transverse metric. Can be chosen c0 =
k diag(1,−1).

Fig.9. Numerical solution of S-L eqn (24) for profile

Aλ(U) = (λ/
√
π) e−λ

2U2

shows that components of diag-

onal matrix Pλ(U) approach, for large λ, those of impul-

sive wave [in dashed black].

a(u) =

{
1 for u ≤ 0,

(1 + u c0)2 for u ≥ 0.
(29)
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More generally

Aλ(U) =
λ
√
π
e−λ

2U2
. (30)

Squeezing Gaussians to Dirac δ by letting λ→
∞, components of Pλ(u) and of transverse met-

ric aλ(u) = PTλ (u)Pλ(u) tend to those of impul-

sive wave.

Fig.10. Squeezing Gaussians Aλ to Dirac δ, transverse

metrics aλ(u) (in red and blue) tend to that of impul-

sive wave in BJR coordinates, depicted in dashed black

lines.

25



Carroll boost for impulsive GW

Boost implemented as x → x + H(u)b, v →
v − b · x− 1

2b ·H(u)b cf. (20). For impulsive

H(u) = uP−1(u) (31)

P =

{
1 u ≤ 0

diag(1 + u/2,1− u/2) u ≥ 0
(32)

H = diag(H+, H−) =

 u
1+u/2

u
1−u/2

 u ≥ 0.

(33)

Boost with b = (b+, b−) implemented as,

x1 → x1 +
u

1 + u/2
b+ (34a)

x2 → x2 +
u

1− u/2
b− (34b)

v → v − (x1b+ + x2b−) −

1
2

(
u

1 + u/2
b2+ +

u

1− u/2
b2−

)
(34c)
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Fig.11 Boost acts on impulsive space-time according to

x→ x+Hb, v → v−b ·x− 1
2
b ·H(u)b. H = diag(H+, H−)

but components differ considerably from usual Galilei

implementation H± = u Id.
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