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Abstract: Whereas the usual Wigner-Indni contrac-
tion ¢ — oo of the Poincaré group vields the Galilei

group, another ¢ — 0 contraction vields the “Carroll
group” of Lévy-Leblond. Both boost-invariant theories
are conveniently unified within the “Eisenhart-Duval”
framework. Plane gravitational waves carry a non-
trivially implemented Carroll symmetry with broken ro-
tations.
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Carroll group

_ M Lew-Leblond

constructed as novel type of contraction of Poincaré group

“Une nouvelle limite non-relativiste du group de Poincaré,”
Ann. Inst. H. Poincaré 3 (1965) 1

V. D. _ “On an Analogue of the Galileo

Group,” Il Nuovo Cimento 44 (1966) 512

no motion - physics - mathematical curiosity

"The Red Queen has to run faster and faster
in order to keep still where she is. That is

* _ exactly what you all are doing!" Th rough the LOOk—

ing Glass and what Alice Found There (1871).
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Fig. 1 : Galilean space-time, - described by ( ; )
Carries symmetric, contravariant non-negative [space-
co-] “metric” tensor Y, whose kernel is generated by

dt. Projects onto absolute time.
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Fig.2 : Carroll space-time, C described by i,: , 1S en-

dowed with vector £ which generates kernel of (singular)

[space-] “metric’ G = 615 dzdxb.



Carroll group _ ~ “Carrollian boosts”

x’ T
2
{8' = s—b-x (2)

NB: In NR QM wave fct transforms accord-
ing to:

W) = PPy by | (3)




Fig.3 Carroll boost acts on flat Carroll space-time
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Carroll group represented by matrices

R O c
bR 1 ¢ (4)
0 0 1

where R € O(d), b,c € R%, f € R. Acts on
£Xr
S affinely by matrix action. Carroll Lie
1

w 0 v
Z=| -pL 0 ¢ (5)
O 0O
w € so(d), B,v € R% and ¢ € R acts on Carroll
Space-time as

o o
X = (wpz® +91) 5 5+ (0| -Baz?)) ., (6)

where w € so(d), B,v € R%, and ¢ € R.

N.B. : Galilei Lie algebra _

0 0
X = (whz® + |84+ ’YA)ax—A + " (7)

where w € so(d), 3,7 € R% and ¢ € R.



Unification: Bargmann manifolds

A Bargmann manifold* is
(i) a (d+ 2)-dim manif B
(ii) endowed with metric G of signature (d 4+ 1,1)

(iii) carries nowhere vanishing, complete, null
“vertical’ vector &, parallel-transported by Levi-
Civita connection, V.

L. P. Eisenhart, “Dynamical trajectories and geodesics’’,
Annals. Math. 30 591-606 (1928).

J. Gomis and J. M. Pons, “Poincare Transformations
and Galilei Transformations,” Phys. Lett. A 66 (1978)
463.

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin,
“Bargmann Structures and Newton-Cartan Theory,”
Phys. Rev. D 31 (1985) 1841.

* Introduced by JDBNEN et al as geometrical
structure underlying 'Bargmann [= centrally
extended Galilei] group.
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Fig. 4 : Bargmann space : (d+1,1) dim manifold with

Lorentz metric & coordinates (x,t, s), endowed with co-

variantly constant null vector £ = 0.
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Flat Bargmann structure ~ Minkowski space :

xr

B = RIxXRxR= t |y, (8)
S

G = Spdxidz® + 2dtds, (9)

¢ = 0s. (10)

Both s & t light-cone (null), coords. t has
dimension of time, coordinate s has that of
action/mass.
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‘e Factoring out “vertical” translations along

¢, (d+1)-dim quotient acquires [Newton-Cartan|

structure

M t

Fig.5 : Bargmann sp projects to Galilean space-time.
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@ Restriction to t = const turns off dtds in
metric (9), leaving singular “metric”’ 8§ 45 dz?dz?
~ admits flat [CarfOllNSErUCEUre embedded into

Bargmann space C = 0

S

t=0

Fig.6 : ¢t = const slice is “Carroll space-time” C embed-
ded into Bargmann space.
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Symmetries

£-preserving isometries of Bargmann :

R b 0 c
0 1 0 e

“=| -bTR —-1b2 1 7§ (11)
0 0 01

where R € O(d), b,c € R, and e, f € R form
centrally extended Galilei [= Bargmann] group

B8 = Barg(d + 1). Boost :

€T x + bt
t | — t (12)
S s—b-a:—l—%th

N.B. : lifting ordinary wave fct to equivariant
(= OsWV = imW) on B-space, Galilei boost ac-

tion (3) is Bargmann action. Affine action on
£

~ Bargmann algebra batg = barg(d + 1)

= »n o~

(wa P +6At+7A) L+ —-I-(so BAa:A)—

(13)
where w € so(d), B, v € R%, ¢, 0 € R.
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Seen before: restriction of Bargmann space to
t = 0 is Carroll manifold C left invariant by re-
striction of Bargmann action (13) withe = 0 ~
action of [€aff], embedded into Bargmann group,

R b 0O c

0 1 00

~b'R —1b? 1 f

0 0 01
(14)

where R € O(d), b,c € R?, f € R.

Infinitesimally:

(wB:vB+vA) —+ (o — 5AmA)— (15)

w € so(d), B, € Rd, ¢ € R (seen before).

N.B. : for t =ty Carroll boost acts as

v—)v—b.w—%bzto (16)
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Fig.7 Boost acting on flat Bargmann space
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Plane gravitational waves

In |ERRRMENN coordinates

ds® = dX? + 2dUdV — K(U,X)dU? (17)

U and V light-cone coords, X = (Xq1,X5) ~
transverse plane. Vacuum Einstein egn satis-
fied with

KU, X) = A(U)(X{ - X3) 4+ 2B(U) X1 X2.
(18)
Clue: (17) Bargmann space ~ anisotropic oscillator .

P. M. Zhang, P. A. Horvathy, K. Andrzejewski, J. Gonera

and P. Kosinski, “Newton-Hooke type symmetry of anisotropic
oscillators,” Ann. Phys. 333 (2013) 335 [arXiv:1207.2875
[hep-th]].

Isometries : Bondi et al 1959. 5-parameters.

3 translations + [2 MYSTERIOUS| (not writ-

ten explicitely). Torre 2006: solution of

Sturm-Liouville eqn.
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Souriau 19731 1 AT T metricin BJR
(Baldwin-Jeffery-Rosen) coords :

ds® = a;;(u) dr'de! + 2dudo. (19)

Isometries : © — u, completed with

x — x+ H(u)b 4+ c, (20a)

v%v—b-m—%b-H(u)b—l—f (20b)

where H = (H;;) is 2 x 2 matrix

H(u) = /u?;a,_l(w)dw. (21)

c € R? ~ transverse-space transl, f ~ null
translat along v coord.
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Group composition law: that of | Carroll group

with no rotations. b € R? generates Carroll
boost, implemented as in (20).

Flat case: a;; = ¢, =
19 19

H(u) = (u — up)Id (22)

choosing ug = 0

r — x + ub, (23a)
U — U, (23b)
v—>v—b-w—%b2u (23¢)

Galilei boosts lifted to flat Bargmann space.

(See again at the end)
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Relation with Brinkmann-coords 7

1. Given B-profile K(U), solve Sturm-Liouville

Py; = KgrPrj (24)

for U-dept 2 x 2 matrix Py;(U) .

2. Putting
X'=P 2! U=u (25a)
1da;; . -
1) = PriPrj, V= v iy

(25b)
allows to present metric (17) in BJR form

ds® = a;;(u) dz'dz! + 2dudv

cf. (19) provided also PtP = PtP.

Quadratic “scalar potential” in B, K;; X' X/ dU?
in (17), traded for “time”-dependent” trans-
verse metric a;;(u) (while leaving U = u
unchanged).
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EXAMPLES

0. Restriction of flat Minkowski space

dr? 4 2dt ds

to ¢t = 0 is Carroll manifold, upon which restric-
tion e = 0 of Bargmann group acts consistently
with Carroll action.

Fig.7bis Boost acting on flat Bargmann space
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Linearly polarized “sudden burst” ~ Gaussian
profile (~ anisotropic oscillator with time-dependent

frequency)
2

e

N

Kii(u)X'XI = ((X1)2 - (X2)2). (26)

Fig.8 “Time"” evolution of wave for “sudden burst” with

Gaussian profile A(u) = exp[—u?].

Sandwich wave: K(u) # 0 only in “wave zone"
U, < U < Uf. Assumption : metric Minkowski
in “before-zone” U < U; and flat in “after-
zone” Ur < U.
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Impulsive wave :
AU) = 2k6(U) (27)

k € R. Wave zone suppressed, U; = Uy = 0.
SL egn. (24) solved by

Plu) =14 u6(u)co (28)

where 6(u) Heaviside, c¢g = 3a(04) initial “speed”
of transverse metric. Can be chosen cg =
kdiag(1,—-1).
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Fig.9. Numerical solution of S-L eqn (24) for profile
An(U) = (\/y/7) e MU shows that components of diag-
onal matrix P\(U) approach, for large X\, those of impul-
sive wave [in dashed black].

1 for u <0,

(14 wecg)? for u> 0. (29)

a(u) = {
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More generally

ANU) = 2NV

N (30)

Squeezing Gaussians to Dirac ¢ by letting A —
oo, components of Py(u) and of transverse met-
ric ay(u) = P{ (u)Py\(u) tend to those of impul-
sive wave.
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Fig.10. Squeezing Gaussians A, to Dirac 6, transverse
metrics a)(u) (in red and blue) tend to that of impul-
sive wave in BJR coordinates, depicted in dashed black

lines.
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Carroll boost for impulsive GW

Boost implemented as ¢ — = + H(u)b, v —
v—b-z—2ib-H(u)b cf. (20). For impulsive

H@w) = uwP ) (31)

P = { ! “=9 3

diag(1 +u/2,1 —u/2) u>0

_u
H = diag(H4,H_) = ( Ifu/2 ) w> 0.

1—u/2
(33)
Boost with b = (b4,b_) implemented as,

u

— b 34a

r1 — x1 + 1 /2 + (34a)
u

N b 34b

Ty = a2+ o e (34b)

v —v— (r1b4 + x2b_) —

1 u 2 u 2
- (1 Fu2 T 10 b‘) (34¢)
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Fig.11 Boost acts on impulsive space-time according to
x — x+Hb,v +v—b-x—ib-H(u)b. H=diag(Hy, H )
but components differ considerably from usual Galilei

implementation Hy = u1d.
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