κı	NE	MA	TIC	AL	L	IE	ALGEBRA	S & THEIR	GEOMETRIES	(MITP, 16/3/2018)
Во	sed	ou	sever	مف	porper	o :	1711.05676	(Summany) (D=3) (D73)		Diffine
							1711.07363 1802.04048 180?	(D=2) ~/	/ Tomasz Andrzejewski ines)] w/ Stephn Probazka	1. Stolement of the problem 2. Methodology
							1803	Construction - to co	3	3. Kewitz (summary)
<u>K</u> i	ineuro	atical	بنا ل	ملهو	bras	our	d their spo	ce-lines		
									L space isotropy) we an	ean a real = (D+1)(D+2) - dimensional lie algebr
P	by a	_ leiv	nema	fical ton	لنو ح	alge - = ما		D-dimensional	L space isotropy) we an u{Jeb} ≅ <u>so</u> (D) , Pa are <u>so</u> (D)-ve ctors	ean a real \$(D+1)(D+2) - dimensional lie algebr [Jab, Icd] = Ste Jad - Sac Jbd - Sbd Jec + Sod J => [Jab, Be] = Ste Ba- Sac Bb

Examples							
	- static algebra						
	- Galikan algebra	[Be, H] = Pa					
	- Poincaré algebra	[Ba,H] = Pa	[Ba, Pb] = Sab H	[Ba,B6] =-Jab			
	- AdS algebra	$[B_a, H] = P_a$	[Ba, Pb] = Sab H	[Ba, Bb] =- Jab	[H,Pa]= Ba	[Pa, Pb]=- Jab	
	- Carroll algebra		$[B_{\alpha}, P_{b}] = S_{\alpha b}H$				

These is algobies admit geometrical interpretations as "relativity algobras" on homogeneous spaces of dimension D+1. A homogeneous space is a manifold M on which a lie group G acts transitionely (& modely). Fixing an "origin" pe M, the subgroup MCG which stabilizes p is a closed subgroup and $M \cong G/H$, the space of right water of Hin G. We can describe M infinitestandly by the lie pair (9, b) where g = lie(Cr) and h = lie(H). To g a binematical lie algebra to admit a "physical" geometrical realization, the subalgebra h must take a particular form: h is spanned by Jab and some linear acoustination $\alpha B_{n+1} \beta E_{n}$. As a custor space, $h = so(D) \otimes W$ where W is a vectorial subspace under so (D). In the above examples we can take $h = so(D) \oplus span \{B_n\}$ and the corresponding spaces are, we perfinely, $A^{D+1} \rightarrow A$, Michowski spacetime, AdS spacetime, Carroll spacetime

Clamity lie pairs (9, 4) where g is a kinematrical lie algebra and h is an admissible subalgebra, up to natural Problem equivalance: $(g_1, h_1) \cong (g_2, h_1)$ if $\psi : g_1 \cong g_2$ is a LA isomerphism taking $h_1 \cong h_2$. Classify KLAS up to iscomorphism This problem can be broken down into two: Tor each KIA iso class [9], determine lie rains (9, 6) up to $(\mathfrak{A},\mathfrak{h}_1)\cong (\mathfrak{A},\mathfrak{h}_2)$ for $\Psi\in\operatorname{Aut}(\mathfrak{A})$ taking $\mathfrak{h}_1\xrightarrow{\cong}\mathfrak{h}_2$ Prior art for D no votations, 9 me-dimensional D = 0 ⇒ Biauchin clanification (1898) us rotations, any 3d RLA is inversatical D = 1(1986) - also pointed out extendence of (9,15) for every KIA in D=3 D=3 Barry + lévy-lebland (1968), Barry + Nuyta 2. Methodology Fact: every KLA is a deformation of the static KLA. This is the converse statement to the fact that any KLA contracts to the static KLA. A real LA is a pair (V, M) convisting of a real vector space V and $\mu: R^2 \to V$ soloject to the Facobi identity. If $\Psi \in GL(V)$, then (V, Ψ^{μ}) is again a lie algebra, where $(\Psi^{\mu})(X,Y) := \Psi \mu (\Psi^{1}X, \Psi^{1}Y)$ so GL(V) acts on the space $\mathcal{L} \subset \Lambda^2 V^* \otimes V$ of the algebras on V. A the algebra (V, μ_{∞}) is a contraction of a the algebra (V, μ) if the in in the closure of the GL(V)-orbit of μ . Define $A^{p} := \Lambda^{p+1} V^{*} \otimes V$. We brackets on V belong to a variety $\mathcal{Z} \subset A^{4}$. Or $A^{e} \bigoplus_{p>1} A^{p}$ there is a (graded) lie screvalgebra structure [-,-]: A^p x A^q -- A^{p+q}. $\mu \in A^1$ defines a lie brachet on V iff [μ,μ] = 0.

Let (V,μ_0) be a lie algebre on V. If (V,μ) is another the algebra on V, then $\Psi := \mu - \mu_0$ observe the Nonver-Carton equation $\partial \Psi = \frac{1}{2} [\Psi,\Psi]$, where $\partial : A^{P} \rightarrow A^{P+1}$ is defined by $\partial \Psi := - [\mu_0,\Psi]$. It follows from $[\mu_0,\mu_0]=0$ K the facebi identity of $(,1, the D^2=0, the fact, H_0^P \cong H^{P+1}(\mathfrak{A}_0;\mathfrak{A}_0)$ where $\mathfrak{A}_{\mathbb{P}}^{\mathbb{P}}(V,\mu_0)$. Deformation theory is "perturbation theory" for the MC equation: $H_0^*:$ infinitesimal deformations $H_0^2:$ obstructions to integrating infinitesimal deformations. This gives rise to the elamification of KLAs for all D. There are "generic" KLAs which exist for all D, but there there are KLAs unique to D=3 and D=2. In D=3 they one their existence to the $\underline{so}(B)$ -invariant vector product $\Lambda^2 \mathbb{R}^3 \rightarrow \mathbb{R}^3$ which can give rise to backets of the form $[B_8, B_6] = E_{obc} B_c$. In D=2 they are due to the $\underline{so}(2)$ -invariant symplectic structure $\Lambda^2 \mathbb{R}^2 \rightarrow \mathbb{R}$ which can give rise to backets of the form $[B_8, B_6] = E_{obc} B_c$.

The gellean algebra in the symmetry algebra of free Nachtonian motion. It admits a universal central extension, which is the symmetry algebra of the hee Schridinger equation: the Bergmann algebra. It is generated by Jab, Be, Pa, H and Z, with the usual galilean brackets and, in addition, [Ba, Pb]= Sab Z.

The Bargmann algebra is a deformation of the universal cantral extension of the static KLA, for D>3. Indeed, for D>3, the static KLA admits a 1d central extension with the above bracket: [Ba, Pol= Sol Z. For D=2, there is a 4-parameter family of (kinematical) central extensions and for D=1 there is a 3-parameter samily. The clanification of algormations of the centrally-extended static KLA (and of the corresponding homogeneous spaces) has also been achieved for D>3, using the same method. Thue are no special deformations in D=3 and, infect, the resolts are uniform for all D>3. There are 3 kinds of deformations: 1) nonturnal central extensions of KLAs: e, p, So(D+1,1), So(D,2), So (D+2) 3) noncentral extensions of KLAs.

For each lie pair (9, b) we can determine the maniants in the linear isotropy representation $\frac{9}{6}$ and its tensors. For application to viewannian and/or NC geometries, we bale at the maniants in $\frac{9}{6}$, $\frac{9}{6}$, $\frac{5}{2}$, $\frac{1}{2}$, $\frac{1}{$ 3. Summary of resolts

Clamification of kinematical he algebras :

TABLE 1. Notation for Lie algebras

Notation	Name	Notation	Name
a	abelian	p	Poincaré
\$	static	50	orthogonal
\mathfrak{n}_+	(euclidean) Newton	co	orthogonal + dilatation
\mathfrak{n}	(lorentzian) Newton	g	galilean
e	euclidean	c	Carroll

TABLE 2. Kinematical Lie algebras in D = 1

Bianchi	Non	zero Lie brackets	3	Comments	Metric?
Ι				$\mathfrak{a}~(\cong\mathfrak{s})$	\checkmark
II	[H,B]=P			$\mathfrak{g}~(\cong\mathfrak{c})$	
III		[H,P]=P			
IV	[H,B]=B+P	[H,P]=P			
V	[H,B]=B	[H,P]=P			
VI_0	[H,B] = -B	[H,P]=P		$\mathfrak{n}_{-}~(\cong\mathfrak{p})$	
VI_{γ}	$[H, B] = \gamma B$	[H,P]=P		$0 \neq \gamma \in (-1,1)$	
VII_0	[H,B]=P	[H,P]=-B		$\mathfrak{n}_+ \ (\cong \mathfrak{e})$	
VII_{α}	$[H, B] = \alpha B + P$	$[H, P] = \alpha P - B$		$\alpha > 0$	
VIII	[H,B]=P	[H,P]=-B	[B,P]=-H	$\mathfrak{so}(1,2)$	\checkmark
IX	[H,B]=P	[H,P]=-B	[B, P] = H	$\mathfrak{so}(3)$	\checkmark

TABLE 3. Kinematical Lie algebras in D = 2 (complex form)

	Ν	Comments	Metric?			
					s	
[H, B] = P					g	
$[H,\mathbf{B}]=\mathbf{B}$	$[H,\mathbf{P}]=-\mathbf{P}$				n_	
$[H,\mathbf{B}]=\mathfrak{i}\mathbf{B}$					\mathfrak{n}_+	
$[H,\mathbf{B}]=\mathbf{B}$	$[H,\mathbf{P}]=(\lambda+\mathfrak{i}\theta)\mathbf{P}$				$\lambda \in (-1,1], \theta \in \mathbb{R}$	
[H, B] = B	[H,P]=B+P					
			$[\mathbf{B},\bar{\mathbf{P}}]=H$		c	
[H, B] = B	$[H,\mathbf{P}]=-\mathbf{P}$		$[\mathbf{B}, \bar{\mathbf{P}}] = 2(\mathbf{R} - i\mathbf{H})$		$\mathfrak{so}(3,1)$	/ ✓ \
	[H, P] = B		$[\mathbf{B},\bar{\mathbf{P}}]=-2H$	$[\mathbf{P}, \bar{\mathbf{P}}] = -2i\mathbf{R}$	e	\checkmark
	$[H,\mathbf{P}]=-\mathbf{B}$		$[\mathbf{B}, \bar{\mathbf{P}}] = -2\mathbf{H}$	$[\mathbf{P}, \bar{\mathbf{P}}] = 2i\mathbf{R}$	þ	\checkmark
$[H,\mathbf{B}]=-\mathbf{P}$	[H, P] = B	$[\mathbf{B}, \bar{\mathbf{B}}] = -2i\mathbf{R}$	$[\mathbf{B},\bar{\mathbf{P}}]=-2H$	$[\mathbf{P}, \bar{\mathbf{P}}] = -2i\mathbf{R}$	$\mathfrak{so}(4)$	\checkmark
[H, B] = -P	[H, P] = B	$[\mathbf{B}, \bar{\mathbf{B}}] = 2iR$	$[\mathbf{B}, \bar{\mathbf{P}}] = 2\mathbf{H}$	$[\mathbf{P}, \bar{\mathbf{P}}] = 2i\mathbf{R}$	$\mathfrak{so}(2,2)$	\checkmark
		$[\mathbf{B}, \bar{\mathbf{B}}] = \mathfrak{i} H$		$[\mathbf{P}, \bar{\mathbf{P}}] = iH$		
[H, B] = iB		$[\mathbf{B},\bar{\mathbf{B}}]=\mathfrak{i}H$		$[\mathbf{P}, \bar{\mathbf{P}}] = \mathfrak{i}(\mathbf{H} + \mathbf{R})$		$\setminus \checkmark$
		$[B,\bar{B}]=\mathfrak{i}H$				\sim
[H, B] = P		$[B,\bar{B}]=\mathfrak{i}H$				T
$[H,B]=\pm \mathfrak{i}B$		$[B,\bar{B}]=\mathfrak{i}H$				
					hem-Simons '	
				4	herries	

	Nonz	ero Lie brackets			Comments	Metric?
					\$	
[H, B] = -P					g	
[H, B] = -B	[H, P] = P				\mathfrak{n}_{-}	
[H, B] = P	[H, P] = -B				\mathfrak{n}_+	
$[H, B] = \gamma B$	[H, P] = P				$\gamma \in (-1,1)$	
$[H,\mathbf{B}]=\mathbf{B}$	[H, P] = P					
$[H, B] = \alpha B + P$	$[H, P] = \alpha P - B$				$\alpha > 0$	
[H,B]=B+P	[H, P] = P					
		$[\mathbf{B},\mathbf{P}]=\mathbf{H}$			c	
$[H,\mathbf{B}]=\mathbf{P}$		$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}]=\mathbf{R}$		e	
[H, B] = -P		$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}]=-\mathbf{R}$		p	
$[H,\mathbf{B}]=\mathbf{B}$	[H,P]=-P	$[\mathbf{B},\mathbf{P}]=\mathbf{H}-\mathbf{R}$			$\mathfrak{so}(4,1)$	\checkmark
$[H,\mathbf{B}]=\mathbf{P}$	[H, P] = -B	$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}]=\mathbf{R}$	$[\mathbf{P},\mathbf{P}]=\mathbf{R}$	$\mathfrak{so}(5)$	\checkmark
$[H,\mathbf{B}]=-\mathbf{P}$	[H, P] = B	$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}]=-\mathbf{R}$	$[\mathbf{P},\mathbf{P}] = -\mathbf{R}$	$\mathfrak{so}(3,2)$	\checkmark
			$[\mathbf{B},\mathbf{B}]=\mathbf{B}$	$[\mathbf{P},\mathbf{P}]=\mathbf{B}-\mathbf{R}$		\checkmark
			$[\mathbf{B},\mathbf{B}]=\mathbf{B}$	$[\mathbf{P},\mathbf{P}]=\mathbf{R}-\mathbf{B}$		\checkmark
			$[\mathbf{B},\mathbf{B}]=\mathbf{B}$			\checkmark
			$[\mathbf{B},\mathbf{B}]=\mathbf{P}$			\checkmark
	[H, P] = P		$[\mathbf{B},\mathbf{B}]=\mathbf{B}$			
$[H,\mathbf{B}]=-\mathbf{P}$			$[\mathbf{B},\mathbf{B}]=\mathbf{P}$			
$[H,\mathbf{B}]=\mathbf{B}$	$[H,\mathbf{P}]=2\mathbf{P}$		$[\mathbf{B},\mathbf{B}]=\mathbf{P}$			

TABLE 4. Kinematical Lie algebras in D = 3

	Nonzero Lie brackets								
					\$				
$[H,\mathbf{B}]=\mathbf{P}$					g				
$[H,\mathbf{B}]=-\mathbf{B}$	[H,P]=P				\mathfrak{n}_{-}				
$[H,\mathbf{B}]=\mathbf{P}$	[H, P] = -B				\mathfrak{n}_+				
$[H, B] = \gamma B$	[H, P] = P				$\gamma \in (-1,1]$				
$[H,\mathbf{B}] = \alpha \mathbf{B} + \mathbf{P}$	$[H,\mathbf{P}] = \alpha \mathbf{P} - \mathbf{B}$				$\alpha > 0$				
$[H,\mathbf{B}]=\mathbf{B}+\mathbf{P}$	[H, P] = P								
		$[\mathbf{B},\mathbf{P}]=\mathbf{H}$			c				
$[H,\mathbf{B}]=\mathbf{P}$		$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}]=\mathbf{R}$		e				
$[H,\mathbf{B}]=-\mathbf{P}$		$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}] = -\mathbf{R}$		p				
$[H,\mathbf{B}]=\mathbf{B}$	$[H,\mathbf{P}]=-\mathbf{P}$	$[\mathbf{B},\mathbf{P}]=\mathbf{H}+\mathbf{R}$			$\mathfrak{so}(D+1,1)$	\checkmark			
$[H,\mathbf{B}]=\mathbf{P}$	[H,P]=-B	$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}]=\mathbf{R}$	$[\mathbf{P},\mathbf{P}]=\mathbf{R}$	$\mathfrak{so}(D+2)$	\checkmark			
$[H,\mathbf{B}]=-\mathbf{P}$	[H,P]=B	$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[\mathbf{B},\mathbf{B}]=-\mathbf{R}$	$[\mathbf{P},\mathbf{P}]=-\mathbf{R}$	$\mathfrak{so}(D,2)$	\checkmark			

TABLE 5. Kinematical Lie algebras in $D \ge 4$

			Comments	Metric?		
$\left[B,P\right] =Z$					ŝ	
$[\mathbf{B},\mathbf{P}]=Z$	$[H,\mathbf{B}]=\mathbf{B}$	$[H,\mathbf{P}]=-\mathbf{P}$			n_	
$\left[B,P\right] =Z$	$[H,\mathbf{B}]=\mathbf{P}$	$[H,\mathbf{P}]=-\mathbf{B}$			$ \hat{\mathfrak{n}}_+$	
$[\mathbf{B},\mathbf{P}]=Z$	$[H,\mathbf{B}]=-\mathbf{P}$				ĝ	
$\left[B,P\right] =H$	$[H,\mathbf{B}]=\mathbf{P}$			$[\mathbf{B},\mathbf{B}]=\mathbf{R}$	$\mathfrak{e} \oplus \mathbb{R}$	
$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	$[H,\mathbf{B}]=-\mathbf{P}$			$[\mathbf{B},\mathbf{B}]=-\mathbf{R}$	$\mathfrak{p} \oplus \mathbb{R}$	
$[\mathbf{B},\mathbf{P}]=H+\mathbf{R}$	$[H,\mathbf{B}]=\mathbf{B}$	$[H,\mathbf{P}]=-\mathbf{P}$			$\mathfrak{so}(D+1,1)\oplus\mathbb{R}$	\checkmark
$[\mathbf{B},\mathbf{P}]=\mathbf{H}$	[H, B] = P	$[H,\mathbf{P}]=-\mathbf{B}$		$[\mathbf{B},\mathbf{B}]=\mathbf{R} [\mathbf{P},\mathbf{P}]=\mathbf{R}$	$\mathfrak{so}(D+2)\oplus\mathbb{R}$	\checkmark
$[\mathbf{B},\mathbf{P}]=H$	$[H,\mathbf{B}]=-\mathbf{P}$	$[H,\mathbf{P}]=\mathbf{B}$		$[\mathbf{B},\mathbf{B}]=-\mathbf{R}~[\mathbf{P},\mathbf{P}]=-\mathbf{R}$	$\mathfrak{so}(D,2)\oplus\mathbb{R}$	\checkmark
$[\mathbf{B},\mathbf{P}]=Z$	$[H,\mathbf{B}]=\gamma\mathbf{B}$	$[H,\mathbf{P}]=\mathbf{P}$	$[H,Z]=(\gamma+1)Z$		$\gamma \in (-1, 1]$	
$\left[B,P\right] =Z$	$[H,\mathbf{B}]=\mathbf{B}$	[H,P]=B+P	[H, Z] = 2Z			
$[\mathbf{B},\mathbf{P}]=Z$	$[H,B]=\alpha B+P$	$[H,P]=-B+\alpha P$	$[H,Z]=2\alphaZ$		$\alpha > 0$	
$\left[B,P\right] =Z$	[Z,B]=P	[H,P]=P	[H,Z]=Z	$[\mathbf{B},\mathbf{B}]=\mathbf{R}$	$\mathfrak{co}(D+1)\ltimes\mathbb{R}^{D+1}$	
$\left[B,P\right] =Z$	[Z,B]=-P	[H,P]=P	[H,Z]=Z	$[\mathbf{B},\mathbf{B}] = -\mathbf{R}$	$\mathfrak{co}(D,1)\ltimes\mathbb{R}^{D,1}$	

TABLE 6. Deformations of $\hat{\mathfrak{s}}$ in $D \ge 3$

Clamification of homogeneous "spacetimes":

TABLE 6. Spacetimes for kinematical Lie algebras ($D \ge 3$)

ST#	LA#	No	nzero Lie brackets in addition to	$[\mathbf{I}, \mathbf{I}] = \mathbf{I} \cdot [\mathbf{I}, \mathbf{B}]$	$] = \mathbf{B} \cdot [\mathbf{L} \cdot \mathbf{P}] = \mathbf{P}$		Comments
1	1		interest in addition of	<u>, , , , , , , , , , , , , , , , , , , </u>] = 27(),1] = 1		static
2	2	[H, B] = P					galilean
2 3 4 y 5 y 6 y 7	2	. , .	[H, P] = B				para-galilean
4_{γ}	3γ	$[H, B] = \gamma B$	[H, P] = P				$\gamma \in (-1, 1)$
5_{γ}	3γ	[H, B] = B	$[H,P] = \gamma P$				$\gamma \in (-1,1)$
6γ	3γ	[H, B] = P	$[H,P] = -\gamma B + (1+\gamma)P$				$\gamma \in (-1,1)$
	4	[H, B] = B	[H, P] = P				
8	5	[H, B] = -B	[H,P]=P				
9	5	[H, B] = P	[H,P]=B				dS galilean
$NR \rightarrow 10$	6	[H,B]=B+P	[H,P]=P				
11	6	[H, B] = B	[H,P]=B+P				
$NR \rightarrow 12_{\theta}$	7 ₀	$[\mathbf{H}, \mathbf{B}] = \mathbf{\theta}\mathbf{B} + \mathbf{P}$	$[H,P] = \theta P - B$				$\theta > 0$
13	8	[H, B] = P	[H, P] = -B				adS galilean
14	9				$[\mathbf{B},\mathbf{P}]=\mathbf{H}$		Carroll
15_{+1}	10_{+1}	[H, B] = P		$[\mathbf{B},\mathbf{B}] = \mathbf{J}$	$[\mathbf{B}, \mathbf{P}] = \mathbf{H}$		euclidean
15_{-1}	10_{-1}	[H, B] = -P		$[\mathbf{B},\mathbf{B}] = -\mathbf{J}$	$[\mathbf{B},\mathbf{P}]=H$		Poincaré
16_{+1}	10_{+1}		[H, P] = -B		$[\mathbf{B},\mathbf{P}]=H$	$[\mathbf{P},\mathbf{P}] = \mathbf{J}$	para-euclidean
16_1	10_{-1}		[H, P] = B		$[\mathbf{B},\mathbf{P}]=H$	$[\mathbf{P},\mathbf{P}]=-\mathbf{J}$	para-Poincaré
17	11	[H, B] = B	[H, P] = -P		$[\mathbf{B},\mathbf{P}] = \mathbf{H} - \mathbf{J}$		
18_{+1}	11	[H, B] = P	[H,P]=B	$[\mathbf{B},\mathbf{B}]=\mathbf{J}$	$[\mathbf{B},\mathbf{P}]=H$	$[\mathbf{P},\mathbf{P}]=-\mathbf{J}$	hyperbolic
18_1	11	[H, B] = -P	[H,P]=-B	$[\mathbf{B},\mathbf{B}] = -\mathbf{J}$		$[\mathbf{P},\mathbf{P}] = \mathbf{J}$	de Sitter
19_{+1}	12_{+1}	[H, B] = P	[H, P] = -B	$[\mathbf{B},\mathbf{B}] = \mathbf{J}$	$[\mathbf{B},\mathbf{P}]=H$	$[\mathbf{P},\mathbf{P}] = \mathbf{J}$	sphere
19_1	12_{-1}	[H, B] = -P	[H,P]=B	$[\mathbf{B},\mathbf{B}] = -\mathbf{J}$	$[\mathbf{B},\mathbf{P}]=H$	$[\mathbf{P},\mathbf{P}] = -\mathbf{J}$	anti de Sitter
= 6005	ts act th	xvially	= Newton-Cantan	NR = won-1	reductive		

TABLE 7. Spacetimes for kinematical Lie algebras unique to $\mathsf{D}=3$

ST#	LA#	Nonzero Lie	brackets in ac	dition to [J,	J] = J, [J, B] = B, [J, P] = P	Comments
20_{ε}	13 _ε			$[\mathbf{B},\mathbf{B}]=\mathbf{B}$	$[\mathbf{P},\mathbf{P}] = \varepsilon(\mathbf{B} - \mathbf{J})$	$\varepsilon = \pm 1$
21	14			$[\mathbf{B},\mathbf{B}]=\mathbf{B}$		
22	14				$[\mathbf{P},\mathbf{P}]=\mathbf{P}$	
23	15				$[\mathbf{P},\mathbf{P}]=\mathbf{B}$	
24	16		[H, P] = P	$[\mathbf{B},\mathbf{B}]=\mathbf{B}$		
25	16	[H, B] = P			$[\mathbf{P},\mathbf{P}]=\mathbf{P}$	
26	17		[H,P]=-B		$[\mathbf{P},\mathbf{P}]=\mathbf{B}$	
27	18	$[H,\mathbf{B}]=2\mathbf{B}$	[H, P] = P		$[\mathbf{P},\mathbf{P}]=\mathbf{B}$	

TABLE 8. Spacetimes for kinematical Lie algebras (D = 2)

ST#	LA#		Nonzero Lie brackets in addition to $[J, B] = B$, $[J, P] = P$				
28	19						static
29	20	$[H,\mathbf{B}] = -\mathbf{P}$					galilean
30	20	[H,P] = -B					para-galilean
31	21	[H,B]=B+P	[H,P]=P				
32	21	[H, B] = B	[H,P]=B+P				
33	221	[H, B] = B	[H, P] = P				
34	23	[H, B] = B	[H, P] = -P				
35	23	[H, B] = -B	[H, P] = P				
36	23	[H, B] = P	[H, P] = B				
$37_{\lambda+i\theta}$	$22_{\lambda+i\theta}$	[H, B] = B	$[H, P] = (\lambda + i\theta)P$				$\lambda + i\theta \neq \pm 1$
$38_{\lambda+i\theta}$	$22_{\lambda+i\theta}$	$[H, B] = (\lambda + i\theta)B$	[H, P] = P				$\lambda + i\theta \neq \pm 1$
$39_{\lambda+i\theta}$	$22_{\lambda+i\theta}$	[H, B] = P	$[H, P] = P - (\lambda + i\theta)B$				$\lambda + i\theta \neq \pm 1$
40	24	[H, B] = iB					
41	24	[H, B] = P	[H, P] = iP		_		
42	25				$[\mathbf{B}, \overline{\mathbf{P}}] = \mathbf{H}$	_	Carroll
43	26_{+1}		[H, P] = B		$[\mathbf{B}, \mathbf{P}] = 2\mathbf{H}$	$[\mathbf{P}, \bar{\mathbf{P}}] = 2iJ$	euclidean
44	26_1		[H, P] = -B		$[\mathbf{B}, \overline{\mathbf{P}}] = 2H$	$[\mathbf{P}, \bar{\mathbf{P}}] = -2iJ$	Poincaré
45	26_{+1}	$[H,\mathbf{B}] = -\mathbf{P}$		$[\mathbf{B}, \bar{\mathbf{B}}] = 2iJ$	$[{\bf B}, {\bf P}] = 2{\rm H}$		para-euclidean
46	26_1	[H, B] = P		$[\mathbf{B}, \bar{\mathbf{B}}] = -2iJ$	$[{\bf B}, {\bf P}] = 2{\bf H}$		para-Poincaré
47	27	[H, B] = B	[H, P] = -P		$[\mathbf{B}, \bar{\mathbf{P}}] = 2(\mathbf{J} - \mathbf{i}\mathbf{H})$		
48	27	[H, B] = P	[H, P] = B	$[\mathbf{B}, \bar{\mathbf{B}}] = -iJ$	$[\mathbf{B}, \bar{\mathbf{P}}] = \mathbf{H}$	$[\mathbf{P}, \bar{\mathbf{P}}] = iJ$	hyperbolic
49	27	[H, B] = P	[H, P] = B	$[\mathbf{B}, \bar{\mathbf{B}}] = i\mathbf{J}$	$[\mathbf{B}, \overline{\mathbf{P}}] = \mathbf{H}$	$[\mathbf{P}, \bar{\mathbf{P}}] = -iJ$	de Sitter
50	28+1	[H, B] = -P	[H, P] = B	$[\mathbf{B}, \bar{\mathbf{B}}] = 2iJ$	$[\mathbf{B}, \mathbf{\bar{P}}] = 2H$	$[\mathbf{P}, \bar{\mathbf{P}}] = 2iJ$	sphere
51	28_{-1}	[H, B] = P	$[\mathbf{H}, \mathbf{P}] = -\mathbf{B}$	$[\mathbf{B}, \bar{\mathbf{B}}] = -2i\mathbf{J}$	$[B, \bar{P}] = 2H$	$[\mathbf{P}, \mathbf{\bar{P}}] = -2iJ$	anti de Sitter
52	31		.,	. , ,	. , ,	$[\mathbf{P}, \mathbf{\overline{P}}] = i\mathbf{H}$	
53	32		[H, P] = B			$[\mathbf{P}, \bar{\mathbf{P}}] = i\mathbf{H}$	
54	33		[H, P] = iP			$[\mathbf{P}, \bar{\mathbf{P}}] = i\mathbf{H}$	
55	33		[H, P] = -iP			$[\mathbf{P}, \overline{\mathbf{P}}] = i\mathbf{H}$	

	#	Bianchi	No	nzero Lie brackets	3	Comments
	56	Ι				static
	57	II			[P,H]=B	para-galilean
	58	II	[B,H] = P			galilean
	59	IV	[B,H]=B		[P,H]=B+P	
	60	IV	[B,H] = P		[P,H] = 2P - B	
	61	V	[B,H]=B		[P,H] = P	
	62	VI_0	[B,H]=-B		[P,H]=P	
	63	VI_0	[B,H] = P		[P,H]=B	
	64	$VI_{c>0}$	[B,H] = (c-1)B		[P,H] = (1+c)P	
	65	$VI_{c>0}$	[B,H] = (c+1)B		[P,H] = (c-1)P	
	66	$VI_{c>0}$	[B,H]=cB+P		[P,H]=cP+B	
	67	VII_0	[B,H]=-P	[B, P] = H		euclidean
	68	VII_0	[B,H]=-P		[P,H]=B	
	69	$VII_{c>0}$	[B,H]=cB-P		[P,H]=B+cP	
	70	VIII	[B,H]=-P	[B,P]=-H	[P,H]=B	(anti) de Sitter
	71	VIII	[B,H]=-P	[B, P] = H	[P,H] = -B	hyperbolic
_	72	IX	[B,H]=-P	[B, P] = H	[P,H]=B	sphere
	73	IV	[B,H] = -P - H	[B,P]=-P		
	74	V	[B,H]=-H	[B,P]=-P		
	75	VI_0	[B,H]=-H	[B,P]=P		Poincaré
	76	$VI_{c>0}$	[B,H] = -(1+c)H	[B,P] = (1-c)P		
	77	$VII_{c>0}$	$[\mathbf{B},\mathbf{H}] = -\mathbf{P} - \mathbf{c}\mathbf{H}$	[B,P]=H-cP		
->	78	VIII	[B,H] = 2P	[B,P]=-B	[P,H]=-H	

TABLE 9. Spacetimes for kinematical Lie algebras (D = 1)

NR-

	ST#	LA#	Nonzero Lie brackets in addition to $[J, J] = J$, $[J, B] = B$, $[J, P] = P$					Comments
	1	1	$[\mathbf{B},\mathbf{P}]=Z$					
$NR \left\{ NR \rightarrow NR \rightarrow NR \right\}$	2	1	$[\mathbf{B},\mathbf{P}]=H$					
	3	2	$[\mathbf{B},\mathbf{P}]=Z$	[H, B] = B	[H,P]=-P			
	4	2	$[\mathbf{B},\mathbf{P}]=H$	[Z, B] = B	[Z,P] = -P			
	5	2	$[\mathbf{B},\mathbf{P}]=Z$	[H, B] = P	[H, P] = B			
	6	3	$[\mathbf{B},\mathbf{P}]=Z$	[H, B] = P	[H,P]=-B			
	7	4	$[\mathbf{B},\mathbf{P}]=Z$	[H, B] = -P				
	8	4	$[\mathbf{B},\mathbf{P}]=Z$	[H,P]=-B				
	9	4	$[\mathbf{B},\mathbf{P}]=H$	[Z,P]=B				
	10	5	$[\mathbf{B},\mathbf{P}] = \mathbf{H} + \mathbf{J}$	[H, B] = B	[H,P]=-P			
	11	5	$[\mathbf{B},\mathbf{P}]=Z-H+J$	[Z,B]=B	[Z,P] = -P			
	12_{ε}	6ε	$[\mathbf{B},\mathbf{P}]=H$	$[H, B] = \varepsilon P$	$[\mathbf{H}, \mathbf{P}] = -\varepsilon \mathbf{B}$	$[\mathbf{B},\mathbf{B}]=\varepsilon\mathbf{J}$	$[\mathbf{P},\mathbf{P}] = \varepsilon \mathbf{J}$	$\varepsilon = \pm 1$
	13_{ε}	7_{ε}	$[\mathbf{B},\mathbf{P}]=H$	$[H, B] = \varepsilon P$		$[\mathbf{B},\mathbf{B}]=\varepsilon\mathbf{J}$		$\varepsilon = \pm 1$
	14_{ε}	7_{ε}	$[\mathbf{B},\mathbf{P}] = -\mathbf{H}$		$[H, P] = \varepsilon B$		$[\mathbf{P},\mathbf{P}] = \varepsilon \mathbf{J}$	$\varepsilon = \pm 1$
	15_{ε}	7_{ε}	$[\mathbf{B},\mathbf{P}] = -Z$		$[Z,P] = \varepsilon \mathbf{B}$		$[\mathbf{P},\mathbf{P}] = \varepsilon \mathbf{J}$	$\varepsilon = \pm 1$
	16_{ε}	7_{ε}	$[\mathbf{B},\mathbf{P}]=H-Z$		$[Z,P] = \varepsilon \mathbf{B}$		$[\mathbf{P},\mathbf{P}] = \varepsilon \mathbf{J}$	$\varepsilon = \pm 1$
	17	8	$[\mathbf{B},\mathbf{P}]=Z$	[H, B] = B	[H,P]=P	[H,Z]=2Z		
	18	8	$[\mathbf{B},\mathbf{P}]=H$	[Z,B]=B	[Z,P]=P	[Z,H] = 2H		
	19_{γ}	9γ	$[\mathbf{B},\mathbf{P}]=Z$	$[H, B] = \gamma B$	[H,P]=P	$[H,Z] = (1+\gamma)Z$		$-1 < \gamma < 1$
	20_{γ}	9γ	$[\mathbf{B},\mathbf{P}]=H$	$[Z, B] = \gamma B$	[Z,P]=P	$[Z,H] = (1+\gamma)H$		$-1 < \gamma < 1$
	21_{γ}	9γ	$[\mathbf{B},\mathbf{P}] = -Z$	[H, B] = B	$[H, \mathbf{P}] = \gamma \mathbf{P}$	$[H,Z] = (1+\gamma)Z$		$-1 < \gamma < 1$
	22 _y	9γ	$[\mathbf{B},\mathbf{P}] = -\mathbf{H}$	[Z,B]=B	$[Z,P] = \gamma P$	$[Z,H] = (1+\gamma)H$		$-1 < \gamma < 1$
	23	10	$[\mathbf{B},\mathbf{P}]=Z$	[H, B] = B	[H,P]=B+P	[H,Z]=2Z		
		10	$[\mathbf{B},\mathbf{P}] = -Z$	$[H,\mathbf{B}]=\mathbf{B}+\mathbf{P}$	[H,P]=P	[H, Z] = 2Z		
	25	10	$[\mathbf{B},\mathbf{P}]=H$	[Z,B]=B	[Z,P]=B+P	[Z,H] = 2H		
$NR \rightarrow$		11_{θ}	$[\mathbf{B},\mathbf{P}]=Z$	- , -	$[H,P] = -B + \thetaP$	$[H, Z] = 2\theta Z$		$\theta > 0$
	27_{ε}	12_{ε}	$[\mathbf{B},\mathbf{P}]=Z$	$[H,\mathbf{B}]=\mathbf{B}$	$[Z,P] = \varepsilon B$	[H,Z]=Z	$[\mathbf{P},\mathbf{P}] = \varepsilon \mathbf{J}$	$\varepsilon = \pm 1$
	28_{ε}	12_{ε}	$[\mathbf{B},\mathbf{P}]=H$	$[H, B] = \varepsilon P$	[Z,P]=P	[Z,H]=H	$[\mathbf{B},\mathbf{B}] = \varepsilon \mathbf{J}$	$\varepsilon = \pm 1$
	29_{ε}	12_{ε}	$[\mathbf{B},\mathbf{P}] = -\mathbf{H}$	[Z,B]=B	$[\mathbf{H}, \mathbf{P}] = \varepsilon \mathbf{B}$	[Z,H]=H	$[\mathbf{P},\mathbf{P}] = \varepsilon \mathbf{J}$	$\epsilon = \pm 1$

TABLE 2. Generalised Bargmann spacetimes (D ≥ 3)