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Outline

|. Review of the Exact Renormalization Group (ERG)

2. ERG for partition function of free field theories

« — higher spin gauge theory holography

+ comes about through identification of an enormous non-local symmetry
of free field theories

» holographic fields described by Cartan connection (first order formalism)

spin 2 part ~ graviton
3. ERG for wave-functionals of arbitrary states of free field theories

- derive explicit flow through space of states

- ERG is well-designed for unitary flow — a continuous tensor network

4. Non-relativistic examples
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ERG

7 - / [d gl So[M.61-Sile]

50[M, 9] = /<b K~'(-0/M?) O¢ \

- path integral is over all modes of field

» regulator function gives zero weight to hish momentum modes

- the RG principle is that the choice of K is immaterial

d
M—Z =
am“ =0
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ERG

Cutoff independence comes about through the couplings of the
theory becoming scale dependent

Polchinski showed that this gives an exact equation

asint ]- 5Sint 5Sint 52Sint
— —A , d —
om — 20l ”/ 9] [5¢(X) 5o0)  590x)000)

- employed a trick: discard a total functional derivative in the path integral

M

- this single equation can be expanded to extract the scale
dependence of each coupling

» In fact, we will improve on this

introduce separate cutoff and renormalization scale

complete exact system of equations for sources and correlation functions
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- will apply this to a special scenario

- initially won't turn on explicit interactions, but instead will source ‘single
trace’ operators

» thus, will first study the RG properties of the generating functional of
correlation functions of single trace operators

* by single trace, we mean local operators of the form

O30 -0, 97

- that is, organize elementary fields into an N-vector, and consider only
U(N) (or O(N)) singlets

these are bilinears, and so path integral for generating functional is Gaussian

- the ERG equations are a system of first order equations for the scale
dependence of the sources and the corresponding expectation values

this is the same data tracked by a holographic system
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Holography in First-Order

- given a conserved current j*1#s there is a corresponding massless
gauge field A, . in the bulk (obtained by gauge-fixing bulk tensor)

- at linearized level, satisfies a second order PDE
* packages together info about CFT: source and vev of ]“1---“5
- we will be led to package this info together in a sort of Hamiltonian

formalism, in which RG scale plays the role of time, and the bulk

gauge field appears as a canonical pair, satisfying a pair of first order
PDEs — the ERG equations

RG scale z
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The Exactness of ERG

- usually, we think of RG flows as irreversible, associated with coarse
graining

« this is a practicality, rather than a necessity

* It comes about because we throw away information

- if we could track everything, in principle we could have unitarity
» typical this I1s impractical

- we must track an infinite number of operators, not just the relevant
subset

- there is one case where we must do so

- In free field theories, such truncations correspond to explicit breaking of
gauge symmetries (from a holographic point of view)

ij ntp



Holography and Higher Spin Theories

- free field theories possess an infinite number of conserved currents
» holographically dual to gauge fields of various spins ¢30,,...0,,¢°

the usual gauge transformations act diagonally on these currents, but more
generally, higher spin symmetries act off-diagonally

* they transform between different currents

- so If we truncate to a few operators, we are explicitly breaking the
symmetry of the free fixed point

these symmetries would also be broken by the introduction of any
interactions in the field theory

- so we will keep them all, and determine a lossless RG

* the general principle is that RG must act on a complete closed set
of ‘observables’ (in free theories, this set is {"single trace ops"})

- RG can be presented as an exact Ward identity
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Symmetries of Free Fixed Points

- this symmetry acts linearly, but non-locally |¢?) — L|¢p?)
or, in the space-time basis
800 [ dy Lx)8() o
- this encodes diffeomorphisms as well as higher-spin analogues
L(x,y) = 6D (x = y) + C*(x)I8' D (x = y) + (" (x)85I08 D (x — y) + ...

- we implement (*) as a change of variables in the path integral
» this generates an exact Ward identity — In the background sense

- will be an important ingredient in RG, and is the origin of higher spin
symmetry in the holographic bulk

- geometry of the bulk is associated with symmetry of the fixed point
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Generating Functionals and Ward Identities

- a standard tool is a generating functional
Z[AL(x)] = (e ] IAuB" )y

- if we can compute it, it encodes all of the correlation functions of
the operator j#(x) that is sourced

- if the quantum theory is such that the current is conserved, we have
an exact Ward identity

Z|AL] = Z]AL]

- given a path integral rep’n of Z, derive by the Fujikawa method

- make a change of integration variables ¢ +— ¢#

measure invariant (or anomalous), action transforms

S[¢] —|—/Auj'u — S[p®] —|—/Aij'u (Noether)
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Generating Functionals for Free QFTs

- we have local operators {1, $°(x), j*(x), T*(x), ...}
- would introduce sources (‘couplings’) { U, b(x), a,,(x), hu(x), ...}

- in the case of free field theory, all of these operators are bilinear in
the elementary fields, and they can be collected together into a bi-
local expression

[ @ [ dy @lxixiBly) 167 = [ [ dy 63(0Bx )
- we can think of expanding the bi-local source quasi-locally
B(x,y) = bo(x)0'(x, y) + b (x)0,6 (x, y) + ...

- this then gives local sources for the infinite collection of spin-s
currents that are conserved at the free fixed point
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Free Majoranas

- fixed point action

50—/ VTNV PEL ()T (y)  m=12.n

Pru(x,y) = 90969 (x, y)

- introduce sources for all single-trace operators
Sint = U+ / P ( A(Xy ) £V WL(x, y) + " A (x, y) + ) "(y)

- the list of sources terminates, depending on space-time dimension
- eg,d=3: just A(x,y) and W, (x,y)

- now perform the non-local change of variables ¢?(x) — /ddy L(x, y)(y)
Séwm'ﬁT’hM('DF;u‘i‘ WM)+A]‘£'¢m

= Q" LT Lo PRy " " (VLT PRy, L]+ LT W L)+ LT A L]y
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if L7 . £ =1 then the fixed point action remains unchanged, while
the sources transform. That is

2o AW =2[0 T A Le Wy ()

tensor connection

- we call this group O(L*(R*~1))
* D, = Pr, + W, plays the role of covariant derivative
- the fixed point theory corresponds to
(A W,) = (0, W,L(LO))

« that is, because W, is a connection, the QFT is unsourced whenever A is
zero and W, Is a flat connection
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Dilatations and ERG

we extend this to RG by asking how the theory responds to a
(homogeneous) dilatation x* — Ax*

one can combine O(L?) with the dilatation in a simple way, by
simply allowing £7 - £ = A22¥1 (we refer to this as CO(L?))

this has the effect
ZIM, g; U, A W,] =Z[\T"M, X°g, U~ A%, W/

\ K = K[-2*D92 ) M?]
metric seen by field theory

if we parameterize 8. =2 ‘7w, we can write this equivalently as
ZIM,z; U AW, ] = ZIXTM, A1z, UR, A5 W]

we regard z € [e, 00) as the renormalization scale

ij ntp

14



The Exact RG

- we perform the ERG in two steps /\
* |.lower the cutoff M — AM
o~ (a la Polchinski)
ZIM,z; U, A, W, ] = Z[A\M, z, U, A, W,,]
- 2.bring M back to its original value via a CO(L?) transformation
ZIAM, z; U, A, W,] = Z[M, X"tz U~ A%, WS
- there is a freedom in the choice of L

- comparing the two, we arrive at a relation between the generating
functionals at the same scale M, but different renormalization scale z

Z[M, z; U, A, W,] = Z[M, A1z, D%, AL, WE]
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ZIM, z; U, A, W,] = Z[M, A1z, D%, AL, WE]

a well chosen name

L
- orbytakinge -0 (A~1-—¢, L>~1+ezW,)

OV — [Prye, WL + V), Wi = 0
everythinéegia_lll(;cal .y 0, A+ [WZ, A] — 5(~A)
azW,u — [PF;,u, Wz] = [WZ, W,LL] — /BLW)/

- this is what is obtained from dilatations; we suppose that more
generally, these are components of covariant equations

output of ERG

dW(O) * W(O) A W(O) =0 other components
dA + [W’ _A] — B(A) 7 not determin%d by RG

dW + W AW = B(W) but determined by consistency

‘Bianchi identities’
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(Classical) Bulk Action

- this is only half of the bulk system
* repeat analysis for the vevs (Callan-Symanzik equations)

* give rise to bulk'momenta’

- the resulting system of equations is a Hamiltonian system with
respect to z

- the ERG analysis determines the Hamiltonian
- correspondingly, there Is an action \
7 — e—SHJ[Z;B] N e—I[P,B] _ e—fdz Tr(P-0.B—H(P,B))

| = /dz r{P"- (DB - 8P) + NAs - B}

BB =B.Ag-B
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(Classical) Bulk Action

- this is only half of the bulk system

* repeat analysis for the vevs (Callan-Symanzik equations)

* the resulting system of equations is a Hamiltonian system with
respect to z

- the ERG analysis determines the Hamiltonian

» correspondingly, there Is an action

Z[B)=e ¥

l:/dz Tr{P' - (DB~ B®) + N g - B}

T

BB =B.Ag-B >ero on-shell determined by
cutoff function
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Holographic Higher Spins

- all of the usual holographic machinery can be employed here
- a classical solution corresponds to an RG flow

- the trivial solution corresponds to the free fixed point
* lLe, turn off all sources — W, is flat

- If we choose “spin-2 gauge”, this connection encodes the geometry of
.« AdSyi1

WO S fe? 0?,) WO, ) = £ D(x,y) + P (x,)

at least when the free fixed point has relativistic symmetry

- all correlation functions can be systematically computed

* look like “bi-local Witten diagrams”

* these resum to the determinant — proof that no information has been
lost
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Conformal details

- the usual conformal group SO(2,d) C CO(L?)
- each local operator transforms in a short conformal module U(A, s)
- the corresponding sources transform in the dual module U(d — A, s)
- the bulk degrees of freedom transform in

s (U(d - A,5) & U(A, 5))

- linearizing around AdS,. 1, one can write the equations of motion
as decoupled second order PDEs

- these are nothing but Casimir = s(s + d — 2)

 "Fronsdal equations’ of higher spin theory
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The Role of Time

The partition function is a functional integral over the modes of
fields in all of space-time (Euclidean, really)

We assumed the fixed point had relativistic symmetry (z=1)

So there are two directions that one can go

- Consider other structures, such as wave-functionals or density matrices,
that fix, say, space-like hypersurfaces (and thus break time-translational
invariance)

- Consider other fixed points with non-relativistic symmetries

Each requires answering two questions:
- How do we regulate the functional integral in the ERG fashion?

- What operators do we source?

Must be a closed set under action of RG if exactness is to be maintained
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ERG and Wave-functionals

- in continuum QFT, we do not typically consider explicit wave
functionals for states

- however, the ground state wave-functional of a free field theory is
well-known, being Gaussian

* much less understood Is how the renormalization group acts on the
ground state, as well as all other states

- we can in fact use ERG methods to study this
* builds on similar concepts to those introduced previously

- the ERG construction naturally retains ‘ancillary’ degrees of freedom

- generates a flow In the space of states

equivalent to a continuous tensor network whose properties we can study
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ERG for Wave-functionals

- to employ these exact methods for wave-functionals, we need to

carefully construct familiar concepts

- wave-functional in ‘position basis’ ((?(X)|W) obtained by path

integral over half space-time in Euclidean time, with specified
boundary condition on a space-like hypersurface

(P?(X)|V) = Z[M_; ¢7]

a —>
»*(X)
- extract ground state by usual
2 limiting procedure

I - generate large class of states by
operator insertions in Euclidean
time
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ERG for Wave-functionals

- various technical points to manage
* convergence
* normalizability

- well-defined canonical structure (boundary conditions)

here we are interested in states corresponding to insertions of
O(N)-invariant operators

) = e 9704(0,%)02(0, %) - - - On(0, £,)|)

it is useful to introduce the generating functional of states

__ 4 | dy | d VAaX X 52 :
| W[b]> _ 77_':6 ng_ d fM_ dy ¢7(x)b(x,y)¢ ()/)‘Q> |

(can generalize to contour ordering in complex time)

- b(x,y) plays a similar role to the sources considered earlier

ij ntp

24



ERG for Wave-functionals

again, there is a large non-local symmetry present
+ restrict L(x, y) to preserve ¥

* need to regulate appropriately

Sp = %/Mgb(x) o K (-52//\42) o D? o ¢(x) + 21%/{@?) K (—52//\42) - Dt - ¢|5 (X)
» cannot introduce arbitrary number of time derivatives

sufficient to introduce ‘spatial’ regulator K (—52//\42)

recall for partition function, we implemented ERG as a 2-step
process

- lower cutoff M — AM
+ use CO(L2) to take A\AM — M,  z+— A1z
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ERG for Wave-functionals

- for the generator of states, we employ a similar process
» the novelty Is that we have to take care with boundary terms

» there is dependence on a bulk kernel Apg but now also a boundary
kernel Ay, and a CO(L2) transformation given by W, and w,

these know about the details of the regulator

- for the partition function, we required M-independence as the basic
RG requirement

- for wave-functionals, this would be too strong

» instead we just eliminate M-derivatives from the ERG equations

0 J

N
ZEW: (ZTrzxc (([Wz,b]o—l—boABOb) 5b)—|—2—7—fzg+2/<ﬂ g’ 5590)\”

g(z:%,y) = (385 + ;) (X, ¥)
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ERG for Ground State

- the ground state is obtained by setting b(x,y)=0
- then, the §/db terms disappear

the ground state does not mix with other states, and satisfies

z% 22)) = i(K(2) + L)) [2(2)

K(z) = g (7AT As(2)- o+ ¢ AL(z) - 7AT) “disentangler”

$ ' WT(Z) - 7/%) scale transformation

- K and L are both Hermitian

- can be solved in terms of path-ordered exponential
Valz,, o] = <90\Q(z*)> N <90|7>eé' JZ+ dz 5 (#-g(2) d+drg'(2) 7)

Q(e)>.
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ERG for States

- for any other state, we have

28, |V c[b]) = (— Tr 3o % LK+ iL) We[b))

- K and L are state independent, /3 causes mixing of states along the
flow

- if we think of |W[b]) as a family of states in the space of b, we can
regard this equation as a flow along the integral curves of 3

e that is, we introduce a “running” source B(z; x, y) satisfying

ZazB — 6[8]
Z% Wz, B)]) = i (K + L) [Wclz, B)))

* (same equation as ground state)
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ERG for States

claim: RG principle for states should be that the flow is along
integral curves of (3

+ then, state changes by a unitary operator

- consistent with RG-invariance of norm (~ partition function)

B Wz, B(zp)])

pe |
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MERA!?

- All of the concepts that I've presented are in fact present in the
tensor network story, no more, no less

- Thus we have derived a tensor network directly in the continuum

- however, the disentangling is happening in momentum space
» ground state Is a product state in momentum space

excited states are typically not

* by looking at non-trivial states, can show that K disentangles states
above and below RG scale

- MERA, by hand, implements disentangling in coordinate space

- K is given by the choice of regulator

* optimization, as in MERA, then explores different choices of regulator
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The Big Questions

This optimization is the new ingredient

 Usually in QFT, we choose a regulator and believe any choice is

equivalent. That is true for the full path integral, as Polchinski emphasized.

- What is optimization then?! Should we minimize some notion of
complexity along RG flows!

So we've seen that ERG is about entanglement in momentum space
— we can also study real space entanglement using ERG

» the flow of reduced density matrices, entanglement entropy, etc.,
apparently requires even more sophisticated regulators
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ERG for Schrodinger

One can repeat the analysis for any free fixed point, including those
with non-relativistic symmetries

+ the z=2 Schrodinger fixed point is particularly simple

- One can extract the non-relativistic ERG from the relativistic version
by employing DLCQ

+ Introduce coordinates (&, t, X) with 0 = 9:0; + V2 and assign scaling
(&, t, %) = (& X°t, AX)

- Then the generator N = O, is central, the partition function
decomposes into superselection sectors of definite eigenvalue n, and
within such a sector,

0= S, = ind, + V2

- Thus we can use the same regulator as before, but within a
superselection sector, it becomes effectively a function of S,
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ERG for Schrodinger

- A central question is how the DLCQ descends to the bulk theory

- The trick is that one must source operators appropriately

p(& 1, X) = e™p(t, X)

B¢, t. %6t %) = ™R (. 7. ¢, %)

- This corresponds to a usual result in non-relativistic holography

« Local bulk fields dual to local conserved currents have n=0.

here, we define bulk DLCQ to mean that the bulk bi-local fields
have this specific £-dependence

+ And then one can extract all correlation functions of (higher spin)
currents in the free non-relativistic theory
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Remarks / Questions

- free field theories can be interpreted directly as holographic higher
spin theories

- bulk geometry is encoded in the nature of the fixed point theory
- the bulk theory gives everything we can expect of a holographic theory
does Vasiliev=Leigh!?

unitary networks emerge from ERG applied to states

natural to ask what happens when QFT interactions are turned on

» for'multi-trace’ interactions, can show that a precise quantum bulk higher-
spin theory emerges

* higher spin symmetry is largely Higgsed (currents have anomalous
dimensions)

- hope: systematically understand effect on tensor networks
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