Coset Representation of Newton-Cartan Geometry

Kevin T. Grosvenor
Niels Bohr Institute, Copenhagen University

Johannes Gutenberg Universität, Mainz March 14, 2018

Collaborators

Homogeneous Nonrelativistic Geometries as Coset Spaces, [arXiv:1712.03980] with
Jelle Hartong
ITP and Delta ITP, University of Amsterdam
Cynthia Keeler
Arizona State University
Niels A. Obers
Niels Bohr Institute, Copenhagen University

Outline

Motivation

Relativistic Example: Minkowski and (A)dS

Non-relativistic Examples
Bargmann
Newton-Hooke
Schrödinger
TNC with $\mathbb{R} \times S O(3)$ isometries

Outlook

Motivation

- Probes of geometry (geodesics, Killing vectors, etc.)
- Nonrelativistic gravity (e.g. HLG)
- Nonrelativistic holography
- Condensed matter
- Strings

Relativistic Example: Minkowski and (A)dS

$\mathfrak{g}=$ Poincaré, $\mathfrak{h}=$ Lorentz, $\mathfrak{m}=$ translations
$\left[M_{a b}, M_{c d}\right]=\eta_{a c} M_{b d} \pm \cdots$ and $\left[M_{a b}, P_{c}\right]=\eta_{a c} P_{b}-\eta_{b c} P_{a}$

Relativistic Example: Minkowski and (A)dS

$\mathfrak{g}=$ Poincaré, $\mathfrak{h}=$ Lorentz, $\mathfrak{m}=$ translations
$\left[M_{a b}, M_{c d}\right]=\eta_{a c} M_{b d} \pm \cdots$ and $\left[M_{a b}, P_{c}\right]=\eta_{a c} P_{b}-\eta_{b c} P_{a}$
Associated structure constants: $f_{\mathfrak{h m}}{ }^{\mathfrak{m}}=f_{[c d] a}{ }^{b}=\eta_{c a} \delta_{d}^{b}-\eta_{d a} \delta_{c}^{b}$
Solution to ad- \mathfrak{h} inv. symm. bil. form $f_{\mathfrak{h}(a}{ }^{c} \Omega_{b) c}=0$ is $\Omega_{a b} \propto \eta_{a b}$

Relativistic Example: Minkowski and (A)dS

$\mathfrak{g}=$ Poincaré, $\mathfrak{h}=$ Lorentz, $\mathfrak{m}=$ translations
$\left[M_{a b}, M_{c d}\right]=\eta_{a c} M_{b d} \pm \cdots$ and $\left[M_{a b}, P_{c}\right]=\eta_{a c} P_{b}-\eta_{b c} P_{a}$
Associated structure constants: $f_{\mathfrak{h m}}{ }^{\mathfrak{m}}=f_{[c d]_{a}}{ }^{b}=\eta_{c a} \delta_{d}^{b}-\eta_{d a} \delta_{c}^{b}$
Solution to ad-h inv. symm. bil. form $f_{\mathfrak{h}(a}{ }^{c} \Omega_{b) c}=0$ is $\Omega_{a b} \propto \eta_{a b}$

$$
\mathcal{G} \ni \underbrace{g=\exp \left(P_{a} \delta_{\mu}^{a} x^{\mu}\right)}_{\text {Lie group element }} \Longrightarrow \underbrace{g^{-1} d g=P_{a} \delta_{\mu}^{a} d x^{\mu}}_{\text {Maurer-Cartan form }} \Longrightarrow \underbrace{e^{a}=\delta_{\mu}^{a} d x^{\mu}}_{\text {vielbein }}
$$

Metric on $\mathcal{M}=\mathcal{G} / \mathcal{H}$ is $d s^{2}=\Omega_{a b} e^{a} e^{b}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$

Relativistic Example: Minkowski and (A)dS

$\mathfrak{g}=$ Poincaré, $\mathfrak{h}=$ Lorentz, $\mathfrak{m}=$ translations
$\left[M_{a b}, M_{c d}\right]=\eta_{a c} M_{b d} \pm \cdots$ and $\left[M_{a b}, P_{c}\right]=\eta_{a c} P_{b}-\eta_{b c} P_{a}$
Associated structure constants: $f_{\mathfrak{h m}}{ }^{\mathfrak{m}}=f_{[c d]_{a}}{ }^{b}=\eta_{c a} \delta_{d}^{b}-\eta_{d a} \delta_{c}^{b}$
Solution to ad-h inv. symm. bil. form $f_{\mathfrak{h}(a}{ }^{c} \Omega_{b) c}=0$ is $\Omega_{a b} \propto \eta_{a b}$

$$
\mathcal{G} \ni \underbrace{g=\exp \left(P_{a} \delta_{\mu}^{a} x^{\mu}\right)}_{\text {Lie group element }} \Longrightarrow \underbrace{g^{-1} d g=P_{a} \delta_{\mu}^{a} d x^{\mu}}_{\text {Maurer-Cartan form }} \Longrightarrow \underbrace{e^{a}=\delta_{\mu}^{a} d x^{\mu}}_{\text {vielbein }}
$$

Metric on $\mathcal{M}=\mathcal{G} / \mathcal{H}$ is $d s^{2}=\Omega_{a b} e^{a} e^{b}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$

With $\left[P_{a}, P_{b}\right]=\lambda M_{a b}$, this gives (A)dS

Relativistic Example: Minkowski and (A)dS

$\mathfrak{g}=$ Poincaré, $\mathfrak{h}=$ Lorentz, $\mathfrak{m}=$ translations
$\left[M_{a b}, M_{c d}\right]=\eta_{a c} M_{b d} \pm \cdots$ and $\left[M_{a b}, P_{c}\right]=\eta_{a c} P_{b}-\eta_{b c} P_{a}$
Associated structure constants: $f_{\mathfrak{h m}}{ }^{\mathfrak{m}}=f_{[c d]_{a}}{ }^{b}=\eta_{c a} \delta_{d}^{b}-\eta_{d a} \delta_{c}^{b}$
Solution to ad-h inv. symm. bil. form $f_{\mathfrak{h}(a}{ }^{c} \Omega_{b) c}=0$ is $\Omega_{a b} \propto \eta_{a b}$

$$
\mathcal{G} \ni \underbrace{g=\exp \left(P_{a} \delta_{\mu}^{a} x^{\mu}\right)}_{\text {Lie group element }} \Longrightarrow \underbrace{g^{-1} d g=P_{a} \delta_{\mu}^{a} d x^{\mu}}_{\text {Maurer-Cartan form }} \Longrightarrow \underbrace{e^{a}=\delta_{\mu}^{a} d x^{\mu}}_{\text {vielbein }}
$$

Metric on $\mathcal{M}=\mathcal{G} / \mathcal{H}$ is $d s^{2}=\Omega_{a b} e^{a} e^{b}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$

With $\left[P_{a}, P_{b}\right]=\lambda M_{a b}$, this gives (A)dS

There is also $\Omega^{a b}$ such that $\Omega^{c(a} f_{\mathfrak{h} c}^{b)}=0$, but $\Omega_{a b}$ and $\Omega^{a b}$ are inverses.

Bargmann

cf. 1407.7730 [Brauner, Endlich, Monin, Penco]
$\mathfrak{g}=$ Barg, $\mathfrak{h}=\left\{J, G_{i}, N\right\}, \mathfrak{m}=\left\{H, P_{i}\right\}$ and $g=e^{H t} e^{P_{i} x^{i}}$
$\Omega_{a b} e^{a} e^{b}=-d t^{2}$ (degenerate!)
But, contravariant version $\Omega^{c(a} f_{l c}{ }^{b)}=0$ gives $\Omega^{a b} e_{a} e_{b}=\delta^{i j} \partial_{i} \partial_{j}$

$$
\tau=d t, \quad h^{\mu \nu} \partial_{\mu} \partial_{\nu}=\delta^{i j} \partial_{i} \partial_{j}, \quad m=0 .
$$

Loc. tan. space trans.: $g \rightarrow g h$ with $h \in \mathcal{H}$

From Relativistic to Non-relativistic

Two derivations of Bargmann coset from relativistic starting point:

- Inönü-Wigner contraction

From Relativistic to Non-relativistic

Two derivations of Bargmann coset from relativistic starting point:

- Inönü-Wigner contraction

- Null-reduction $(N \in \mathfrak{m}$, with associated coordinate $u)$

$$
d s^{2}=2 \underbrace{d t}_{\tau}(d u-\underbrace{d t}_{m})+\underbrace{\delta_{i j} d x^{i} d x^{j}}_{h_{\mu \nu} d x^{\mu} d x^{\nu}}
$$

Newton-Hooke

Add commutator $\left[H, P_{i}\right]=\Lambda G_{i}$

$$
\begin{array}{|c|}
\hline \tau=d t \\
h^{\mu \nu}=\delta^{i j} \delta_{i}^{\mu} \delta_{j}^{\nu} \\
m=-\frac{1}{2} \Lambda x^{2} d t
\end{array} \Longrightarrow \begin{gathered}
\lambda^{i}=-\sqrt{\Lambda} x^{i} \\
\sigma=\frac{1}{2} \sqrt{\Lambda} x^{2} \\
t^{\prime}=t \\
x^{\prime i}=e^{-\sqrt{\lambda} t} x^{i}
\end{gathered} \Longrightarrow \begin{gathered}
\tau^{\prime}=d t^{\prime} \\
h^{\prime \mu \nu}= \\
e^{-2 \sqrt{\Lambda t^{\prime}} \delta^{i j} \delta_{i}^{\mu} \delta_{j}^{\nu}} \\
m^{\prime}=0
\end{gathered}
$$

Newton-Hooke

Add commutator $\left[H, P_{i}\right]=\Lambda G_{i}$

$$
\begin{array}{|c|}
\hline \tau=d t \\
h^{\mu \nu}=\delta^{i j} \delta_{i}^{\mu} \delta_{j}^{\nu} \\
m=-\frac{1}{2} \Lambda x^{2} d t
\end{array} \Longrightarrow \begin{gathered}
\lambda^{i}=-\sqrt{\Lambda} x^{i} \\
\sigma=\frac{1}{2} \sqrt{\Lambda} x^{2} \\
t^{\prime}=t \\
x^{\prime}=e^{-\sqrt{\Lambda} t} x^{i}
\end{gathered} \Longrightarrow \begin{gathered}
\tau^{\prime}=d t^{\prime} \\
h^{\prime \mu \nu} \\
e^{-2 \sqrt{\Lambda t^{\prime}} \delta^{i j} \delta_{i}^{\mu} \delta_{j}^{\nu}} \\
m^{\prime}=0
\end{gathered}
$$

Can also derive via contraction or null-reduction.

Schrödinger

cf. 0903.4245 [Schäfer-Nameki, Yamazaki, Yoshida]
$\mathfrak{h}=\left\{J, G_{i}, N+2 K\right\}$ and $\mathfrak{m}=\left\{N, H, P_{i}, D\right\}$

$$
\left.d s^{2}=2 \frac{d t}{r^{2}}\left(d u-\frac{\alpha}{2} \frac{d t}{r^{2}}\right)+\frac{d r^{2}+d x^{2}}{r^{2}} \xrightarrow{\text { n-red }} \begin{array}{c}
\tau=\frac{d t}{r^{2}} \\
h^{\mu \nu}=r^{2}\left(\delta_{r}^{\mu} \delta_{r}^{\nu}\right. \\
m=\frac{\alpha}{2} \frac{d t}{r^{2}}
\end{array}+\delta_{i}^{\mu} \delta_{i}^{\nu}\right)
$$

Schrödinger

cf. 0903.4245 [Schäfer-Nameki, Yamazaki, Yoshida]
$\mathfrak{h}=\left\{J, G_{i}, N+2 K\right\}$ and $\mathfrak{m}=\left\{N, H, P_{i}, D\right\}$

$$
d s^{2}=2 \frac{d t}{r^{2}}\left(d u-\frac{\alpha}{2} \frac{d t}{r^{2}}\right)+\frac{d r^{2}+d x^{2}}{r^{2}} \xrightarrow{\text { n-red }} \begin{gathered}
\tau=\frac{d t}{r^{2}} \\
h^{\mu \nu}=r^{2}\left(\delta_{r}^{\mu} \delta_{r}^{\nu}+\delta_{i}^{\mu} \delta_{i}^{\nu}\right) \\
m=\frac{\alpha}{2} \frac{d t}{r^{2}}
\end{gathered}
$$

Can get this TTNC via $\mathfrak{h}=\left\{J, G_{i}, N, K\right\}$ and $\mathfrak{m}=\left\{H-\frac{\alpha}{2} N, P_{i}, D\right\}$.

TNC with $\mathbb{R} \times S O(3)$ isometries

$\mathfrak{g}=\underbrace{\mathfrak{s o}(3)}_{J_{a}} \times \underbrace{\mathfrak{u}(1)}_{H} \times \underbrace{\mathfrak{u}(1)}_{N}$ and rescale $J \equiv J_{3}$ and $P_{i=1,2}=\frac{1}{R} J_{i}$
$\mathfrak{h}=\{J+a N+b H, N\}$ and $\mathfrak{m}=\left\{H, P_{i}\right\}$
$g=e^{H v} e^{P_{1} \alpha_{1}} e^{P_{2} \alpha_{2}}$ and redefine $\alpha_{1}=R \phi$ and $\alpha_{2}=R\left(\eta-\frac{\pi}{2}\right)$.
$\Omega_{a b}$ is diagonal and, in general, non-degenerate.
Choose $\operatorname{sign} \Omega_{a b}=(1,0,0)$ and $\operatorname{sign} \Omega^{a b}=(0,1,1)$.

TNC with $\mathbb{R} \times S O(3)$ isometries

$\mathfrak{g}=\underbrace{\mathfrak{s o}(3)}_{J_{a}} \times \underbrace{\mathfrak{u}(1)}_{H} \times \underbrace{\mathfrak{u}(1)}_{N}$ and rescale $J \equiv J_{3}$ and $P_{i=1,2}=\frac{1}{R} J_{i}$
$\mathfrak{h}=\{J+a N+b H, N\}$ and $\mathfrak{m}=\left\{H, P_{i}\right\}$
$g=e^{H v} e^{P_{1} \alpha_{1}} e^{P_{2} \alpha_{2}}$ and redefine $\alpha_{1}=R \phi$ and $\alpha_{2}=R\left(\eta-\frac{\pi}{2}\right)$.
$\Omega_{a b}$ is diagonal and, in general, non-degenerate.
Choose $\operatorname{sign} \Omega_{a b}=(1,0,0)$ and $\operatorname{sign} \Omega^{a b}=(0,1,1)$.

$$
\begin{gathered}
\tau=d v+b \cos \eta d \phi \\
h_{\mu \nu} d x^{\mu} d x^{\nu}= \\
R^{2}\left(d \eta^{2}+\sin ^{2} \eta d \phi^{2}\right) \\
m=a \cos \eta d \phi \\
\hline
\end{gathered}
$$

Outlook

Classification problems (algebras to coset spaces)
Quotient out by discrete subgroups (e.g., analog of BTZ)
Solutions of HLG or CS, cf. 1712.05794 [Hartong, Lei, Obers, Oling]
Nonrelativistic dual for Schrödinger field theories (or Lifshitz?)
Entanglement entropy and Ryu-Takayanagi.

