MITP Workshop Proton Radíus Puzzle Waldthausen Castle, Maínz, Germany

4 June, 2014

Two-photon exchange corrections in elastic ep and μp scattering. Elastic contribution. Dispersive framework

Oleksandr Tomalak, Johannes Gutenberg University, Mainz, Germany

Outline

Motivation

- Previous two-photon exchange (TPE) calculations
- \bullet Dispersion relation framework for 2γ corrections
- Results for elastic ep scattering and polarisation transfer
 - Estimations for elastic μ p scattering

Proton radius puzzle

e hydrogen μ hydrogen

Lamb shift

ep-elastic scattering $r_E = 0.8768 \pm 0.0069 fm$

 $r_E = 0.8409 \pm 0.0004 fm$

 $r_E = 0.870 \pm 0.025 fm$ 7.7 σ difference !

TPE hadronic correction is dominant uncertainty in scattering experiments

$$l$$
 γ γ γ p p

$$\sigma^{exp} \equiv \sigma_{1\gamma} (1 + \delta_{soft} + \delta_{2\gamma})$$

Structure amplitudes: TPE correction

Dispersion relation framework

2γ corrections

D. Borisyuk, A. Kobushkin (2008)

Unitarity relations. Imaginary part

$$S = 1 + iT$$
 $S^+S = 1$ \Longrightarrow $\Im T_{h'\lambda',h\lambda}$

only on-shell information is required

$$2\Im T_{h'\lambda',h\lambda} = \oint d\Pi'' T^+_{h'\lambda',\mu} T_{\mu,h\lambda} (2\pi)^4 \delta^4 (k+p-\sum_i q_i)$$

e and N intermediate state

on-shell one-photon amplitudes

Kinematic regions (e⁻p)

Proton intermediate state is outside physical region

Analytical continuation

symmetric coordinates wrt electron momentum transfer

 $\cos \theta_1 = \sqrt{1 - \alpha^2} (b \cos \phi + c \sin \phi) \qquad \cos \theta_2 = \sqrt{1 - \alpha^2} (b \cos \phi - c \sin \phi)$

 $2\int_0^1 d\alpha \int_0^{2\pi} d\phi$

 $d\Omega$

angular integration to integration on curve in complex plane

deform contour keeping poles inside after transition to unph. region

Analytical continuation reproduces results in unphysical region

This work

 $Q^2 = 0.1 \ GeV^2$ $\nu_{ph} = 0.03 \ GeV^2$

Fixed-t dispersion relation. Real part

Real part can be reconstructed with DRs

$$\Re \mathcal{G}^{odd}(\nu,t) = \frac{2\nu}{\pi} \mathcal{P} \int_{\nu_{th}}^{\infty} \frac{\Im \mathcal{G}^{odd}(\nu'+i0,t)}{\nu'^2 - \nu^2} d\nu' \qquad \qquad \Re \mathcal{G}^{even}(\nu,t) = \frac{2}{\pi} \mathcal{P} \int_{\nu_{th}}^{\infty} \nu' \frac{\Im \mathcal{G}^{even}(\nu'+i0,t)}{\nu'^2 - \nu^2} d\nu'$$

Hadronic model

The one-photon exchange on-shell vertex

$$\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_1(Q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_2(Q^2)$$

P. G. Blunden, W. Melnitchouk, and J. A. Tjon (2003)

Small momentum transfer limit (e⁻p)

Feshbach correction - scattering correction in Dirac theory (HE)

Hadronic model vs. dispersion relations

• Imaginary parts

Amplitudes imaginary parts

Dipole form of G_M, G_E

13

Hadronic model vs. dispersion relations

• Imaginary parts are the same

• Real parts

Amplitudes real parts

Dipole form of G_M, G_E

15

Hadronic model vs. dispersion relations

• Imaginary parts are the same

• Real parts are the same for

all F1F1 amplitudesall F1F2 amplitudesF2F2 amplitudes \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3 \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3 \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_2 \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3

Fixed-t subtracted dispersion relation works **F2F2 amplitudes** \mathcal{G}_M \mathcal{F}_3

Hadronic model vs. dispersion relations

• Imaginary parts are the same

• Real parts are the same for

all F1F1 amplitudesall F1F2 amplitudesF2F2 amplitudes \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3 \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3 \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_2 \mathcal{G}_M \mathcal{F}_2 \mathcal{G}_M \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_2 \mathcal{G}_M \mathcal{F}_3

Fixed-t subtracted dispersion relation works F2F2 amplitudes $\mathcal{G}_M \quad \mathcal{F}_3$

• Calculation based on DR

This work

- for amplitudes \mathcal{G}_1 , \mathcal{G}_2 unsubtracted DR can be used - for amplitude \mathcal{F}_3 subtracted DR should be used

2y in e⁻p elastic scattering

Polarization transfer observables (e⁻p) Experimental points at $Q^2 \sim 2.5 \text{GeV}^2$ M. Meziane et al. [GEp2gamma Collaboration] (2011) subtracted DR prediction Longitudinal Meziane et al. 1.02 polarization transfer $\frac{P_l}{P_l^{Born}}$ 1.01 $\frac{P_l}{P_l^{Born}} - 1 \sim \Re \mathcal{G}_M, \Re \mathcal{F}_2, \Re \mathcal{F}_3$ 1.00 0.4 0.8 0.2 0.6 3 0.74 -Longitudinal to transverse polarization transfer 0.72 -R $R = -\mu_p \sqrt{\frac{(1+\epsilon)\tau}{2\epsilon}} \frac{P_t}{P_t}$ 0.70- $R - \mu_p \frac{G_E}{G_M} \sim \Re \mathcal{G}_M, \Re \mathcal{F}_2, \Re \mathcal{F}_3$ 0.68 -0.4 0.2 0.8 0.6

20

8

μ p experiments estimates

Conclusions and outlook

- Dispersion relations framework was developed
 - DR for ep scattering require 1 exp. point as input
 - DR for μp scattering require 2 exp. points as input
- DR checked vs. hadronic model calculation (ep):
- F1F1, F1F2: agreement F2F2 : on-shell model violates DR
- Theoretical estimates for elastic (ep and μp) cross section
- and polarization transfer observables were made
 - Next step: inclusion of inelastic intermediate states (πN)

Thanks for your attention !!!