
Two photon exchange effects:
A testable explanation of the proton radius puzzle

Gerald A. Miller, University of Washington

Pohl et al Nature 466, 213 (8 July 2010)

muon H  rp =0.84184 (67)  fm
electron H  rp =0.8768 (69)fm
electron-p scattering  rp =0.875 (10)fm

r2
p ≡ −6

dGE(Q2)
dQ2

∣∣∣∣∣
Q2=0

Pohl, Gilman, Miller, Pachucki 
(ARNPS63, 2013)

Feb. 2014



Facts from Randolf,  Aldo

• proton: radius from muons differs from radius 
from electrons

• deuteron: neutron has no influence on Lamb 
shift

• deuteron: isotope shifts from electron and muon 
give same                

• 4He: radius from muons and electrons is the same
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Resolving the proton puzzle

muon

electron

Effect on muon-H 
energy shift

must vary as lepton mass
to the fourth power

otherwise ruin electron-H

Effect must have no 
hyperfine

contribution



Analysis of Experiment

Extract the proton radius from the transition energy,

compare measured ξ to the following sum of contributions:

ξ=206.2949(32) meV -One measured number

ξ = 206.0573(45) − 5.2262r2
p + 0.0347r3

p meV

three computed numbers

To explain puzzle:

increase 206.0573 meV by 0.31 meV= 3.1×10−10 MeV

Then radius is as in H atom



Our idea 2

of momentum q = p′ − p.as:

Γµ(p′, p) = γµ
NF1(−q2) + F1(−q2)F (−q2)Oµ

a,b,c (2)
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where three possible forms are displayed. Other terms of
the vertex function needed to satisfy the WT identity do
not contribute significantly to the Lamb shift and are not
shown explicitly. The proton Dirac form factor, F1(−q2)
is empirically well represented as a dipole F1(−q2) = (1−
q2/Λ2)−2, (Λ = 840 MeV) for the values of −q2 ≡ Q2 > 0
of up to about 1 GeV2 needed here. F (−q2) is an off-
shell form factor, and Λ+(p) = (p · γN + M)/(2M) is an
operator that projects on the on-mass-shell proton state.
We use Oa unless otherwise stated.

We take the off-shell form factor F (−q2) to vanish at
q2 = 0. This means that the charge of the off-shell proton
will be the same as the charge of a free proton, and is
demanded by current conservation as expressed through
the Ward-Takahashi identity [24, 25]. We assume

F (−q2) =
−λq2/b2

(1 − q2/Λ̃2)1+ξ
. (3)

This purely phenomenological form is simple and clearly
not unique. The parameter b is expected to be of the
order of the pion mass, because these longest range com-
ponents of the nucleon are least bound and more suscep-
tible to the external perturbations putting the nucleon
off its mass shell. At large values of |q2|, F has the same
fall-off as F1, if ξ = 0. We take Λ̃ = Λ here.

We briefly discuss the expected influence of using
Eq. (2). The ratio, R, of off-shell effects to on-shell ef-

fects, R ∼ (p·γN−M)
M λ q2

b2 , (|q2| $ Λ2) is constrained by
a variety of nuclear phenomena such as the EMC effect
(10-15%), uncertainties in quasi-elastic electron-nuclear
scattering [26], and deviations from the Coulomb sum
rule [27]. For a nucleon experiencing a 50 MeV central
potential, (p · γN − M)/M ∼ 0.05, so λq2/b2 is of or-
der 2. The nucleon wave functions of light-front quark-
models [33] contain a propagator depending on M2.
Thus the effect of nucleon virtuality is proportional to
the derivative of the propagator with respect to M , or of
the order of the wave function divided by difference be-
tween quark kinetic energy and M . This is about three
times the average momentum of a quark (∼ 200 MeV/c)
divided by the nucleon radius or roughly M/2. Thus
R ∼ (p · γN − M)2/M , and the natural value of λq2/b2

is of order 2.
The lowest order term in which the nucleon is suffi-

ciently off-shell in a muonic atom for this correction to
produce a significant effect is the two-photon exchange
diagram of Fig. 1 and its crossed partner, including an
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FIG. 1: Direct two-photon exchange graph corresponding to
the hitherto neglected term. The dashed line denotes the
lepton; the solid line, the nucleon; the wavy lines photons;
and the ellipse the off-shell nucleon.

interference between one on-shell and one off-shell part
of the vertex function. The change in the invariant am-
plitude, MOff , due to using Eq. (2) along with Oµ

a , to be
evaluated between fermion spinors, is given in the rest
frame by

MOff =
e4

2M2

∫
d4k

(2π)4
F 2

1 (−k2)F (−k2)

(k2 + iε)2
(4)

×(γµ
N (2p + k)ν + γν

N (2p + k)µ)

×

[
γµ

(l · γ − k · γ + m)

k2 − 2l · k + iε
γν + γν

(l · γ + k · γ + m)

k2 + 2l · k + iε
γµ

]
,

where the lepton momentum is l = (m, 0, 0, 0), the vir-
tual photon momentum is k and the nucleon momentum
p = (M, 0, 0, 0). The intermediate proton propagator
is cancelled by the off-mass-shell terms of Eq. (2). This
graph can be thought of as involving a contact interaction
and the amplitude in Eq. (4) as a new proton polariza-
tion correction corresponding to a subtraction term in the
dispersion relation for the two-photon exchange diagram
that is not constrained by the cross section data [34].
The resulting virtual-photon-proton Compton scattering
amplitude, containing the operator γµ

Nγν
N corresponds to

the T2 term of conventional notation [35], [36]. Eq. (4)
is gauge-invariant; not changed by adding a term of the
form kµ kν/k4 to the photon propagator.

Evaluation proceeds in a standard way by taking the
sum over Dirac indices, performing the integral over k0

by contour rotation, k0 → −ik0, and integrating over the
angular variables. The matrix element M is well approx-
imated by a constant in momentum space, for momenta
typical of a muonic atom, and the corresponding poten-
tial V = iM has the form V (r) = V0δ(r) in coordinate
space. This is the “scattering approximation” [3]. Then
the relevant matrix elements have the form V0 |Ψ2S(0)|2,
where Ψ2S is the muonic hydrogen wave function of the
state relevant to the experiment of Pohl et al. We use
|Ψ2S(0)|2 = (αmr)3/(8π), with the lepton-proton re-

lepton propagator/loop integral provides term so 
that energy shift is  proportional to lepton mass4

lepton

proton

This term is in Pohl et al Table -very small

Tµν



The Controversy- needed effect is 20 times that of Pachucki, 
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The uncertainty in the contribution to the Lamb shift in muonic hydrogen, !Esubt arising from proton
polarizability effects in the two-photon exchange diagram at large virtual photon momenta is shown large
enough to account for the proton radius puzzle. This is because !Esubt is determined by an integrand that
falls very slowly with very large virtual photon momenta. We evaluate the necessary integral using a set
of chosen form factors and also a dimensional regularization procedure which makes explicit the need for
a low energy constant. The consequences of our two-photon exchange interaction for low-energy elastic
lepton–proton scattering are evaluated and could be observable in a planned low energy lepton–proton
scattering experiment planned to run at PSI.
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1. Introduction

The proton radius puzzle is one of the most perplexing physics
issues of recent times. The extremely precise extraction of the pro-
ton radius [1] from the measured energy difference between the
2P F=2

3/2 and 2S F=1
1/2 states of muonic hydrogen disagrees with that

extracted from electronic hydrogen. The extracted value of the pro-
ton radius is smaller than the CODATA [2] value (based mainly
on electronic H) by about 4% or 5.0 standard deviations. This im-
plies [1] that either the Rydberg constant has to be shifted by
4.9 standard deviations or that present QED calculations for hy-
drogen are insufficient. The Rydberg constant is extremely well
measured and the QED calculations seem to be very extensive and
highly accurate, so the muonic H finding is a significant puzzle for
the entire physics community.

Pohl et al. show that the energy difference between the 2P F=2
3/2

and 2S F=1
1/2 states, !Ẽ , is given by

!Ẽ = 209.9779(49) − 5.2262r2p + 0.0347r3p meV, (1)

where rp is given in units of fm. Using this equation and the exper-
imentally measured value !Ẽ = 206.2949 meV, one can see that
the difference between the Pohl and CODATA values of the proton
radius would be removed by an increase of the first term on the
rhs of Eq. (1) by 0.31 meV = 3.1 × 10−10 MeV.

This proton radius puzzle has been attacked from many differ-
ent directions [3–21] The present communication is intended to
investigate the hypothesis that the proton polarizability contribu-
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Fig. 1. The box diagram for the O(α5m4) corrections. The graph in which the pho-
tons cross is also included.

tions entering in the two-photon exchange term, see Fig. 1, can
account for the 0.31 meV. This idea is worthy of consideration be-
cause the computed effect is proportional to the lepton mass to
the fourth power, and so is capable of being relevant for muonic
atoms, but irrelevant for electronic atoms.

2. !Esubt and its evaluation

The basic idea is that the two-photon exchange term depends
on the forward virtual Compton scattering amplitude Tµν(ν,q2)
where q2 is the square of the four momentum, qµ of the vir-
tual photon and ν is its time component (ν ≡ q · p/M) with p as
the proton momentum and M as its mass. One uses symmetries
to decompose Tµν(ν,q2), into a linear combination of two terms,
T1,2(ν,q2). The imaginary parts of T1,2(ν,q2) are related to struc-
ture functions F1,2 measured in electron– or muon–proton scat-
tering, so that T1,2 can be expressed in terms of F1.2 through
dispersion relations. However (for fixed values of q2), F1(ν,q2)
falls off too slowly for large values of ν for the dispersion relation
to converge. Hence, one makes a subtraction at ν = 0, requiring
that an additional function of q2 (the subtraction function) be in-
troduced. Because q2 < 0 for lepton–nucleon scattering, one often

0370-2693/$ – see front matter  2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.11.016

Tµν =

= −(gµν − · · · )T1 + (Pµ − · · · )(Pµ − · · · )T2

Dispersion relation: Im[Ti] ∼ Wi measured

High photon energy (ν) : W1 ∼ ν

Subtraction function needed T 1(ν = 0, Q2)

Hill & Paz 2011 : dispersion approach 
uncertainty order of mag larger than stated

My comment -two orders 



Almost unknown T 1(0, Q
2) Miller PLB 2012

∆Esubt =
α2

m
Ψ2

S(0)

∫ ∞

0

dQ2

Q2
h(Q2)T 1(0, Q

2)

m = leptonmass

lim
Q2"m2

h(Q2) ∼ 2m2

Q2
, chiral PT : T 1(0, Q

2) =
βM

α
Q2 + · · ·

→ Logarithmic divergence

Birse & McGovern : T 1(0, Q
2) =

βM

α Q2

(1 + Q2

2M2
β
)2

∆Esubt = .004meV very small

High Q2 behavior is ASSUMED



Arbitrary functions

The function h(t) is monotonically falling, approaching 1/
√

t for small values of t, and

falling as 3/(4t) large values of t. The subtraction function T1(0, Q2) is not available

from experimental measurements, except at the real photon point Q2 = 0. It comes from

the excitation of the proton, and can be described, at small values of Q2, in terms of the

electric (αE) and magnetic (βM) polarizabilities. For small values of Q and ν = 0 one

sees [23] limν2,Q2→0 T1(0, Q2) = Q2

α βM, where α is the fine structure constant. Using this

simple linear Q2-dependence in Eq. (2) shows that the integral over T1(0, Q2) converges

at the lower limit, but diverges logarithmically at the upper limit. Thus obtaining a non-

infinite result depends on including an arbitrary form factor that cuts off the integrand

for large values of Q2 or some other renormalization procedure.

We note that limQ2→∞ T̄1(0, Q2) can be obtained from the operator production expan-

sion [26, 27]. Using Eq. (2.18) of Ref. [26], neglecting the term proportional to light quark

masses, and accounting for different conventions yields T̄1(0, Q2) ∼ 2.1 fm−1/Q2. This

1/Q2 behavior removes the putative logarithmic divergence of T̄1(0, Q2), but this func-

tion is far from determined.

We follow the previous literature by including a form factor defined as Floop. Then

T1(0, Q2) =
βM
α

Q2Floop(Q2) . (4)

Using Eqs. (2,3,4) one finds the energy shift to be

∆Esubt =
α2φ2(0)

m
βM
α

∫ ∞

0
dQ2



(1− 2Q2/(4m2))




√

1 +
4m2

Q2 − 1



 + 1



 Floop(Q2).

(5)

The issue here is the arbitrary nature of the function Floop(Q2). Pachucki [24] used the

dipole form, ∼ 1/Q4, often used to characterize the proton electromagnetic form factors.

But the subtraction function should not be computed from the proton form factors, be-

cause virtual component scattering includes a term in which the photon is absorbed and

emitted from the same quark [28]. Carlson and Vanderhaeghen [17] evaluated a loop di-

agram using a specific model and found a form factor ∼ 1/Q2 log Q2, leading to a larger

contribution to the subtraction term than previous authors. Birse & McGovern [20] eval-

4

uate terms up to fourth-order in chiral perturbation theory to find

TBM
1 (0, Q2) ! βM

α
Q2

(
1− Q2

M2
β

+O(Q4)

)
→ βM

α
Q2 1

(
1 + Q2

2M2
β

)2 , (6)

with Mβ = 460± 50 MeV. They also use the most recent evaluation of βM, based on a fit

to real Compton scattering [29] that finds

βM = (3.1± 0.5)× 10−4 fm3, (7)

where only statistical and Baldin Sum Rule errors are included. Their result is a negligible

∆Esubt = 4.1µ eV [20]. The form Eq. (6) achieves the correct 1/Q2 asymptotic behavior

of T1(0, Q2) but the coefficient βM/α is not the same as obtained from the operator prod-

uct expansion. The coefficient of Eq. (6) is about twice the asymptotic limit obtained by

Collins [26].

Previous authors [17, 20] noted the sensitivity of the integrand of Eq. (5) to large values

of Q2. Our aim here is to more fully explore the uncertainty in the subtraction term

that arises from the logarithmic divergence. We shall use a form of Floop(Q2) that is

consistent with the constraint on the Q4 term found Birse & McGovern [20]. This is done

by postulating a term that begins at order Q6 in Eq. (4), such as

Floop(Q2) =

(
Q2

M2
0

)n
1

(1 + aQ2)N , n ≥ 2, N ≥ n + 3, (8)

where M0, a are parameters to be determined by requiring that the computed contribu-

tion to the Lamb shift reproduce the desired 0.31 meV. With Eq. (8) the low Q2 behavior

of T̄1(0, Q2) is of order Q6 or greater and it falls as 1/Q4 or greater for large values of Q2.

So far as we know, there are no constraints on the coefficient of the Q6 term or the 1/Q4

term. However, we shall determine the subtraction term’s contribution to the Lamb shift

as a general function of n, N. We note that βM is anomalously small due to a cancellation

between pion cloud and intermediate ∆ terms [30] , so that one can use a value ten times

larger than appears in Eq. (7) to set the overall scale of the subtraction term. Thus we

replace the term βM of Eq. (4) by a general form of the same dimensions β: βM → β.

The use of Eq. (8) in Eq. (5) allows one to state the expression for the energy shift in

5

T 1(0, Q2) ∼ 1
Q4

or faster, βM → β

∆Esubt ≈ 3α2mΨ2
S(0)

β

α
γnB(N,n), γ ≡ 1

M2
0 a

3 parameters: n, N,  a    
(M0 = Mβ)



Contribution to proton mass

• choose parameters n,N, a to minimize this 
contribution, and  keep same  Lamb shift Form factors

0.0 0.2 0.4 0.6 0.8 1.0
Q2!GeV2"0.2

0.4

0.6

0.8

1.0
Floop

Birse McGovern

Miller

CPT

If recast into effective field theory strength seems natural

Unknown asymptotic region



Relevance: need 
neutron term

• neutron term is not constrained by the 
neutron-proton mass difference

• can adjust neutron term to get deuteron 
physics

µ µ

p n



So what? MUSE expt
A Proposal for the Paul Scherrer Institute πM1 beam line

Studying the Proton “Radius” Puzzle with µp Elastic
Scattering

J. Arrington,1 F. Benmokhtar,2 E. Brash,2 K. Deiters,3 C. Djalali,4 L. El Fassi,5 E.
Fuchey,6 S. Gilad,7 R. Gilman (Contact person),5 R. Gothe,4 D. Higinbotham,8 Y.
Ilieva,4 M. Kohl,9 G. Kumbartzki,5 J. Lichtenstadt,10 N. Liyanage,11 M. Meziane,12

Z.-E. Meziani,6 K. Myers,5 C. Perdrisat,13 E. Piasetzsky (Spokesperson),10 V.
Punjabi,14 R. Ransome,5 D. Reggiani,3 A. Richter,15 G. Ron,16 A. Sarty,17

E. Schulte,6 S. Strauch,4 V. Sulkosky,7 A.S. Tadapelli,5 and L. Weinstein18

1Argonne National Lab, Argonne, IL, USA
2Christopher Newport University, Newport News, Virginia, USA

3Paul Scherrer Institut, CH-5232 Villigen, Switzerland
4University of South Carolina, Columbia, South Carolina, USA

5Rutgers University, New Brunswick, New Jersey, USA
6Temple University, Philadelphia, Pennsylvania, USA

7Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
8Jefferson Lab, Newport News, Viginia, USA

9Hampton University, Hampton, Virginia, USA
10Tel Aviv University, Tel Aviv, Israel

11University of Virginia, Charlottesville, Virginia, USA
12Duke University, Durham, North Carolina, USA

13College of William & Mary, Williamsburg, Virginia, USA
14Norfolk State University, Norfolk, Virginia, USA

15Technical University of Darmstadt, Darmstadt, Germany
16Hebrew University of Jerusalem, Jerusalem, Israel

17St. Mary’s University, Halifax, Nova Scotia, Canada
18Old Dominion University, Norfolk, Virginia, USA

About 1.5 years after the radius of muonic hydrogen was found to be 5σ inconsistent with earlier
determinations from atomic hydrogen level transitions and ep elastic scattering, no resolution to
the puzzle has been found. We propose to measure µ±p scattering, which will allow a second de-
termination of the consistency of the µp interaction with the ep interaction. If the µp scattering is
consistent with muonic hydrogen measurements but inconsistent with ep scattering measurements,
the confirmation of consistency between lepton scattering and Lamb shift measurements but differ-
ences between electron- and muon-based measurements of ep and µp systems would provide strong
evidence for beyond standard model physics.

PSI proposal R-12-01.1

2 photon exchange idea is testable 

using RF time measurements. Magnet polarities can be reversed to allow the channel to transport

either positive or negative polarity particles.

B. Detector Overview

FIG. 3. A Geant4 simulation showing part of the MUSE experimental system. Here one sees the beam
going through the GEM chambers and the scattering chamber, along with the spectrometer wire chambers
and scintillator hodoscopes. The beam SciFi’s, quartz Cherenkov, and beam monitor scintillators are
missing from this view.

The πM1 channel features a momentum dispersed (≈7 cm/%) intermediate focal point (IFP)

and a small beam spot (σx,y < 1 cm) at the scattering target. The base line design for the MUSE

beam detectors has a collimator and a scintillating fiber detector (SciFi) at the intermediate focus.

Some of the detectors in the target region are shown in Fig. 3. After the channel and immediately

before the target there are a SciFi detector, a quartz Cherenkov detector, and a set of GEM

chambers. A high precision beam line monitor scintillator hodoscope is downstream of the target.

The IFP collimator serves to cut the πM1 channel acceptance to reduce the beam flux to

manageable levels. The IFP SciFi measures the RF time, for use in determining particle type,

and measures beam particle position, to determine the particle momentum and thus the beam

momentum spectrum.

The target SciFi measures the RF time, for use in determining particle type. The quartz

14

http://www.physics.rutgers.edu/~rgilman/elasticmup/

http://www.physics.rutgers.edu/~rgilman/elasticmup/
http://www.physics.rutgers.edu/~rgilman/elasticmup/


muon scattering
M =M(1) +M(2)

! Normal LaTeX class.

! Easy overlays.

! No external programs needed.
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Deuteron, He as a test

• Need polarizability effect on  neutron 

• Use deuteron to determine effect on  neutron 
(could be opposite sign)

• Then predict other nuclei



Nuclear analysis

Mµp= 0.31 meV, from proton data, needMµn

Deuteron
∆ELS =Mµp +Mµn = 0.4± 0.0034 meV→Mµn = 0.09 meV
4Helium

∆ELS = Z3(2Mµp + 2Mµn) = 8(2(0.31 + 0.09)meV = 6.4 meV

Aldo 1 σ ↔ 1.4 meV, so Helium energy is off by 4.6 σ < 7σ

Maybe 4 σ if nuclear structure uncertainties included

So this idea may explain ≤ 1/4 = 25 % of missing energy

The only way to rule this term out is with data!!



Summary

• No BSM model works now- other ideas?

• In Two Photon Exchange- Flexibility in subtraction function?

• can   resolve puzzle for p, d but 4He can’t be described  unless 
structure uncertainty is much larger than thought, but is an 
irritating unknown uncertainty 

• Many would say: Most likely explanation at this time is in the 
electronic hydrogen experiments,  but let all of the 
experiments decide

• mu p- scattering ~5% /10 % effect in mu p scattering, maybe now  
a ~1.3/2.6 % effect still interesting, and could kill off uncertainty


