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Determination of 〈rP 〉 Using ep Scattering

I The Mott cross-section for scattering of a relativistic electron off a recoiling proton
is ( dσ

dΩ

)
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.

I The Rosenbluth formula generalizes the above,( dσ
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.

I The Sachs form factors GE(q2), GM (q2) account for the finite size of the proton. In
terms of the standard Dirac (F1) and Pauli (F2) form factors,

Diagrams for 1-Photon and 2-Photon Scattering
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Figure 1: Diagrammatic representation of tree-level matching for the one-photon
amplitude in the full theory and in NRQED. The black dot in the dia-
gram on the right-hand side represents insertions of NRQED one-photon
operators.
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I The radii are defined by
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, GpE(0) = 1, GpM (0) = µp.
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Radiative Corrections

I The experimentally measured cross sections include radiative corrections. The
form factors that we use to fit these data should be defined in a way to account for
these corrections.

I A consistent definition of the form factors is required to compare extracted radii.
I In the following, we’ll compare existing conventions in two analyses.
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The Current State of Radiative Corrections
8

(b)

p1 = (EP , �pP )

k1 = (E, �p) k2 =
�
E�, �p�

�

q

p2 =
�
E�

P , �p�
P

�

(v1)

(v2) (v3) (v4) (v5)

(r1) (r2) (r3) (r4)

FIG. 3. Feynman graphs of leading and next to leading order for elastic scattering. (b) leading order, (v1-v5) next to leading
order with an additional virtual photon, (r1-r4) leading order graphs with a radiated real photon.

into groups with an additional virtual (v1-v5 in Fig. 3) or
real photon (r1-r4). However, this grouping is problem-
atic: Divergences in one group cancel against divergences
in the other group, hence all graphs have to be evaluated
at once. This leads to a correction δ to the one-photon-
exchange calculation
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0
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Here,
�

dσ
dΩ

�
0

is the cross section for one photon exchange
alone (graph (b) in Fig. 3) as given by Eq. (7), while�

dσ
dΩ

�
1

is the cross section when next to leading order
contributions are taken into account (graphs v1-v5 and
r1-r4 in Fig. 3).
Vice versa, the non-radiative cross section

�
dσ
dΩ

�
0

can be
determined in a first order approximation by identifying
the experimental cross section with

�
dσ
dΩ

�
1

and dividing
it by (1 + δ).

The integrals over the internal four-momenta of the
graphs v1-3 are logarithmically divergent for large mo-
menta. This can be treated theoretically by charge and
mass renormalization. Details can be found in [28, 29].
Graph v2 leads to an infrared divergence, but it can be
shown [30, 31] that this cancels with corresponding di-
vergences of the graphs r1 and r2.

In the following, the formulae for the contributions
from different groups of diagrams used in this work will
be presented. For details of the calculation see [28, 29].

The vacuum polarization (v1) gives rise to a term
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with v2 = 1 +
4m2

l

Q2 , where ml is the mass of the par-

ticle in the loop. The approximation (12) is valid for
loop-electrons. However, at the energy scales of this ex-
periment and within the envisaged accuracy, the vacuum
polarization via muon and tau loops has to be accounted
for and must be evaluated with Eq. (11).
The finite part of the electron vertex correction (v2,
the infinite part cancels later on) is given in the ultra-
relativistic limit by
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In the same limit, the contribution from real photon emis-
sion by the electron (r1, r2) yields:

δR =
α

π
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where η = E/E�, ∆Es = η · ∆E�. E� is the energy
of an electron scattered elastically through an angle θ
when no photon is emitted. An electron which radiates a

Fig. 3 from Bernauer et al.,1307.6227: (L-R), top-down
I Born, vac. pol.
I e vertex, p vertex, TPE box & cross
I Inelastic cross section, e and p bremsstrahlung
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The Current State of Radiative Corrections (cont.)

M0 = −4πα

q2
ū(k′)γµu(k) · ū(p′)Γ(p)

µ (q)u(p) , M1 =
5∑
i=1

Mvi +
4∑
j=1

Mrj

I There are two comprehensive calculations of the diagrams in the previous slide by
Tsai (1961), and by Maximon & Tjon (2000) [MaTj], both treating the proton as a
propagating Dirac particle.

I The MaTj calculation claims improvement since it applies the soft photon
approximation differently – this essentially amounts to expressing integrals as
Passarino-Veltman 4-point functions instead of 3-point functions.

I Two compilations of ep scattering cross sections: “world” (provided by
J. Arrington), using Tsai, and Mainz (MAMI), using MaTj.

(
dσ
dΩ

)
exp

=
(
dσ
dΩ

)
0
(1 + δ), δ =

2<(M†0M1)

|M0|2
(world)

RC type World Mainz
vac pol hadronic* + all leptons no hadronic + all leptons

TPE Blunden IR part (MaTj) + Feshbach

*According to Walker PRD 49, 5671 (1994).
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A Scatter Plot for Model Dependence

Points with larger |∆δ| tend to be at large scattering angle. Below is a scatter plot for the difference in the size

of the radiative correction to the cross section between the two calculations.
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Form Factor Definitions

I Before performing final fits, we want to make sure we have as complete of an
understanding of the radiative corrections as possible, and to apply a consistent
prescription in the analyses.

I We should think of a point particle scattering off a composite particle.

(a) (b)

Figure 3: First order virtual radiative corrections for point particle (top particle line) scattering
on a composite particle (bottom particle line). In (a) the small blob indicates that first order
corrections for the electron vertex are included. Wavefunction renormalization contributions
are not shown explicitly.

(a) (b)

Figure 4: First order real radiative corrections for point particle scattering on composite
particle. In (a) crosses denote possible attachments of the radiated photon.

mass, λ, in intermediate stages of calculation, taking λ → 0 at the end of the calculation
for infrared finite observables. The cross section for ep → ep scattering is divergent in this
limit, with divergence cancelling against a corresponding divergence in the cross section for
soft photon emission.

4.2 Structure dependent radiative corrections

Let us rigorously define the charge radius of a composite fermion such as the proton as an
observable quantity in the presence of radiative corrections. The relevant amplitudes are
depicted in Figs. 3 and 4. The amplitude for one exchanged photon is

M1 = −4πα

q2

1

1 − Π̂(q2)
ū

(e)
r� (k�)Γ(e)µ(k�, k)u(e)

r (k)ū
(p)
s� (p�)Γ(p)

µ (p�, p)u(p)
s (p) , (9)

where r,r�,s,s� label fermion spin, α = 7.297 × 10−3 is the fine structure constant.
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4.2 Structure dependent radiative corrections

Let us rigorously define the charge radius of a composite fermion such as the proton as an
observable quantity in the presence of radiative corrections. The relevant amplitudes are
depicted in Figs. 3 and 4. The amplitude for one exchanged photon is

M1 = −4πα
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1 − Π̂(q2)
ū

(e)
r� (k�)Γ(e)µ(k�, k)u(e)

r (k)ū
(p)
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µ (p�, p)u(p)
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where r,r�,s,s� label fermion spin, α = 7.297 × 10−3 is the fine structure constant.

5

I Use on-shell renormalization, so that the form factors suffer infrared divergences.
I The single-photon exchange amplitude should read

M0 = −4πα

q2

1

1− Π̂(q2)
ū(k′)Γµ(e)(−q)u(k) · ū(p′)Γ(p)

µ (q)u(p) ,

where Π̂(q2) is the contribution from the vacuum polarization.

Gabriel Lee (University of Chicago) Model-Independent Fits to ep Cross Sections. . . June 4, 2014 9 / 25



Form Factor Definitions (cont.)
I We should define reduced form factors that are finite for nonzero q2 → 0 in the
λ→ 0 limit.

F
(e)
i (q2, λ) ≡ F̃ (e)

i (q2)Φ(e)(q2, λ) , F
(e)
1 (0) = 1 , F
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(p)
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(p)
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φ(q2,mi, λ)− φ(0,mi, λ)

]
,

φ(q2,m, λ) = K(p1, p3) of Tsai. (1)

I The slopes of the reduced form factors (F̃i related to G̃i as before) are used to
define the radii.
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What Remains?

I We know how to compute results for F̃ (e)
i and the leptonic contributions to the

vacuum polarization in perturbation theory.
I For soft bremsstrahlung, the result previously given is exact, although the

evaluation of the resulting integrals differed between the two calculations.
I For TPE, one can define a conventional separation of the IR divergent and finite

parts of the amplitude. In the Tsai and MaTj calculations, the IR separation used
corresponded to how the soft photon approximation was used. Is there a way to
calculate the TPE contribution in a model-independent way?

I What about the hadronic vacuum polarization?
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Hadronic Vacuum Polarization Π̂h(q2)

I This is included in the spectroscopic extractions for the radius.
I Walker (1994) uses a fit and writes the correction to the cross-section

δhvac = −2
[
− 1.513× 10−3 − 2.822× 10−3 log

(
1 + 1.218

Q2

GeV

)]
;

however, the expression for the lepton contribution in the paper is incorrect.
I Use the optical theorem and e+e− → hadrons data. Jegerlehner (1996), Friar et al. (1998)

I For our purposes, it is enough to extract Π̂′h(0) ∼ −9.31(20)× 10−3 GeV−2, which
translates to a 0.1% or 10−3 fm difference.

5

what can be justified by the data alone. In the
analysis of [11] data are fitted before integration.
This requires a guess of the functional form of the
integrand which is then fitted to the data. In ad-
dition one has to assume some kind of correlation
matrix between the data points. One consequence
of the method applied is that the inclusion of one
additional unpublished data point [18] led to a
shift of the result by 1 σ.

In Fig. 6 we show the result for α(−Q2) as a
function of E = |Q| for low t = −Q2 in the space-
like region, which is relevant for the t–channel
contribution to Bhabha scattering. Note the

Figure 6. ∆α(−Q2) in the spacelike region.

Figure 7. Uncertainty of ∆α(t) .

dramatic increase of the effective charge at low
spacelike momenta. This shows that the classi-
cal limit is difficult to reach in a scattering ex-
periment. A clean measurement of the running

of α(−Q2) is possible at LEP by an appropri-
ate analysis of the small angle Bhabha scattering
data. The values of Q2 should be low enough such
that the t–channel contribution is clearly domi-
nant. In Fig. 7 we show the uncertainty in % of
our evaluation of the running charge in the low
energy region.

1.5. Parametrizations.

We have performed fits of ∆α
(5)
had(s). The

parametrizations2 and the best fit parameters we
found are the following:
For −(2GeV)2 < s < (0.25GeV)2 the best fit is

∆α
(5)
had(s) = c1

{
ln |1 − c2s| + c2

c3s

c3 − s

}

−l1
c3s

c3 − s
+ c4 (s/s0)

2

with s0 = −(2GeV)2, l1 = 9.3055× 10−3 GeV−2,
c1 = 2.2694240 × 10−3, c2 = 8.073429GeV−2,
c3 = 0.1636393GeV2, c4 = −3.35455 × 10−5.

In the range −(20GeV)2 < s < −(2GeV)2 we find
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Emax, we have
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TPE in NRQED
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Figure 2: Diagrammatic representation of the matching of the amplitude for Comp-
ton scattering obtained in the full theory and NRQED, to leading order
in e. The black vertices in the diagrams on the right-hand side represent
insertions of NRQED 1-photon operators.
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Figure 3: Feynman diagrams for two-photon exchange with momentum labels.

2

I At low energies, NRQED provides a systematic and model-independent approach
to computing corrections and to relating observables at different energies.

I Leading O(α) correction to ep→ ep, me � E �M : Hill et al., 2012

M2γ =
4π2α

Q2
ū(p)γ

0
u(p)

{
π

2

Q

2E +Q
+ i

(
Q2

(2E)2 −Q2
log

Q

2E
− 2 log

λ

Q

)
+O[α

2
, λ/E,me/E,E/M ]

}
, (3)

I In the limit of M →∞, we recover the Feshbach correction,

δF = απ
sin(θ/2)(1− sin(θ/2))

cos2(θ/2)
,

which was the form of the Coulomb distortion correction computed by Rosenfelder
and applied by the Mainz collaboration. Note that this correction is always positive.
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TPE in NRQED (cont.)

I The NRQED Lagrangian, up to O(1/M2) in the heavy fermion ψ, is:

L = ψ†
{
iDt + c2

D2

2M
cF g

σ ·B
2M

+ cDg
[∂ ·E]

8M2
+ icSg

σ · (D ×E −E ×D)

8M2

}
ψ .

I If we include 4-fermion operators, with ` a relativistic lepton,

L4f =
b1

M2
ψ†ψ ¯̀γ0`+

b2

M2
ψ†σiψ ¯̀γiγ5` .

I Power corrections toM2γ will involve :

1/M : cF ,

1/M2 : cD, b1, b2 .

I One can also use NRQED to compute corrections to S-state energies in bound
states in eH. Hill et al. (2012)
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TPE with Form Factor Insertions
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2

I There has been some effort at modelling the non-IR part of the TPE by the
“Sticking in Form Factors” (SIFF) procedure. Blunden (2003, 2005)

I Treat the proton as a propagating Dirac particle and insert Γµ at each of the
vertices, using simple form factor ansätze for F1, F2.

I We investigated the model dependence of this calculation:

F1 = F2/(µp − 1) = (1− q2/Λ2)−1 , monopole, Λ2 = 0.71 GeV2 ,

F1 = F2/(µp − 1) = (1− q2/Λ2)−2 , dipole, Λ2 = 0.71 GeV2 ,

Fi =

3∑
j=1

aij

bij − q2
,

3∑
j=1

aij

bij
= Fi(0) , Blunden sum of monopoles (2005).
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TPE with Form Factor Insertions (cont.)
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I L/R: TPE IR subtraction scheme of MaTj/Tsai.
I Blue dashed: monopole,
I Grey dot-dashed: Feshbach,
I Black solid: Blunden,
I Red dotted: dipole.
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Fitting Procedure for Global Elastic ep Scattering Dataset

I Experiments since the 1960’s have used the Rosenbluth separation: varying E
and θ to keep q2 (momentum transfer) fixed, and looking at the resulting fit as a
function of ε.

I To extract the radii values, earlier experiments used functional forms for GE , GM
that have pathological behaviour. Hill & Paz (2010)

kmax = 1 2 3 4 5

polynomial 836+8
−9 867+23

−24 866+52
−56 959+85

−93 1122+122
−137

χ2= 34.49 32.51 32.51 31.10 28.99

continued fraction 882+10
−10 869+26

−25 − − −
χ2=32.81 32.51

z expansion (no bound) 918+9
−9 868+28

−29 879+64
−69 1022+102

−114 1193+152
−174

χ2=36.14 32.52 32.48 30.35 28.92

z expansion (|ak| ≤ 10) 918+9
−9 868+28

−29 879+38
−59 880+39

−61 880+39
−62

χ2=36.14 32.52 32.48 32.46 32.45

Table 1: Proton charge radius extracted from data of Table 1 of [19] (Q2 ! 0.04 GeV2) in
units of 10−18 m, using different functional behaviors of the form factor. Dashes denote fits
that do not constrain the slope to be positive.

Errors for the form factor slope are computed by finding the ∆χ2 = 1 range5.
As can be seen from Table 1, the fits with one free parameter differ by many standard

deviations. Fits with two free parameters agree well, while fits with three or more parameters
become increasingly unconstrained for the polynomial and continued fraction expansions, as
well as for the z expansion when no constraints on the expansion coefficients are in place.
In particular, for kmax ≥ 3 in the continued fraction expansion, no meaningful fit can be
performed (e.g., the slope is not constrained to be positive).

These results illustrate the problem to be addressed: without detailed knowledge of the
functional behavior of the form factor, we risk using either too few parameters and biasing the
fit; or too many parameters and losing predictive power. Note that performing trial fits on
model data as in [20] is also problematic; some assumption must be made on the functional
behavior of the form factor in creating the model datasets. To make model independent
statements requires identifying a bounded class of functions that is guaranteed to contain the
true form factor, yet is sufficiently restrictive to retain predictive power. The following section
describes such a class of functions.

3 Dispersive bounds

The above fit to the z expansion with a bound on the coefficients illustrates our basic method-
ology. The present section justifies the |ak| ≤ 10 bound, and demonstrates how further
constraints can be obtained by disentangling the isoscalar and isovector components of the
form factor.

5 We have performed these computations in both MAPLE and MATHEMATICA , and have also checked
our results using MINOS errors in MINUIT.

4

Values in 10−18 m, GCF(q2) = 1

1+a1
q2/tcut

1+a2
q2/tcut
1+...

.
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Functional Forms of GE , GM

I Hill & Paz use the analyticity of the form factor to give a model-independent
constraint on its functional form. This technique is widely used in the meson
community. The form factor is a truncated series in the variable

1 Introduction

The electromagnetic form factors of the nucleon provide basic inputs to precision tests of
the Standard Model. In particular, the root mean square (RMS) proton charge radius as
determined by the form factor slope1 ,

Gp
E(q2) = 1 +

q2

6
〈r2〉p

E + . . . , (1)

is an essential input to hydrogenic bound state calculations [1, 2]. Recent experimental results
suggest a discrepancy between the charge radius inferred from the Lamb shift in muonic
hydrogen [3], rp

E ≡
√

〈r2〉p
E = 0.84184(67) fm, and the CODATA value, rp

E = 0.8768(69) fm,
extracted mainly from (electronic) hydrogen spectroscopy [4]. The charge radius can also be
extracted from elastic electron-proton scattering data. The 2010 edition of the Review of
Particle Physics lists 12 such determinations that span the range of 0.8-0.9 fm [5], most with
quoted uncertainties of 0.01-0.02 fm. These determinations correspond to analyses of different
datasets and different functional forms of Gp

E(q2) that were fit to the data over a period of 50
years.

Extraction of the proton charge radius from scattering data is complicated by the unknown
functional behavior of the form factor. We are faced with the tradeoff between introducing
too many parameters (which limits predictive power) and too few parameters (which biases
the fits). Here we describe a procedure that provides model-independent constraints on the
functional behavior of the form factor. The constraints make use of the known analytic
properties of the form factor, viewed as a function of the complex variable t = q2 = −Q2.

−Q2
max 4m2

π

t z

Figure 1: Conformal mapping of the cut plane to the unit circle.

As illustrated in figure 1, the form factor is analytic outside of a cut at timelike values
of t, [6] beginning at the two-pion production threshold, t ≥ 4m2

π.2 In a restricted region
of physical kinematics accessed experimentally, −Q2

max ≤ t ≤ 0, the distance to singularities
implies the existence of a small expansion parameter. We begin by performing a conformal

1Gp
E is defined in Section 3.1.

2 Here and throughout, mπ = 140 MeV denotes the charged pion mass, and mN = 940 MeV is the nucleon
mass.

1

z(t; tcut, t0) =
√
tcut−t−

√
tcut−t0√

tcut−t+
√
tcut−t0 , t = q2 .

0.5 1

0.8

0.85

0.9

Q2
max

rp E
(f

m
)

Figure 3: Variation of the fitted proton charge radius as a function of maximum Q2. Fits of
the proton data were performed with kmax = 10, φ = 1, t0 = 0, |ak| ≤ 10. Data from [7].

of |z|max as discussed in the Introduction. A combined fit of proton and neutron data can then
be performed. For the proton form factor we again use the data from [7]. For the neutron
electric form factor, we use 20 data points from [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].
We take as additional input the neutron charge radius from neutron-electron scattering length
measurements [5]:

〈r2〉n
E = −0.1161(22) fm2 . (31)

Table 3 shows the effect of different expansion schemes (choices of φ and t0) and coefficient
bounds on the form factor slope determination. For later use, the coefficients ak=1,2,3 extracted
from the fit for Q2

max = 1 GeV2, φ = 1, t0 = 0 and kmax = 8 are −1.99+0.13
−0.12, 0.3+1.5

−1.9, −2+9
−6 for

the isoscalar channel; and −1.20+0.06
−0.05, −0.6+1.3

−1.2, −2+6
−7 for the isovector channel. The sign and

approximate magnitude of the first coefficients agree with the ππ continuum model, and the
narrow-width ω resonance model mentioned in Section 3.4.

4.3 Raising the isovector threshold: inclusion of ππ data

We can effectively raise the isovector threshold by including the ππ continuum explicitly, as
constrained by ππ production and ππ → NN̄ data:

G
(1)
E (t) = Gcut(t) +

∑

k

akz
k(t, tcut = 16m2

π, t0) , (32)

where Gcut(t) is generated by (21) for 4m2
π < t < 16m2

π. For |Fπ(t)| we take the four t
values close to production threshold from [27] (0.101 to 0.178 GeV2), and twelve t values

11

Hill & Paz, fit to extracted FF from world data.
Just proton: rEP = 0.870± 0.023± 0.012 fm
from sample point at Q2 = 0.5 GeV2 with the bounds
|ak|max = 5, 10, (max. variation for the bound of 10).
See talk by Gil Paz for the magnetic result.
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Fitting Procedure

I Use the form factors expanded in z

GE(z) =

kmax∑
k=1

akz
k , GM (z) =

kmax∑
k=1

bkz
k ,

and fit the world cross-section data compiled by Arrington (procedure outlined in
PRC 68, 034325, updated from 2007 fit), extracting the charge and magnetic radii.

I Use MINUIT to minimize the chi-square function

χ2 = χ2
σ + χ2

pol + χ2
norm ,

χ2
σ =

Nσ∑
i=1

(
σi − σi,fit

ηi,fit

)2

dσ2
i

, χ2
pol =

Npol∑
i=1

(Ri −Ri,fit)
2

dR2
i

, χ2
norm =

Nexp∑
i=1

(1− ηi,fit)
2

dη2
i

.

I 1σ values for the radii are determined by scanning the χ2 curve in radius from the
minimum until ∆χ2 = 1 is reached.
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Outline
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Preliminary Results Excluding Polarization Data

PRELIMINARY
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Following the same extraction as Hill & Paz, taking Q2
max = 0.5 GeV2,

〈r2
E〉1/2 = 0.912 +0.026

−0.032 ± 0.004 fm .

Compare with result of Hill & Paz,

〈r2
E〉1/2 = 0.870± 0.023± 0.012 fm .
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Preliminary Results Including Polarization Data
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Following the same extraction,

〈r2
E〉1/2 = 0.934 +0.025

−0.026 ± 0.009 fm .

Compare with result of Zhan et al. (2011) with world data and polarization data below
Q2 = 0.5 GeV2:

〈r2
E〉1/2 = 0.875± 0.010 fm
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Further Investigation

I For the low Q2 data, we did not find that a significant difference from applying
different TPE schemes.

I We can choose different values for t0, the spacelike q2 point that is mapped to
z = 0. Choosing t0 6= 0 yields a faster convergence, which can have some effect
on the speed of the fitting, but a small impact on the result.

I We are working on results for 〈r2
M 〉1/2.

I We will include Mainz data in the fit.
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Conclusion

I It is important, as a community, to agree on a set of radiative corrections to
compare radius extractions from scattering and spectroscopic experiments.

I We have presented a framework for these radiative corrections that will be applied
in our analyses of the world, polarization, and Mainz datasets.

I For low Q2 and initial electron energies, we can compute the TPE corrections in a
model-independent way with NRQED.

I The z-expansion, by construction, guarantees the proper analytic behaviour for the
form factors, and yields a model-independent functional form for GE , GM .

I We presented preliminary results for radius extractions from the world
cross-section data with uncertainties that are consistent with the Hill & Paz
extraction that used the same functional form to fit extracted form factors. We find
uncertainties that are two or three times those of previous analyses.
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