Columbian College of Arts & Sciences

THE GEORGE WASHINGTON UNIVERSITY

The MUSE experiment:

addressing the proton radius puzzle via elastic muon scattering

E. J. Downie

on behalf of the **MUSE Collaboration**

Outline

- Why muon scattering?
- Hasn't it already been done?
 - Possible explanations
 - The MUSE experiment
 - Conclusions

Q f Like <36k **Follow** Edition: U.S. -Search The Huffington Post Q +1 FRONT PAGE POLITICS BUSINESS ENTERTAINMENT GREEN FOOD EDUCATION WEIRD NEWS LIVE ALL SECTIONS ARTS TECH Science > Asteroids • Brain • Dinosaurs • ISS • Mars Rover • Mummies • Search For E.T. • Human Origins • Physics • Spaceflight • Talk Nerdy To Me • Weird Science

Cosmonaut Breaks Longstanding Space Record

More In Science: WATCH: Horsehead Nebula... Magnetic Putty Explained... Va. Rocket Launch!...

Monarch's Misshapen Bones May Have Led To Torture-Like Treatment

Proton Size Smaller Than Physicists Thought, Puzzling New Measurements Suggest

FOLLOW: Video, American Physical Society, Electrons, Physicists, Physics, Proton, Proton Measurements, Proton Mystery, Proton Size, Shrinking Proton, Science News

By: Stephanie Pappas, LiveScience Senior Writer

The crash-dieting proton is famous!

- Not just interesting:
- Tests our theoretical understanding of proton

Radius of proton is dominant uncertainty in many QED processes

😏 Sign in with Twitter

MOST POPULAR ON HUFFPOST

Anonymous Calls For Internet Blackout To Protest CISPA

Report: Miranda Rights Won't

Why Muon Scattering?

Muon results inconsistent with electron results

• To date no high-quality muon scattering measurements performed

Why do the muon and electron give different proton radii?

• Assuming the experimental results are not bad, what are viable theoretical explanations of the Radius Puzzle?

 Novel Beyond Standard Model Physics: Pospelov, Yavin, Carlson, ...: the electron is measuring an EM radius, the muon measures an (EM+BSM) radius

• Novel Hadronic Physics: G. Miller: currently unconstrained correction in proton polarizibility affects μ , but not e (effect $\propto m_1^4$)

• Basically everything else suggested has been ruled out - missing atomic physics, structures in form factors, anomalous 3rd Zemach radius, (cf. Michael Distler)

• See Trento Workshop on PRP for more details:

http://www.mpq.mpg.de/~rnp/wiki/pmwiki.php/Main/WorkshopTrento

How do we Resolve the Radius Puzzle

 \bullet New data needed to test that the e and μ are really different, and the implications of novel BSM and hadronic physics

- → BSM: scattering modified for Q² up to m²_{BSM} (typically expected to be MeV to 10s of MeV), enhanced parity violation
- Hadronic: enhanced 2y exchange effects
- Experiments include:
 - Redoing atomic hydrogen
 - Light muonic atoms for radius comparison in heavier systems
 - Redoing electron scattering at lower Q²
 - Muon scattering!

How do we Resolve the Radius Puzzle

• New data needed to test that the e and μ are really different, and the implications of novel BSM and hadronic physics

- BSM: scattering modified for Q² up to m²_{BSM} (typically expected to be MeV to 10s of MeV), enhanced parity violation
- Hadronic: enhanced 2y exchange effects
- Experiments include:
 - Redoing atomic hydrogen
 - Light muonic atoms for radius comparison in heavier systems CREMA
 - Redoing electron scattering at lower Q² Jlab & Mainz
 - Muon scattering!

How do we Resolve the Radius Puzzle

• New data needed to test that the e and μ are really different, and the implications of novel BSM and hadronic physics

→ BSM: scattering modified for Q² up to m²_{BSM} (typically expected to be MeV to 10s of MeV), enhanced parity violation

Hadronic: enhanced 2y exchange effects

- Experiments include:
 - Redoing atomic hydrogen
 - Light muonic atoms for radius comparison in heavier systems CREMA

IUSE tests these

- Redoing electron scattering at lower Q² Jlab & Mainz
- Muon scattering!

Why Muon Scattering?

Muon results inconsistent with electron results

To date no high-quality muon scattering measurements performed

• Why not?

Why Muon Scattering?

Muon beams are not electron beams!

Previous e-µ Scattering Comparisons

• 1970's & 80's several scattering ep & μp tests

- Supported universality at 10% level
- Insufficient precision to test proton radius issues

Entenberg et al DIS: $\sigma_{\mu\rho}/\sigma_{e\rho} \approx 1.0\pm0.04$ (±8.6% systematics)

Two-photon exchange tests in µp elastics

 Camilleri et al. PRL 23: No evidence for two-photon exchange effects, but very poor constraints by modern standards.

C Radius and e-µ Universality

- ¹²C radius determined with eC scattering and µC atoms agree
 - ➔ Offermann et al. eC: 2.478 ± 0.009 fm
 - \rightarrow Schaller et al. μ C X rays: 2.4715 ± 0.016 fm
 - \rightarrow Ruckstuhl et al. μ C X rays: 2.483 ± 0.002 fm
 - Sanford et al. µC elastic: 2.32 +0.13 -0.18 fm
- Perhaps carbon is right, e's and μ 's are the same.
- Perhaps hydrogen is right, e's and μ 's are different.
- Perhaps both are right opposite effects for proton and neutron cancel with carbon.
- But perhaps the carbon radius is insensitive to the nucleon radius, and μd or μHe would be a better choice?
- Also: A. Antognini et al: Muonic H + eH/D isotope shift \Rightarrow r_d = 2.12771(22) fm vs. 2.130(10) fm from ed scattering.

MUSE Experiment

• Simultaneous measurement of $e^+/\mu^+ e^-/\mu^-$ at beam momenta of 115, 153, 210 MeV/c in π M1 channel at PSI allows:

Determination of two photon effects

Test of Lepton Universality

 Simultaneous determination of proton radius in both eP and μP scattering

Nominal PSI π M1 Channel Characteristics

Spots from 0.7x0.9 cm² up to 16x10 cm², $\Delta p/p$ from 0.1-3.0%, used previously.

MUSE Experiment

- Low beam flux. \rightarrow Large angle, non-magnetic detectors.
- Secondary beam. \rightarrow Tracking of beam particles to target.
- Mixed beam. \rightarrow Identification of beam particle in trigger.

MUSE Experiment

PSI πM1 channel

- ~115, 153, 210 MeV/c mixed beams of e[±], μ^{\pm} and π^{\pm}
- FPGA trigger with beam PID
- $\theta \approx 20^\circ 100^\circ$
- Q² ≈ 0.002 0.07 GeV²
- About 5 MHz total beam flux, ≈2-15% μ's, 10-98% e's, 0-80% π's
- Beam monitored with SciFi,
 ``quartz'' Cerenkov, GEMs
- Scattered particles detected with straw chambers and scintillators

SciFi Beam Detectors (Tel Aviv)

At target

- Timing (~1ns σ in hardware) for PID in combination with beam RF
- Beam flux normalisations for absolute cross sections & triggering
 - Position & time for correlations with GEMS
 - TOF between counters for PID

Properties

 2mm fibres, double-ended maPMT readout. UVY orientations for target detector with ≈ 120 fibres & 8 cm active area

GEM Chambers (Hampton U.)

- Determine trajectory for scattering angle & Q²
 - Third GEM to reject ghosts
 - GEMS from DESY OLYMPUS experiment

At PSI

Need work to speed up readout algorithm

GEMS OF OLYMPUS

GEM Chambers (Hampton U.)

- Determine trajectory for scattering angle & Q²
 - Third GEM to reject ghosts
 - GEMS from DESY OLYMPUS experiment

At PSI

Need work to speed up readout algorithm

- Muon decay event rejection
- Quartz Cherenkov Albrow et al. (FNAL) 10ps resolution
 - Quartz at Cerenkov angle
- MUSE fewer photons ≈100ps (≈50ps after corrections)

FPGAs (Rutgers U.)

- Custom beam PID FPGA
 - →Beam Cerenkov & RF signals \rightarrow PID
 - Count particle types & reject pions
 - →99.9% efficient to reject pions or ID electrons & muons @ 153 / 210 MeV (from simulation)
- Scattered particle FPGA CAEN v1495 to identify scattered particle hit patterns in scintillators
- Trigger FPGA: beam PID + scattered particle + NOT(veto) = trigger

Beam Scintillators (U. So. Carolina)

• Parasitic monitor of random, non-triggering beam particles

- Same design as for CLAS 12
- Test run data verified simulations
- So. Carolina scintillator spectra:

Straw Tube Tracker (HUJI)

Determine scattered particle trajectories with high efficiency and resolution

- Copy of PANDA STTs 140 μ m resolution achieved
 - Thin-walled, over-pressured (2 bar) straws
 - Directly coupled to PADIWA boards
 - Two chambers per side, ten planes per chamber
 - Calibrated relative to GEMs by rotating into beam

Scintillators (U. So. Carolina)

- Detect scattering particles depositing few MeV in each of two planes
- High precision timing for PID & rejection of electons from muon decay
 JLab CLAS12 design

- Front: 17 paddles, 6cm wide x 2cm thick x 103cm long, 50cm from target
- Rear: 27 paddles, 6cm wide x 6cm thick x 163cm long, 73cm from target
 - Resolution: ≈40ps front, ≈50ps rear

TRB3s custom - designed by Michael Traxler (GSI)

Timing from TRB3 boards, with PADIWAs as discriminator

- Precise, cost-effective, high channel density
 - PADIWA customizable for each detector
- Excellent support from Michael Traxler (GSI)
- Analog signal to CAEN v792(N) for walk correction

Custom splitters where necessary

MUSE μp Scattering at PSI

µp and ep comparison:

 BSM physics could lead to different FF and radii although the effect in scattering experiments could go away once Q² > m²_{new}

• Measure both $\mu^{\pm}p$ and $e^{\pm}p$ for 2y exchange

Proton polarizability effect enhances 2y exchange

 MUSE is in the low Q² region, 0.002 - 0.07 GeV², (similar to Mainz and JLab experiments) for sensitivity to radius

 A variety of 2nd generation experiments (lower Q², μ[±]n, higher Q², PV, "heavy" nuclei ...) are already being considered.

Goals for Test Beam Times 2012 /13

- Test beam times in Fall 2012, Summer 2013, December 2013
- Further test planed in June 2014
- Basic measurements at each beam momentum:
 - Determine RF time / particle type distributions
 - Determine beam size at target for each particle type and divergence
 - Determine beam distributions, dispersion and resolutions at Intermediate Focal Point (IFP) for each particle type
- Other measurements for constraints on simulations:
 - Look for protons in + polarity at IFP and see what we need to range them out (none found!)
 - Look at beam halo
 - Do mini scattering experiment

Fall 2012 Test Run

MUSE Test Run Report

The MUon proton Scattering Experiment collaboration (MUŠE):

W.J. Briscoe,¹ K. Deiters,² E. Downie,¹ R. Gilman,³ K.E. Myers,³ E. Piasetzsky,⁴ D. Reggiani,² P. Reimer,⁵ G. Ron,⁶ V. Sulkosky,⁷ and M. Taragin⁸

scintillators (5 cm x 5 cm)

test run report on website: http://www.physics.rutgers.edu/~rgilman/elasticmup

NIM trigger, VME read out, working physicists

Summer 2013 Test Run

Test Run Equipment

3 10 x 10cm² GEMs from OLYMPUS @ DESY

Test Run Setup

Beam Profile From GEMS

- Nice circular beam-spot
- Mostly within 2cm, tails out to 4cm
 - Converging at 40mrad angle

π M1 Channel - RF time in target region

RF Spectra from Test Run

RF Spectrum Momentum Scan, Negative Polarity

RF Time vs ADC Spectra

Jaws Create Backgrounds

RF Spectrum, Background Study +161 MeV/c

Fraction of Negative Particle Species

Fraction of Positive Particle Species

Positive Polarity Particle Fractions

Comparison of Simulation to June 2013 Test Data

- Comparison of data to simulation
 - Test data for 115 MeV

Lots of simulation work still to be done!

π M1 Channel – Particle Fluxes

- Limiting flux to 5 MHz total, by cutting the 3% momentum bite
 - Flux of electrons 1.4 35 times larger than flux of muons

P (MeV/c)	π (MHz)	μ (MHz)	e (MHz)	Momentum bite (%)
+115	0.43	0.43	4.0	1.8
+153	2.10	0.59	2.3	0.9
+210	4.1	0.39	0.54	0.2
-115	0.01	0.14	4.9	2.0
-153	0.55	0.17	4.3	1.3
-210	2.23	0.77	2.0	0.6

Beam Line Summary

- Good flux of μ 's at target, much better flux of e's
 - Beam properties independent of particle type
 - Protons not an issue at our momenta
- Particles can be separated by \approx ns level RF timing at \approx 115, 153, 210 MeV/c for our geometry
 - Beam emittance requires event by event tracking into target with GEMs
 - Time width of particles appears to be 450 ps (σ), except electrons appear to be \approx 350 ps
- Necessitates high timing precision beam Cerenkov for rejection of µ decays

Next Few Years for MUSE

Feb 2012	First PAC presentation
July 2012	PAC / PSI Technical review
Fall 2012	1st test run in π M1 beamline
Jan 2013	PAC approval
Summer 2013	2nd test run in π M1 beamline
Fall 2013	Funding requests
Summer 2014	Money arrives? - start construction
Summer 2015	Start assembling equipment at PSI
Late 2015	Set up and have dress rehersal
2016 - 2017	2 6-month experiment production runs

Next Few Years for MUSE

Feb 2012	First PAC presentation
July 2012	PAC / PSI Technical review
Fall 2012	1st test run in π M1 beamline
Jan 2013	PAC approval
Summer 2013	2nd test run in π M1 beamline
Fall 2013	Funding requests
Summer 2014	Money arrives? - start construction
Summer 2015	Start assembling equipment at PSI
Late 2015	Set up and have dress rehersal
2016 - 2017	2 6-month experiment production runs

Next Few Years for MUSE

	Feb 2012	First PAC presentation
	July 2012	PAC / PSI Technical review
	Fall 2012	1st test run in π M1 beamline
	Jan 2013	PAC approval
	Summer 2013	2nd test run in π M1 beamline
	Fall 2013	Funding requests
	Summer 2014	Money arrives? - start construction
	Summer 2015	Start assembling equipment at PSI
	Late 2015	Set up and have dress rehersal
	2016 - 2017	2 6-month experiment production runs

Reference Design

 Beam: IFP SciFi → target SciFi → Cerenkov → GEM → target → beam monitor scintillators

STTs & scintillator walls for scattered particles

Standard technology

• Geant4 estimates, target collimator bg. v. sensitive to beam distributions

• Custom FPGA trigger to record scattering events and reject π

New Equipment Summary

Detector	Who	Technology
Beam SciFi	Tel Aviv	conventional
GEMs	Hampton	detector exists
Quartz Cerenkov	Rutgers	prototyped
FPGAs	Rutgers	conventional
Target	GWU	conventional
Straw Tube	HUJI	Copy system developed for PANDA
Tracker		
Scintillators	SC	Copy existing system
DAQ	GWU	Conventional, except TRB3 prototyped

Stat. uncertainties only, comparable sensitivity for ep & μp, as in spectroscopy

- 6 month run, equal time for each setting, $\theta_{scatter} = 20 100^{\circ}$
 - Uncertainties include endcap and μ decay subtractions

• $e^{+/-}$ mainly limited by radiative corrections, here 1γ cancels, prob. det. response

Physics

- Radius extraction from John Arrington
- Left: independent absolute extraction
- Right: extraction with only relative uncertainties

Outlook

The proton radius puzzle is a high-profile issue

- Explanation unclear
- PSI MUSE tests interesting possibilities: Are µp and ep interactions different? If so, does it arise from 2γ exchange effects (µ⁺≠µ⁻) or BSM physics (µ⁺≈µ⁻≠e⁻)?

• Within 3-4 years (budgets willing) we should have new electron scattering results and start to see the muon scattering results, and possibly start to resolve the puzzle, perhaps seeing new physics!

MUSE Collaboration

The MUon proton Scattering Experiment collaboration (MUSE):

R. Gilman (Contact person),¹ E.J. Downie (Spokesperson),² G. Ron (Spokesperson),³ A. Afanasev,² J. Arrington,⁴ O. Ates,⁵ F. Benmokhtar,⁶ J. Bernauer,⁷ E. Brash,⁸ W. J. Briscoe², K. Deiters⁹, J. Diefenbach⁵, C. Djalali¹⁰, B. Dongwi⁵, L. El Fassi¹, S. Gilad,⁷ K. Gnanvo,¹¹ R. Gothe,¹² K. Hafidi,⁴ D. Higinbotham,¹³ R. Holt,⁴ Y. Ilieva,¹² H. Jiang,¹² M. Kohl,⁵ G. Kumbartzki,¹ J. Lichtenstadt,¹⁴ A. Liyanage,⁵ N. Liyanage,¹¹ M. Meziane,¹⁵ Z.-E. Meziani,¹⁶ D. Middleton,¹⁷ P. Monaghan,⁵ K. E. Myers,¹ C. Perdrisat,¹⁸ E. Piasetzsky,¹⁴ V. Punjabi,¹⁹ R. Ransome,¹ D. Reggiani,⁹ P. Reimer,⁴ A. Richter,²⁰ A. Sarty,²¹ E. Schulte,¹⁶ Y. Shamai,²² N. Sparveris,¹⁶ S. Strauch,¹² V. Sulkosky,⁷ A.S. Tadepalli,¹ M. Taragin,²³ and L. Weinstein²⁴

Thank you for your attention!