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On the importance of the tail of proton charge density

or: how to get the rms-radius from (e,e) data?

Ingo Sick

Proton rms-radius

important quantity

traditionally determined via electron scattering, q = 0 slope of G(q2)

analysis of world data yields R=0.886±0.008fm

Recent result from Lamb-shift in muonic Hydrogen

very precise radius: R=0.8418±0.0007 fm

disagrees with (e,e) by many σ

Reasons for discrepancy?

many ideas discussed in literature

too many to detail here

no culprit identified

Purpose of talk:

scrutinize determination of rms-radius from (e,e)-data

understand anomalies



How to determine the rms-radius?

priori this looks simple:

fit data with parameterization for Ge(q), Gm(q)

q = 0 slope of Ge(q) → rms-radius R

An unavoidable problem:

cannot measure down to q = 0

even if could, finite size effect would be too small: G(q) = 1 − q2R2/6 + ...

at very low q measure only the ”1”

given exp. uncertainties δG

Important consideration

q-region sensitive to rms-radii

0.5 < q < 1.3fm−1

0.01 < Q2 < 0.06GeV 2/c2

Data above Q2 ∼ 0.06 not relevant for R!



Extrapolation to q = 0 particularly difficult for proton

form factor ∼ dipole 1/(1 + q2c2)2

→ density ∼ exponential ∼ e−r/c

for qualitative discussion ignore rel. corr, 2γ, ... → G(q)=FT(ρ(r))

exponential density has very long tail!

Study [
∫ rcut
0 ρ(r) r4dr/

∫∞

0 ρ(r) r4dr]1/2 as function of cutoff rcut

to get 98% of rms-radius R must integrate out to r ∼ 3.2 ·R ∼ 3fm

=⇒ R sensitive to very large r where ρ(r) poorly determined

large r affect G(q) at very low q, below qmin



But there are worse pitfalls!

discuss starting from two recent results:

• Inverse Polynomial fit of Bernauer et al.

• Continued Fraction fit of Lorenz et al.

Inverse Polynomial Bernauer G(q2) = 1/(1 + a1q
2 + a2q

4 + ....)

Curious behavior:

between order N=7 and N=10 RM jumps from 0.76fm to 0.96fm

χ2 best for N=10

would nominally be the best fit!

Bernauer et al. chose order N=7 (χ2 ±stabilized)



Question remains:

what is responsible for jump?

how can the q20-term affect the rms-radius?

Understanding

GM for N=10 has pole at q > qmax

In ρ(r)m this leads to oscillatory tail extending to very large r, see next page



Density from G(q) with pole

Tail affects Gm(q
2) at very low q2

below q2min of data



Structure at q < qmin gives better χ2 than N=7

note: data are floating

confirms old insight that absolute σ’s much more valuable

Conclusion: N=10 fit is pathological.

but is N=7 better?

A priori: yes, since more ’reasonable’

however: N=7 has pole too!

but pole is at larger q, happens to have much smaller effect

Cannot believe either radius!



Continued Fraction fits by Lorenz et al.

G(q) =
1

1 +
q2b1

1 +
q2b2

1 + · · ·

many fits of Bernauer data with variable qmax

for e.g. 5 terms and qmax = 3.5fm−1 find charge-rms-radius 0.84fm

disagrees with ”accepted” result of 0.88fm

One reason

χ2 ∼ 1.4/dof not very good

→ systematic deviations at low q

Spline fit gives 1.06/dof

from such a fit cannot draw conclusions



Main problem of Lorenz et al.

Unphysical behavior of G at q > qmax = 3.5fm−1 (parameters courtesy H.-W. Hammer)

large G(q) at large q

falls very slowly

→ structure of ρ(r) at very large r

large contribution to rms-radius

affecting G(q < qmin)



Extreme demonstration case

own 4-parameter Pade-fit of Bernauer data, q < 2fm−1

excellent χ2 ∼ 1.06/dof (as good as Spline fit)

no pole

——— Pade-fit

......... Fit with ’normal’ rms-radius

rms-radius = 1.49fm!!

visible by naked eye in G(q) at very low q



Interpretation

split fit into two contributions G1 +G2:

G1 = Pade for q2 > 0.06 plus dashed line for q2 < 0.06

G2 = Pade - G1

G1 has ’normal’ q=0 slope, norm of 0.995

G2 ∼ e−q
2/(0.02fm2)

corresponding to ρ ∼ e−r
2/(200fm2)

G2 leads to large rms-radius despite small norm ∼ 0.005

Note: data are floating, solid and dotted curve give both excellent χ2

absolute cross sections would have been much better

As for previous examples:

problem occurs due to uncontrolled behavior of G(q > qmax)

leads to structure of G(q < qmin) affecting q = 0 slope



For understanding: compare approach for A > 2 ⇐⇒ A ≤ 2

• for A>2 parameterize ρ(r), fit data, get rms-radius from integral over r, or q = 0 slope

• for A≤ 2 parameterize G(q), fit to data, get rms-radius from q = 0 slope

Not equivalent !!

• ρ(r) automatically confined to r < rmax by parameterization

Fermi density, Gauss density, Fourier-Bessel, SOG, ....

physics constraint: ρ(r) must fall like W (κr)2/r2

κ given by removal energy of lightest, least bound charged constituent

• constraint is missing when parameterizing G(q)

G(q > qmax) can imply ρ(r) which is large at large r

allows for unphysical structure of G(q) below qmin
can falsify rms-radius

This is a generic problem. MUST be avoided.

...... and unfortunately concerns most current fits

Least affected: fits including all data up to maximal q measured

in this case data fix large-r behavior to some degree

G(q > qmax) constrained by small G(q ∼ qmax) if G ∼ q−4 (→ regular ρ(0))



”Solutions”

1. Parameterize G(q), always compute ρ(r), check large-r behavior

difficult as above examples show, not possible for parameterizations without FT

2. Parameterize ρ(r) with sensible large-r fall-off

FT→ G(q), fit parameters to σ’s

complicates life, but only a bit. Tricky point: definition of ”sensible”

Solution

• parameterize ρ(r) in basis with analytic FT

SOG, Hermite, Laguerre, ...

then easy to simultaneously consider ρ(r >>)

• constrain ρ(r ≫) using physical model, for r where ρ(r) < 0.01 · ρ(0)

fall-off of ρ given by least-bound Fock component of proton = n+π+

(+complications, see I.S., Prog.Part.Nucl.Phys. 67 (2012)473)

→ adds physics explicitly, safest choice!

replaces model dependence due to parameterization by physics input

• fit data up to maximal q, so data constrain tail of ρ as well

straightforward with above bases



To conclude

Bad news

parameterized G(q)’s may have problems

very difficult to identify if this is the case or not

particularly if G(q) has no FT (such as popular sum of powers of q2)

q = 0 slope could be right or wrong

q = 0 slope could be sensible or not

can be believed only if ρ(r) at large r has been studied!

and behaves reasonably ..... which is never done

Good news

fit with large-r constraint gives stable radii, free of diseases discussed

For data=world, or =world+Bernauer(+.4%), with fixed or floating norm, find

Rch = 0.886± .008fm, Rm = 0.858 ± .024fm

see I.S., Prog. Part. Nucl. Phys. 67 (2012) 473

.......unfortunately it does not help with µH discrepancy



Backup



Physical model for large r

least-bound Fock state: p = n + π+, n = p + π−

dominates ρ(r) completely at large-enough r (> 0.8fm in cloudy bag model)

will use as constraint

To exploit need relation Ge(q) ↔ ρ(r)

for accurate shape need data up to largest q’s

must account for relativistic corrections

ρ(r)exp from (e,e) vs relativistic corrections

non-relativistic: ρ(r) = Fourier-transform of Ge(q)

Relativistic corrections:

1. Determine ρ(r) in Breit-frame, accounts for Lorentz contraction

use as momentum transfer κ2 = q2/(1 + τ ), τ = q2/4M2

2. For composite systems boost operator depends on structure

various prescriptions (Licht, Mitra, Ji, Holzwarth,...), all of form

Ge(q) → Ge(q)(1 + τ )λ, λ=0 or 1

de facto λ=0 or 1 makes little difference for ρ(large r)



Test:

calculate ρ(r) from given Ge(q) with/without relativistic corr., take ratio

find: ambiguity in relativistic effects important for ρ at small r

but unimportant for large-r. Reason: large-r ≡ low momenta

λ affects only normalization of large-r density, not shape

normalization not used in constraint

desirable side-effect: ρ(r = 0) flat after application of relativistic corrections



Calculation of density at very large r

a priori: asymptotic form = Whittaker function W−η,3/2(2κr)/r

with physical masses mN , mπ, l=1

with separation energy = mπ, include CM-correction

makes sense only at large n-π relative distance: Rp
rms = 0.89fm, Rπ

rms=0.66fm

only at large r overlap of n and π small

potential difficulty

need to fold W 2/r2 with charge distribution of n, π

could get into trouble with r = 0 divergence of W/r

In practice

calculate w.f. in square well potential, V (r > R) = 0 (courtesy D.Trautmann)

radius R = 0.8fm (not important), depth adjusted to separation energy

for r > R shape of ψ2 ≡ shape of Whittaker function

can easily fold



Result

excellent agreement with shape of ρexp(r)

(= fit world data with [3][5] Pade) ✸

norm fit to ρexp



”Refinements” of model

allow also for ∆ + π contribution

coefficients of various terms from Dziembowski,...,Speth

’Pionic contribution to nucleon EM properties in light-front approach’

include all states: π+n, π−p, π−∆++, π+∆0, π−∆+, π+∆−

calculate similarly

effect on p-tail: small, tail even a bit closer to ρexp at small r

effect on n-tail: larger, gets close to ρexp with exactly same parameters

will ignore n since components 6= π−p too important

⋄ ρp(r), ⋄ –ρn(r), shape tail



Problems background subtraction



Bernauer result

Rch = 0.879 ± 0.007 fm

Rm = 0.777 ± 0.02 fm

At first sight nice confirmation of previous Rch

(although I find larger model dependence)

Problematic: disagreement with world value Rm = 0.855± 0.035fm

Understanding

effect of Rm-discrepancy only 0.3% at q of maximal sensitivity to rms-radius

(Bernauer data oriented towards determination of Rch!)

At this level background subtraction no good

background from Havar target-window 4 ... 10%

not measured!

primitive model: radiative tail Havar + quasi-elastic scattering in Fermigas model

no inelastic scattering on Havar

Fermi-gas model in threshold region very poor

model does not account for deficiencies of detector



Spectrum shown in thesis

shows misfit amounting to 1.2% in cross section! Large compared to 0.3%!

Must be fixed before can believe results



1.2% problem is systematic

→ concerns entire region of q

≡ region of maximal sensitivity to rms-radius



Which experiments are sensitive to Rm?

for all data plot ratio of contribution to cross section.

(charge)/(charge+magnetic)

maximal sensitivity to rms-radius at q ∼ 0.9fm−1



Target off-sets



Disagreement Bernauer ↔ world data: very poor χ2 of common fit

disagreement studied as function of different variables

systematics of difference most clearly seen in ratio as function of angle

unlikely to be problem of world data (∼20 independent sets)

Most likely reason: x/y-offset of target from center of rotation



Off-set indeed seen by Bernauer et al.

according to thesis: corrected for in data analysis

BUT: there is a possible different reason

magnetic asymmetry of spectrometer relative to midplane

would lead to incorrect reconstruction of target position

→ different correction to σ: basically none

One A1 spectrometer now known to have asymmetry

(partial short in coil)

not enough information available to make true correction



Tail from VDM



Alternative look at π-tail: N spectral function

Hammer et al., 2003

analysis of Hoehler et al. spectral function

after removal of ρ-peak



Compare

Comparison triggers questions

Shape of tail at large r

fall-off of W 2/r2 agrees better with data

Size of π-contribution

a factor of 5 too low

at radii where ρ < 0.01 ρ(0) where would expect total π-dominance

what else could contribute there?



Maximum of ρr2 at 0.35 fm!

does not make any sense

overlap n...π much too large to speak of ”π” (see blue curves)

my conclusion: identification of π-tail in VDM-fit problematic

Reason:

1. difficult to find spectral function that represents 1π-tail

2. has VDM enough degrees of freedom to fit (e,e)?



Plausibility checks

fraction of norm in π-tail

experimental charge distribution∫∞

1. = 0.17
∫∞

1.3 = 0.08

Myhrer+Thomas, cloudy bag model (∼ tail)

important to reduce spin sum rule, from value for relativistic quarks, 0.65

by factor 0.7-0.8 down to exp. value of 0.33±0.06

Pnπ = 0.2 – 0.25, P∆π = 0.05 – 0.1

Bunyathyan+Povh, Deep inelastic scattering

reaction p + e → n(forward) + e’ + X (only integral information)

Pnπ = 0.24 – 0.39

Nikolaev et al. Drell-Yan (integral)

Pπn = 0.21 - 0.28

Hammer et al, VDM∫∞

1. = 0.03
∫∞

1.3 = 0.017

unrealistic



VDM-fits give too low rms since the time of Hoehler et al.!

Example: Mergell et al.



Details of SOG fit



Data used in fit

• world (e,e) data up to 12 fm−1

both cross sections and polarization data, 605 data points

• for some fits add Bernauer σ with 0.4% quadr. added to δσ

• two-photon exchange corrections

needed to make Gep from σ and P agree

includes both soft+hard photons

uses phenomenological modification for very large q

Melnitchouk+Tjon

• (relative) tail density for r > 1.3fm

Parameterization for Ge and Gm

use r-space parameterization to implement constraint

Sum-Of-Gaussians (SOG) parameterization: flexible + convenient

(equivalent results with Laguerre)

Detail

placed every ∼ 0.3fm, for r < 3.3fm

amplitudes fit to σ, P, constraint

30 parameters



Results

average over various data sets and treatments of normalization

Rch = .886 ± 0.008 fm Rm = .858 ± .024 fm

Great feature

result much less sensitive to use of absolute vs. floated data

Conclusion: disagreement with µ-H confirmed.

Question: to which degree could fit (e,e) with muonic R as constraint?

redo analysis with various combinations of data sets

floated or fixed normalization

constraint Rch = 0.84 fm

Increase in χ2 due to constraint

Bernauer 5%

world floated + Bernauer 8%

world floated + tail 10%

world + tail 24%

world + Bernauer + tail 24%



R=0.84fm R=0.88fm

Results show that

1. With floating data and no tail constraint:

can change Rch with modest effect upon χ2

for Bernauer data effect on σexp/σfit not visible

2. With tail constraint: get larger increase

3. Absolute σ + tail: fixes rms-radius best

gives also visible disagreement in data/fit

world data 2-3% below fit

world+Bernauer, 0.84fm



Laguerre as basis



With Laguerre basis approximate e−r/... behavior optimally included in basis

excellent fit of exponential density

get best χ2 for fit of world data

with fewest parameters



Floating data?



Should data be floated or not?

traditional: people float data.

’justification’: absolute norm difficult to determine

main purpose: get good-looking χ2

Two problems

1. Ignores > 50% of effort of experimentalists

great effort made to get absolute normalization

dont want to throw away

2. Floating greatly enhances problems with extrapolation to q = 0

become sensitive to q-dependent systematic errors

errors obviously increase with decreasing q

otherwise data could have been taken at lower q

extrapolation increases effect

affects in particular extracted rms-radius

absolute data much more valuable

than floating ones


