Progress towards a new precise microwave measurement of the 2S-2P Lamb shift in atomic hydrogen

Eric Hessels

Toronto, Canada

June 3, 2014

From e-p scattering, already in in 1955 the proton charge radius was known to one digit: 0.8 fm

59 years later, we still know it to one digit

Proton Puzzle

June 3, 2014

In 1956 it was suggested that the proton size should show up in the hydrogen $2S_{1/2}$ - $2P_{1/2}$ interval (the Lamb shift)

Phys Rev 105 1681

Mainz

Contribution to Lamb Shift Due to Finite Proton Size

Walter Aron and A. J. Zuchelli*

Department of Physics, University of Virginia, Charlottesville, Virginia (Received December 28, 1956)

THE scattering of high-energy electrons by protons has recently been interpreted in terms of a finite spatial distribution of charge for the proton.¹ We have noticed that the resultant deviation from a pure Coulomb field is such as to reduce the existing discrepancy² between theoretical and experimental results for the hydrogen Lamb shift. Since the proton size is small compared to atomic dimensions, one easily finds, using nonrelativistic wave functions,

 $\Delta E\!=\!\tfrac{1}{6}|\psi(0)|^2\!e^2\langle R^2\rangle_{\rm Av},$

where $\langle R^2 \rangle_{Av}$ is the mean square radius of the proton charge distribution and $\psi(0)$ is the amplitude of the hydrogen wave function at the origin. (A similar result was obtained by Salpeter³ in discussing the effect of proton motion in the deuteron Lamb shift.) Taking the mean value given by Chambers and Hofstadter, $R_{\rm rms} = (0.77 \pm 0.10) \times 10^{-13}$ cm, one finds the energy shift for the $2S_{\frac{1}{2}}$ level:

$\Delta E\!=\!0.118\!\pm\!0.03$ Mc/sec.

* National Science Foundation Predoctoral Fellow.

¹E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454 (1956).

² Baranger, Bethe, and Feynman, Phys. Rev. 92, 482 (1953). ³ E. E. Salpeter, Phys. Rev. 89, 92 (1953).

Proton Puzzle

June 3, 2014

Proton Puzzle

June 3, 2014

Eric Hessels York University Toronto Canada

PHYSICAL REVIEW

VOLUME 72, NUMBER 3

AUGUST 1, 1947

Fine Structure of the Hydrogen Atom by a Microwave Method* **

WILLIS E. LAMB, JR. AND ROBERT C. RETHERFORD Columbia Radiation Laboratory, Department of Physics, Columbia University, New York, New York 13000 (Received June 18, 1947) 12000 FREQUENCY - (MEGACYCLES/SECOND) 11000 (m = 1/2) -+ 2 P3/2 (m = 1/2) 9000 8000 1000 2000 MAGNETIC FIELD - (GAUSS)

Proton Puzzle

June 3, 2014

Mainz

Eric Hessels York University Toronto Canada

PHYSICAL REVIEW LETTERS

Measurement of the Lamb Shift in Hydrogen, n=2

S. R. Lundeen and F. M. Pipkin Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 7 August 1980)

A measurement based on the fast-atomic-beam separated-oscillatory-field method of sub-natural linewidth spectroscopy gives, for the Lamb shift in hydrogen, S(n=2) = 1057.845(9) MHz. The result is not in good agreement with theory.

9 part-per-million measurement of Lamb shift

Determines the proton size to an accuracy of 3%

Still the most precise determination of this interval

33 years between Lamb and Lundeen & Pipkin.

Now another 33 years have passed and it is time for another measurement.

	Laboratory	Frequency interval(s)	(ν/kHz)
Other precise hydrogen measurements	MPQ ($\nu_{\rm H}(1S_{1/2}-2S_{1/2})$ >14-digits	2 466 061 413 187.035(10)
	MPQ	$\nu_{\rm H}(2S_{1/2}-4S_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	4 797 338(10)
		$\nu_{\rm H}(2S_{1/2}-4D_{5/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	6 490 144(24)
Cannot be used directly for r _p determination (Ry)		$\nu_{\rm D}(2S_{1/2}-4S_{1/2}) - \frac{1}{4}\nu_{\rm D}(1S_{1/2}-2S_{1/2})$	4 801 693(20)
		$\nu_{\rm D}(2S_{1/2}-4D_{5/2}) - \frac{1}{4}\nu_{\rm D}(1S_{1/2}-2S_{1/2})$	6 494 841(41)
	MPQ	$\nu_{\rm D}(1S_{1/2}-2S_{1/2}) - \nu_{\rm H}(1S_{1/2}-2S_{1/2})$	670 994 334.64(15)
	LKB/SYRTE	$\nu_{\rm H}(2S_{1/2}-8S_{1/2})$	770 649 350 012.0(8.6)
		$\nu_{\rm H}(2S_{1/2}-8D_{3/2})$	770 649 504 450.0(8.3)
Combinations of mea can eliminate Ry dep and determine r _p	asurements	$\nu_{\rm H}(2S_{1/2}-8D_{5/2})$	770 649 561 584.2(6.4)
	pendence	$\nu_{\rm D}(2S_{1/2}-8S_{1/2})$	770 859 041 245.7(6.9)
		$\nu_{\rm D}(2{\rm S}_{1/2}-8{\rm D}_{3/2})$	770 859 195 701.8(6.3)
	($\nu_{\rm D}(2S_{1/2}-8D_{5/2})$	770 859 252 849.5(5.9)
For example:	LKB/SYRTE	$\nu_{\rm H}(2S_{1/2}-12D_{3/2})$	799 191 710 472.7(9.4)
v(2S-8D5/2)-(5/16)v((1S-2S)	$\nu_{\rm H}(2S_{1/2}-12D_{5/2})$	799 191 727 403.7(7.0)
=5 369 962(6) kHz		$\nu_{\rm D}(2S_{1/2}-12D_{3/2})$	799 409 168 038.0(8.6)
is independent of Ry	and	$\nu_{\rm D}(2S_{1/2}-12D_{5/2})$	799 409 184 966.8(6.8)
determines r _p to 2%	LKB	$\nu_{\rm H}(2S_{1/2}-6S_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-3S_{1/2})$	4 197 604(21)
		$\nu_{\rm H}(2S_{1/2}-6D_{5/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-3S_{1/2})$	4 699 099(10)
	Yale	$\nu_{\rm H}(2S_{1/2}-4P_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	4 664 269(15)
		$\nu_{\rm H}(2S_{1/2}-4P_{3/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	6 035 373(10)
	Harvard	$\nu_{\rm H}(2S_{1/2}-2P_{3/2})$	9 911 200(12)
Proton Puzzle Mainz	June 3, 2014	Eric Hessels York University Tor	onto Canada 8

Ten r_p determinations from combinations of H intervals:

Comparing muonic hydrogen to the individual measurements makes the conflict seem not as big: all but one agree with μp to within 2 s.d.

We need more measurements in hydrogen

Our Experiment

Our Experiment

Remeasure hydrogen 2S-2P intervals in ordinary hydrogen

SOF microwave measurements

More specifically, we will start with the $2S_{1/2}$ (F=0, m_F=0) to $2P_{1/2}$ (F=1, m_F=0) m_F=-1 m_F=0 m_F=1 F=2 interval 2P_{3/2} F=1 And later we will measure the $2S_{1/2}$ (F=0, m_F=0) to $2P_{3/2}$ (F=1, m_F=0) F=1interval 2S_{1/2} F=0 F=1 2P_{1/2} F=0 Will form a direct test of proton radius without the need for a 1S_{1/2} F=1 precise Rydberg constant F=0

Proton Puzzle Mainz June 3, 2014

Eric Hessels York University Toronto Canada

Our Experiment and progress to Date

Proton Puzzle

June 3, 2014

Stable ions source with 10 μ A of 50-keV

June 3, 2014

Proton Puzzle

June 3, 2014

Mainz

Eric Hessels York University Toronto Canada

June 3, 2014

Mainz

June 3, 2014

HYPERFINE

STATE

DOPPLER

OUADRUPOL

CHARGE

PROTON

low-Q microwave cavities to create standing waves which drive the main SOF fields

OUADRUPOL

HYPERFINE

STATE

QUENCH

DETECTOR

Critical parameter for the SOF measurement is the relative phase of the microwaves in the two cavities

Relative phase is measured by a pickup observing small interference signal in a tube connecting the two regions

Any unanticipated error in relative phase is reversed by rotating entire microwave system by 180^o – all in situ

June 3, 2014

Mainz

SEPARATED

OSCILLATORY

June 3, 2014

Very good signal-to-noise ratio (approaching 10⁴ in 1 second) at most frequencies between 100 Hz and 10 kHz

Diffference in phase between beat signal and SOF signal is zero if rf frequency (f) is in resonance with the atomic transition.

We are using a new beat-frequency SOF technique

Our (eventual) aim is an accuracy of 2 kHz for each fo the 2S-2P intervals, which would provide two new measurements of the proton radius with uncertainties indicated

Interference Shifts – an important systematic for precision measurements

F=2

Two paths to the same final state will result in quantum mechanical interference and this interference leads to a shift in the resonance. Size of shift scales as

(FWHM) * (FWHM)/detuning

Here: (40 MHz) * (40 MHz) / (9 GHz) ~ 200 kHz

For this experiment, shift cancels exactly if all ground states are included.

Shift depends on the experimental technique used – the interference depends on what is being measured and what paths can interfere.

For most precision measurements this effect is important.

We have calculated shifts in detail for several microwave and laser measurement techniques for the n=2 triplet states of helium.

Conclusions:

- We are measuring the n=2 Lamb shift of Hydrogen
- We see excellent signal-to-noise
- We need to do extensive tests for systematics to complete the measurement (6 months?)
- Measurement will make a significant determination of the proton charge radius.

- The main team:
- A.C. Vutha (postdoc), I Ferchichi, N. Bezginov, E.A. Hessels
- Also contributing: V. Isaac, M.C. George, M. Weel, C.H. Storry