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Complete collection of coefficients in P. Mohr et al., Rev. Mod. Phys. 84, 1527 (2012) 

Parameters involved in the theory of atomic hydrogen energy levels: 
 
 
•  Rydberg constant (unit converter)   
•  fine structure constant   α	


•  electron-to-proton mass ratio   me/mp 
•  proton r.m.s. charge radius   rP … and many more. 
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Determination of α from electron g-factor 

Determination of α from atomic recoil shift 
3x10-10 Hanneke et al., PRL 100, 120801 (2008) 

Bouchendira et al., PRL 106, 080801 (2011) 

Determination of me/mP from cyclotron frequency 
see P. Mohr et al., Rev. Mod. Phys. 84, 1527 (2012) and Refs. therein 

Effectively two parameters left to us: and 

5x10-12 

6x10-3 

5x10-10 
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3x10-10 Hanneke et al., PRL 100, 120801 (2008) 

Bouchendira et al., PRL 106, 080801 (2011) 

Determination of me/mP from cyclotron frequency 
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5x10-12 

6x10-3 

5x10-10 

F. Biraben, Euro. Phys. J. 172, 2009 
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Effectively two parameters left to us: and 
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Size of possible systematics that could explain the proton size puzzle: 

Transition standard dev. relative to line width 

H 1S-2S 4000σ	

 40 

µ-p 100σ	

 4 

H 2S-4P1/2 < 1.5σ 7x10-4 

H 2S-4P3/2 < 0.5σ 7x10-4 
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Frequency references 

J. Guena et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control 59, 391 (2012) 
K. Predehl et al., Science 336, 441 (2012) 
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C.G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011) 
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2 466 061 413 187 035(10)Hz
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New experiments on the way: 

Scattering experiments: 
 
•  Jlab E12-11-106: e - p (2014-15) 
•  MUSE at PSI: µ+/- - p (2017-2018) 

Spectroscopy of electronic Atoms and Ions: 
 
•  NPL, London: 2S-6S/D in atomic hydrogen 
•  MPQ, Garching: 

•  2S-4P in atomic hydrogen 
•  1S-3S in atomic hydrogen (comb) 
•  He+ (in preparation) 

•  LKB, Paris: 1S-3S in atomic hydrogen (cw) 
•  YU, Toronto: 2S-2P „Lamb shift“ 

•  VU, Amsterdam: He+ (in preparation) 
•  NIST, Gaithersburg: highly charged ions 

Spectroscopy of exotic atoms: 
 
•  ETH, Zurich (in preparation):  

•  positronium (e+e-) 
•  muonium (µ+e-) 

•  PSI, Villingen: µHe+ 
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2S-4P transition: 
•  one photon transition  

Ø  low power required 
Ø  need to deal with 1st and 2nd 

order Doppler Shift 
•  small principal quantum number n: 

Ø  natural line width 13 MHz 
Ø  DC Stark effect small compared 
higher transitions 

difference in 2S-4P transition frequency 
using rp from µ-p or H: 

only about 8.9kHz 
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Typical numbers in our experiment: 

Frequency shift for deviation from 90° 
configuration: 

�! = �!v ·
�!
k
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Cross Damping / Interference 

If the line is to be split by γ/N, the 
additional, geometry dependent cross 
term becomes important if the next 
resonance is closer than Nxγ 
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Figure 1. Left: Line shape of (3) for � ⌘ �1 = �2 and a line splitting of 4� for di↵erent
values of the dipole phase ' = (0,⇡/4,⇡/2, 3⇡/4). The Fourier frequency is measured in units
of �. For comparison the dashed line shows a single Lorentzian. From this one sees that the line
pulling comes with both signs. Right: Line pulling obtained by fitting a single Lorentzian to
the left peak of two incoherently added Lorentzians (dashed) and by fitting a single Lorentzian
to the full line shape of (3). In the region of interest, i.e. large line splitting, the often neglected
coherent line pulling is several orders of magnitude larger.

Very often such a line shape is described by the sum of the squares rather than by the squares
of the sum. There are two distinct pulling e↵ects if the full expression is taken into account that
I would label as coherent and incoherent. The incoherent pulling is due to the shift that occurs
when two or more lines sit on each others pedestal. It is readily be compensated by fitting a sum
of real valued Lorentzians. The second coherent part is taken into account by fitting the more
complicated line shape of (3). One might think that the coherent part vanishes for a particular
choice of '. However, this can only true for a particular Fourier frequency !. A more general
condition for the interference term to vanish takes place when the dipoles are orthogonal, i.e.
~

d1 · ~d2 = 0. Fr illustration the line shape of (3) is shown in fig. 1 for certain values of ' and
�1 = �2.

2. Hydrogen 2s-4p
We now want to estimate if the more complicated coherent line pulling e↵ect has to be taken into
account for the 2s-4p1/2 and the 2s-4p3/2 transitions in atomic hydrogen. With this experiment
we want to contribute to the proton size puzzle. For this goal it is important to identify the
unperturbed line center with an uncertainty significantly better than 10 kHz. M. Horbatsch
and co-workers have found a rule of thumb that allows to estimate under which condition the
coherent line pulling e↵ect has to be taken into account [1]. This is the case if one wants to
identify the line center better than �/N when the perturbing next line is separated by N�. This
is indeed the case as detailed in fig. 2. As the line splitting is about 100 ⇥ �, coherent pulling
e↵ect dominate over incoherent pulling according to the right hand side of fig. 1.

In this experiment the 2s(F = 0) is selectively populated by driving the 1s(F = 0)-2s(F = 0)
two photon transition with a 243 nm laser that forms a standing wave running collinearly with
the atomic beam. Additional line pulling e↵ects due to o↵ resonant excitation of the 1s(F = 1)-
2s(F = 1) might be e↵ective but neglected here. From the 2s(F = 0) initial state only two
F = 0 ! F = 1 hyperfine components are allowed. The F = 0 ! F = 0 components do
not conserve angular momentum directly unless the exciting photon carries a an orbital angular
momentum (quadruple transition). In addition optical pumping may can lead to the population

MITP workshop PSP, June 3rd, 2014 A. Beyer 26 

M. Horbatsch & E.A. Hessels, PRA 82, 052519 (2010) 
R.C. Brown et al., PRA 87, 032504 (2013) 
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pulling comes with both signs. Right: Line pulling obtained by fitting a single Lorentzian to
the left peak of two incoherently added Lorentzians (dashed) and by fitting a single Lorentzian
to the full line shape of (3). In the region of interest, i.e. large line splitting, the often neglected
coherent line pulling is several orders of magnitude larger.

Very often such a line shape is described by the sum of the squares rather than by the squares
of the sum. There are two distinct pulling e↵ects if the full expression is taken into account that
I would label as coherent and incoherent. The incoherent pulling is due to the shift that occurs
when two or more lines sit on each others pedestal. It is readily be compensated by fitting a sum
of real valued Lorentzians. The second coherent part is taken into account by fitting the more
complicated line shape of (3). One might think that the coherent part vanishes for a particular
choice of '. However, this can only true for a particular Fourier frequency !. A more general
condition for the interference term to vanish takes place when the dipoles are orthogonal, i.e.
~

d1 · ~d2 = 0. Fr illustration the line shape of (3) is shown in fig. 1 for certain values of ' and
�1 = �2.

2. Hydrogen 2s-4p
We now want to estimate if the more complicated coherent line pulling e↵ect has to be taken into
account for the 2s-4p1/2 and the 2s-4p3/2 transitions in atomic hydrogen. With this experiment
we want to contribute to the proton size puzzle. For this goal it is important to identify the
unperturbed line center with an uncertainty significantly better than 10 kHz. M. Horbatsch
and co-workers have found a rule of thumb that allows to estimate under which condition the
coherent line pulling e↵ect has to be taken into account [1]. This is the case if one wants to
identify the line center better than �/N when the perturbing next line is separated by N�. This
is indeed the case as detailed in fig. 2. As the line splitting is about 100 ⇥ �, coherent pulling
e↵ect dominate over incoherent pulling according to the right hand side of fig. 1.

In this experiment the 2s(F = 0) is selectively populated by driving the 1s(F = 0)-2s(F = 0)
two photon transition with a 243 nm laser that forms a standing wave running collinearly with
the atomic beam. Additional line pulling e↵ects due to o↵ resonant excitation of the 1s(F = 1)-
2s(F = 1) might be e↵ective but neglected here. From the 2s(F = 0) initial state only two
F = 0 ! F = 1 hyperfine components are allowed. The F = 0 ! F = 0 components do
not conserve angular momentum directly unless the exciting photon carries a an orbital angular
momentum (quadruple transition). In addition optical pumping may can lead to the population
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FIG. 6. (Color online) Simplified schematic of experimental
apparatus. The interaction region is surrounded by three layers of
mu-metal (not shown) to minimize the magnetic field. The coordinate
system shown is consistent with Fig. 1.

splitting isotope shift (SIS). The SIS provides the best point
of comparison between theory and experiment. We propose
that the interference effect we describe here is the root cause
for some disagreements between previous measurements in
Li [27–30] and for the lack of internal consistency of the
frequency-comb-based measurement in K [8].

A. Apparatus and procedure

A simplified schematic view of our apparatus [6,41] is
shown in Fig. 6. Light from a single-frequency diode laser
intersects a collimated thermal beam of lithium atoms at a
right angle. A half wave plate controls the angle of polarization
of the light. The laser beam is retroreflected by a precise
corner cube that provides a return beam antiparallel to better
than 1.45 µrad. The return beam is chopped at 500 Hz by a
mechanical chopper. We observe the spectrum by scanning
the laser frequency over a lithium component and record
the fluorescence along an axis approximately orthogonal to
both the laser and atomic beams. To minimize stray light, the
interaction region is imaged on the photocathode through a
stack of three narrow-band 670 nm interference filters.

The lithium beam is formed in a vacuum system with
a background-gas pressure of less than 1.3 × 10−5 Pa (1 ×
10−7 Torr). Lithium atoms effuse from an oven that is typically
operated at 450 ◦C and are collimated to a beam with a
divergence angle of 1.4 mrad by a 2 mm aperture at a distance
of 1.4 m. Isotopically enriched 6Li was added to the oven to
produce a beam with approximately equal densities of the two
naturally occurring isotopes.

The lithium resonances are probed by a diode laser at
670 nm that is locked to an evacuated Fabry-Perot cavity
using the Pound-Drever-Hall method [42]. This servo-lock
narrows and stabilizes the diode laser output. Despite the wide
bandwidth of the servo, the laser line width is limited to about

500 kHz due to acoustic noise that couples to the cavity. The
laser can be scanned under computer control by varying the
voltage applied to a piezo electric stack to which one of the
cavity mirrors is mounted. In the interaction region the laser
is collimated to a 3.5-mm-diameter beam and the laser power
was typically attenuated to 3 µW. Stability of the laser power
over a single scan was better than 1%.

The lithium fluorescence signal is detected in two channels
by a gated photon counter. One of these channels observes
the fluorescence when both forward and return laser beams
interact with the lithium beam. For the other channel the return
beam is blocked by the chopper and the signal is attributable
to the forward beam only. By differencing the photon count
in the two channels, we recover the signal due to the reverse
beam. In this way we obtain the forward and reverse signals
simultaneously in a single scan with an optical setup in which
the antiparallelism of the forward and reverse beams is limited
only by the precision of the corner-cube retroreflector.

Our experiment differs from previous observations of the
lithium D lines in that we measure directly the frequency of
the laser using a femtosecond optical frequency comb [43].
The comb is a commercial instrument based on an Er fiber
laser with a repetition rate of 250 MHz. The fiber laser output
is frequency doubled and broadened with a photonic crystal
fiber producing a comb with broad spectral coverage in the
red and near-infrared regions. A low-resolution spectrometer
is used to observe the spectral distribution of the comb to
optimize the output at 670 nm. The repetition rate and carrier
offset frequency of the comb are referenced to a stable quartz
oscillator which is in turn locked to a cesium clock. This
configuration produces a frequency reference with an absolute
accuracy of better than 2 parts in 1013 and an Allan deviation
of approximately 3 × 10−13 for integration times of 1 to 100 s.
The frequency measurement using the comb is, therefore, a
negligible contributor to our experimental uncertainty.

The spectroscopy laser is beat against a single tooth of
the frequency comb using a high-speed photodetector and a
narrow-band filter having a center frequency of 30 MHz and
a width of about 6 MHz. To record a calibrated scan across
a lithium line, the repetition rate of the frequency comb is
first adjusted so that the beat frequency between an arbitrary
mode of the comb and the spectroscopy laser is approximately
30 MHz. A computer-generated voltage ramp is then used to
vary both the laser frequency and the comb repetition rate so
that the beat frequency remains fixed at 30 MHz.

Data are recorded by scanning the laser across a lithium
resonance in steps of approximately 250 kHz. A settling time
of 200 ms is allowed after each step. Scans are acquired in pairs
with increasing and decreasing laser frequency. Fluorescence
data are accumulated alternately on the two gated-photon-
counter channels for a total acquisition time of 72 ms on each
channel. The beat-note frequency between the spectroscopy
laser and the frequency comb is counted over the same time
interval. For every data point, we record the comb repetition
rate, comb offset frequency, beat-note frequency, beat-note
signal strength, lithium fluorescence signal on both photon
counter channels, and spectroscopy laser output power.

Doppler-free spectra of the Li D lines were taken at different
laser polarization angles θL and fit using the line shapes
presented here convolved with a Gaussian to account for
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of comparison between theory and experiment. We propose
that the interference effect we describe here is the root cause
for some disagreements between previous measurements in
Li [27–30] and for the lack of internal consistency of the
frequency-comb-based measurement in K [8].

A. Apparatus and procedure

A simplified schematic view of our apparatus [6,41] is
shown in Fig. 6. Light from a single-frequency diode laser
intersects a collimated thermal beam of lithium atoms at a
right angle. A half wave plate controls the angle of polarization
of the light. The laser beam is retroreflected by a precise
corner cube that provides a return beam antiparallel to better
than 1.45 µrad. The return beam is chopped at 500 Hz by a
mechanical chopper. We observe the spectrum by scanning
the laser frequency over a lithium component and record
the fluorescence along an axis approximately orthogonal to
both the laser and atomic beams. To minimize stray light, the
interaction region is imaged on the photocathode through a
stack of three narrow-band 670 nm interference filters.

The lithium beam is formed in a vacuum system with
a background-gas pressure of less than 1.3 × 10−5 Pa (1 ×
10−7 Torr). Lithium atoms effuse from an oven that is typically
operated at 450 ◦C and are collimated to a beam with a
divergence angle of 1.4 mrad by a 2 mm aperture at a distance
of 1.4 m. Isotopically enriched 6Li was added to the oven to
produce a beam with approximately equal densities of the two
naturally occurring isotopes.

The lithium resonances are probed by a diode laser at
670 nm that is locked to an evacuated Fabry-Perot cavity
using the Pound-Drever-Hall method [42]. This servo-lock
narrows and stabilizes the diode laser output. Despite the wide
bandwidth of the servo, the laser line width is limited to about

500 kHz due to acoustic noise that couples to the cavity. The
laser can be scanned under computer control by varying the
voltage applied to a piezo electric stack to which one of the
cavity mirrors is mounted. In the interaction region the laser
is collimated to a 3.5-mm-diameter beam and the laser power
was typically attenuated to 3 µW. Stability of the laser power
over a single scan was better than 1%.

The lithium fluorescence signal is detected in two channels
by a gated photon counter. One of these channels observes
the fluorescence when both forward and return laser beams
interact with the lithium beam. For the other channel the return
beam is blocked by the chopper and the signal is attributable
to the forward beam only. By differencing the photon count
in the two channels, we recover the signal due to the reverse
beam. In this way we obtain the forward and reverse signals
simultaneously in a single scan with an optical setup in which
the antiparallelism of the forward and reverse beams is limited
only by the precision of the corner-cube retroreflector.

Our experiment differs from previous observations of the
lithium D lines in that we measure directly the frequency of
the laser using a femtosecond optical frequency comb [43].
The comb is a commercial instrument based on an Er fiber
laser with a repetition rate of 250 MHz. The fiber laser output
is frequency doubled and broadened with a photonic crystal
fiber producing a comb with broad spectral coverage in the
red and near-infrared regions. A low-resolution spectrometer
is used to observe the spectral distribution of the comb to
optimize the output at 670 nm. The repetition rate and carrier
offset frequency of the comb are referenced to a stable quartz
oscillator which is in turn locked to a cesium clock. This
configuration produces a frequency reference with an absolute
accuracy of better than 2 parts in 1013 and an Allan deviation
of approximately 3 × 10−13 for integration times of 1 to 100 s.
The frequency measurement using the comb is, therefore, a
negligible contributor to our experimental uncertainty.

The spectroscopy laser is beat against a single tooth of
the frequency comb using a high-speed photodetector and a
narrow-band filter having a center frequency of 30 MHz and
a width of about 6 MHz. To record a calibrated scan across
a lithium line, the repetition rate of the frequency comb is
first adjusted so that the beat frequency between an arbitrary
mode of the comb and the spectroscopy laser is approximately
30 MHz. A computer-generated voltage ramp is then used to
vary both the laser frequency and the comb repetition rate so
that the beat frequency remains fixed at 30 MHz.

Data are recorded by scanning the laser across a lithium
resonance in steps of approximately 250 kHz. A settling time
of 200 ms is allowed after each step. Scans are acquired in pairs
with increasing and decreasing laser frequency. Fluorescence
data are accumulated alternately on the two gated-photon-
counter channels for a total acquisition time of 72 ms on each
channel. The beat-note frequency between the spectroscopy
laser and the frequency comb is counted over the same time
interval. For every data point, we record the comb repetition
rate, comb offset frequency, beat-note frequency, beat-note
signal strength, lithium fluorescence signal on both photon
counter channels, and spectroscopy laser output power.

Doppler-free spectra of the Li D lines were taken at different
laser polarization angles θL and fit using the line shapes
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Lyman-α detector: 
 
• monitor number of remaining  
   2S atoms after interaction 
•  intrinsically worse statistics 
•   ca. 2.5 times prolonged 

measurement time 

•  but:  
•  insensitive to interference effect 
•  direct online measurement of 

2S atom flux 
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2S-6P transition @ 410nm: 
 

1.  study electric fields for 2S-4P 
2.  absolute freq. measurement 
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2S-6P transition @ 410nm: 
 

1.  study electric fields for 2S-4P 
2.  absolute freq. measurement 
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•  Precision spectroscopy of the 2S-4P 
transition on a cryogenic beam of 
optically excited 2S atoms 
–  2S-4P1/2 and 2S-4P3/2  
–  1.8kHz uncertainty for 2S-4P1/2 

(statistics and FOD) 
•  good statistics essential to identify 

systematic effects on the order of the 
discrepancy between H and mup 

•  interference effect seems to be 
crucial for our contribution to the 
proton size puzzle 

 

What’s next? 
 
•  further improve statistics by direct 

measurement of FOD 
•  characterization of interference 

effect in new detector configura-
tion (exp. & theo.) 

•  characterization of the DC Stark 
effect by 2S-6P spectroscopy 

•  new measurements of the 2S-4P1/2 
and 2S-4P3/2 transition frequency 
with upgraded system 

•  apply experimental scheme to 
higher 2S-nP transitions  

     (n = 6, 8, 9,10) 
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