Hydrogen 1S-3S spectroscopy to contribute to the proton charge radius puzzle

S. Galtier, H. Fleurbaey, F. Nez, L. Julien, F. Biraben Laboratoire Kastler Brossel CNRS, UPMC, ENS

\bigwedge H spectroscopy : R_{∞} and L_{1S} determination

 $\mathsf{E}(\mathsf{n},\mathsf{l},\mathsf{j}) = \mathsf{hcR}_{\infty} \mathsf{f}(,\alpha, \mathsf{m}_{\mathsf{e}}/\mathsf{m}_{\mathsf{p}}, \mathsf{n},\mathsf{l},\mathsf{j}) + \mathsf{recoil} + \mathsf{L}(\mathsf{n},\mathsf{j},r_{\mathsf{p}}) \approx \frac{\mathsf{R}_{\infty}}{\mathsf{n}^{2}} + \mathsf{L}(\mathsf{n},r_{\mathsf{p}})$

proton radius from H spectroscopy

Figure 5. Comparison of various determinations of the proton radius from hydrogen spectroscopy. Each value is obtained from the 1S–2S transition frequency, the $1/n^3$ law and one of the other hydrogen experimental data from 2S–n(S,P,D). ((a) From Lundeen & Pipkin [55], (b) from Hagley & Pipkin [56], (c) from Newton *et al.* [57], (d) from Weitz *et al.* [58], (e) from Berkeland *et al.* [59], (f) from Bourzeix *et al.* [60] combined with Arnoult *et al.* [53], (g) from de Beauvoir *et al.* [24], (h) from Schwob *et al.* [61], and (i) from Arnoult *et al.* [53]). The double line corresponds to the uncertainty of the proton radius determination obtained from muonic hydrogen spectroscopy. (Online version in colour.)

Phil. Trans. R. Soc. A (2011) 369, 4064-4077

A « Proton radius puzzle »

• Improve precision measurements on hydrogen: 1S-2S (MPQ Garching), 1S-3S (LKB and MPQ G.), 2S-6S (NPL), 2S-2P (York)

- Improve electron-proton scattering experiment (Newport News, Va and Mainz)
- Improve the uncertainty of R_{∞} (²⁰Ne⁹⁺ Rydberg states at NIST-Gaithersburg)
- Perform muon-proton scattering experiment (MUSE project at PSI)
- Perform µ-He+ spectrocopy (*CREMA collaboration at PSI: 2S-2P*)
- Perform precise He+ spectrocopy (1S-2S MPQ Garching and LaserLab Amsterdam)

1S-3S/2S-8S spectroscopy of hydrogen

TiSa frequency

• Velocity distribution measurement :

No "easy" optical transition for Doppler spectroscopy (1S-2P : 121 nm !)

Hydrogen (1S) production

▲ The 205 nm cw light source

 Two doubling stages : TiSa: 820 nm → 410 nm in LBO → 205 nm in BBO
 < 1 mW quasi-continuous

• Frequency mixing in BBO:

Two-photon absorption probability proportional to P²:
 → Enhancement of the S/N ratio of the resonance signal

• Continuous laser beam:

→ Easier spectroscopy (less systematic compared to pulsed spectroscopy)

• Possibility of generating 194 nm (1S-4S)

S. Galtier, F. Nez, L. Julien and F. Biraben, Opt. Comm. 324 (2014) p.34-37 : "Ultraviolet continuous-wave laser source at 205 nm for hydrogen spectroscopy".

The experimental setup

Linewidth of TiSa laser and V6 laser : < 40 kHz

The resonance signal

- The TiSa laser frequency is scanned over 2.4 MHz, with step of 80 kHz.

 → curve obtained with an integration time of about 3.5 hours.
- fitted with a lorentzian function: $\Gamma = 1.5 \text{ MHz}$ (1S-3S natural linewidth: 1MHz) (lorentzian fit on line sophisticated fit after...)

We scan the TiSa laser frequency over 2.4 MHz, with step of 80 kHz.
 → curve obtained with an integration time of about 3.5 hours.

• fitted with a lorentzian function: $\Gamma = 1.5 \text{ MHz}$ (1S-3S natural linewidth: 1MHz) (lorentzian fit on line sophisticated fit after...)

The 2nd order Doppler effect compensation

- Relativistic effect
- v = 3km/s $\rightarrow \delta_{dop}$ = 120 kHz !
- Principle: motional Stark effect for opposite parity levels (ex. S and P)

F. Biraben, L. Julien, J. Plon and F. Nez, Europhys. Lett., 15 (1991) p.831 :

"Compensation of the second Doppler effect in two photon spectroscopy of atomic hydrogen".

A The 2nd order Doppler effect compensation

G. Hagel, R. Battesti, F. Nez, L. Julien and F. Biraben, Phys. Rev. Lett. 89 (2002) p.203001 : "Observation of a motional Stark effect to determine the second order Doppler effect".

- Two photon spectrocopy: $\Delta F = 0$ and $\Delta mF = 0$ $1S_{1/2} (F=1) \rightarrow 3S_{1/2} (F=1)$
- Zeeman splitting:

$$1S_{1/2} (F=1, mF=1) \rightarrow 3S_{1/2} (F=1, mF=1)$$

$$1S_{1/2} (F=1, mF=-1) \rightarrow 3S_{1/2} (F=1, mF=-1)$$

$$1S_{1/2} (F=1, mF=0) \rightarrow 3S_{1/2} (F=1, mF=0)$$

• Motional Stark effect - Level crossing 180G:

$$3S_{1/2}$$
 (F=1, mF = -1) coupled to $3P_{1/2}$

The 2nd order Doppler effect compensation

 Partial compensation at 171G
 → 2nd order Doppler effect determination for a given velocity distribution

G. Hagel, R. Battesti, F. Nez, L. Julien and F. Biraben, Phys. Rev. Lett. 89 (2002) p.203001 : "Observation of a motional Stark effect to determine the second order Doppler effect".

The velocity distribution

 \rightarrow fast atoms pull along slower one:

 \implies Monitoring of the transmitted UV light from the FP cavity with a PMT instead of a UV-Si photodiode

Laser to be checked

Comments Which precision on 1S-3S transition to solve the proton puzzle ?

Taking into account the measured 1S-2S frequency:

• with r_p deduced from hydrogen+scattering experiment (CODATA)

 $v[1S_{1/2}-3S_{1/2}] = 2\ 922\ 743\ 278.6716\ (14)\ MHz$ (4.8 × 10⁻¹³)

• with r_p deduced from μp spectroscopy:

 $v[1S_{1/2}-3S_{1/2}] = 2\ 922\ 743\ 278.6644\ (5)\ MHz$ (1.7 × 10⁻¹³)

Still missing pieces...

Bound state QED....

I thank you for your attention!

Experiments...

New theory...

Proton structure

UPINC SORBONNE UNIVERSITÉS

Codata Rydberg constant versus time

1998 :	109 737.315 685 9 (16) cm-1	without LKB
1998 :	109 737.315 685 3 (10) cm-1	without MPQG
1998 :	109 737.315 685 6 (96) cm-1	H only
1998 :	109 737.315 683 9 (13) cm-1	D only
1998 :	109 737.315 685 21 (81) cm-1	Codata
2002 .	$100.737.315.685.50.(85).cm_1$	
2002 .	109737.31500359(05)011-1	D only
2002.	109 7 37 .3 15 683 9 (13) Cm-1	Doniy
2002 :	109 /3/.315 685 25 (/3) cm-1	Codata
2006 :	109 737.315 685 62 (85) cm-1	H only
2006 :	109 737.315 683 9 (13) cm-1	D only
2006 :	109 737.315 685 27 (73) cm-1	Codata
2010 ·	109 737 315 685 61 (60) cm-1	H only
2010 :	109 737 315 683 7 (13) cm-1	Donly
2010 :	$10073731568539(73) \text{ cm}_1$	Codata
2010 .	$10072721569175(12) \text{ cm}^{-1}$	with up
2010.	109/37.313001/3(12)011-1	with hh

2006

TABLE XLV. Summary of the results of some of the least-squares adjustments used to analyze the input data related to R_{ω} . The values of R_{ω} , R_p , and R_d are those obtained in the indicated adjustment, N is the number of input data, M is the number of adjusted constants, $\nu = N - M$ is the degrees of freedom, and $R_{\rm B} = \sqrt{\chi^2/\nu}$ is the Birge ratio. See the text for an explanation and discussion of each adjustment, but, in brief, 4 is the final adjustment; 7 is 4 with the input data for R_p and R_d deleted; 8 is 4 with just the R_p datum deleted; 9 is 4 with just the R_d datum deleted; 10 is 4 but with only the hydrogen data included; and 11 is 4 but with only the deuterium data included.

Adj.	Ν	М	ν	x ²	$R_{\rm B}$	$R_{ m w}/{ m m}^{-1}$	$u_{\rm f}(R_{\infty})$	R _p /fm	R _d /fm
4	135	78	57	65.0	1.07	10 973 731.568 527(73)	6.6×10 ⁻¹²	0.8768(69)	2.1402(28)
7	133	78	55	63.0	1.07	10 973 731.568 518(82)	7.5×10 ⁻¹²	0.8760(78)	2.1398(32)
8	134	78	56	63.8	1.07	10 973 731.568 495(78)	7.1×10^{-12}	0.8737(75)	2.1389(30)
9	134	78	56	63.9	1.07	10 973 731.568 549(76)	6.9×10 ⁻¹²	0.8790(71)	2.1411(29)
10	117	68	49	60.8	1.11	10 973 731.568 562(85)	7.8×10 ⁻¹²	0.8802(80)	
11	102	61	41	54.7	1.16	10 973 731.568 39(13)	1.1×10 ⁻¹¹		2.1286(93)

2010

TABLE XXXVIII. Summary of the results of some of the least-squares adjustments used to analyze the input data related to R_{∞} . The values of R_{∞} , $r_{\rm p}$, and $r_{\rm d}$ are those obtained in the indicated adjustment, N is the number of input data, M is the number of adjusted constants, $\nu = N - M$ is the degrees of freedom, and $R_{\rm B} = \sqrt{\chi^2/\nu}$ is the Birge ratio. See the text for an explanation and discussion of each adjustment. In brief, adjustment 6 is 3 but the scattering data for the nuclear radii are omitted; 7 is 3, but with only the hydrogen data included (no isotope shift); 8 is 7 with the $r_{\rm p}$ data deleted; 9 and 10 are similar to 7 and 8, but for the deuterium data; 11 is 3 with the muonic Lamb-shift value of $r_{\rm p}$ included; and 12 is 11, but without the scattering values of $r_{\rm p}$ and $r_{\rm d}$.

Adj.	Ν	М	ν	χ^2	$R_{\rm B}$	$R_{\infty} (\mathrm{m}^{-1})$	$u_{\rm r}(R_\infty)$	$r_{\rm p}$ (fm)	$r_{\rm d}~({\rm fm})$
3	149	82	67	58.1	0.93	10 973 731.568 539(55)	$5.0 imes 10^{-12}$	0.8775(51)	2.1424(21)
6	146	82	64	55.5	0.93	10 973 731.568 521(82)	7.4×10^{-12}	0.8758(77)	2.1417(31)
7	131	72	59	53.4	0.95	10 973 731.568 561(60)	5.5×10^{-12}	0.8796(56)	
8	129	72	57	52.5	0.96	10 973 731.568 528(94)	8.6×10^{-12}	0.8764(89)	
9	114	65	49	46.9	0.98	10 973 731.568 37(13)	1.1×10^{-11}		2.1288(93)
10	113	65	48	46.8	0.99	10 973 731.568 28(30)	2.7×10^{-11}		2.121(25)
11	150	82	68	104.9	1.24	10 973 731.568 175(12)	1.1×10^{-12}	0.84225(65)	2.128 24(28)
12	147	82	65	74.3	1.07	10 973 731.568 171(12)	1.1×10^{-12}	0.841 93(66)	2.128 11(28)

1998

TABLE XVIII. Summary of the results of some of the least-squares adjustments used to analyze the input data related to R_{∞} given in Tables XIV.A.1 and XIV.A.2. The values of R_{∞} , R_p , and R_d are those obtained in the indicated adjustment, N is the number of input data, M is the number of adjusted constants, $\nu = N - M$ is the degrees of freedom, $R_{\rm B} = \sqrt{\chi^2/\nu}$ is the Birge ratio, and $Q(\chi^2|\nu)$ is the probability that the observed value of χ^2 for ν degrees of freedom would have exceeded that observed value.

Adj.	N	М	p	χ^2	$R_{\rm B}$	$Q(\chi^2 \nu)$	$R_{\infty}/\mathrm{m}^{-1}$	$u_{\rm r}(R_{\infty})$	$R_{\rm p}/{\rm fm}$	$R_{\rm d}/{\rm fm}$
1	50	28	22	12.7	0.76	0.94	10 973 731.568 521(81)	7.3×10^{-12}	0.859(10)	2.1331(42)
2	48	28	20	10.4	0.72	0.96	10 973 731.568 549(83)	7.5×10^{-12}	0.907(32)	2.153(14)
3	31	18	13	7.4	0.75	0.88	10 973 731.568 556(96)	8.7×10^{-12}	0.908(33)	
4	16	11	5	2.1	0.65	0.84	10 973 731.568 32(30)	2.7×10^{-11}		2.133(28)
5	36	28	8	4.8	0.78	0.78	10 973 731.568 59(16)	1.5×10^{-11}	0.910(35)	2.154(15)
6	39	25	14	8.5	0.78	0.86	10 973 731.568 53(10)	9.2×10^{-12}	0.903(35)	2.151(16)

2002

02

P. J. Monr and B. N. Taylor: CODATA values of the fundamental constants 2002

TABLE XXIV. Summary of the results of some of the least-squares adjustments used to analyze the input data related to R_{ω} . The values of R_{ω} , R_p , and R_d are those obtained in the indicated adjustment, N is the number of input data, M is the number of adjusted constants, $\nu = N - M$ is the degrees of freedom, and $R_B = \sqrt{\chi^2/\nu}$ is the Birge ratio.

Adj.	N	М	ν	<i>x</i> ²	$R_{\rm B}$	$R_{\omega}/\mathrm{m}^{-1}$	$u_{\rm f}(R_{\infty})$	$R_{\rm p}/{\rm fm}$	$R_{\rm d}/{\rm fm}$
4	105	61	44	31.2	0.84	10 973 731.568 525(73)	6.6×10 ⁻¹²	0.8750(68)	2.1394(28)
7	103	61	42	29.0	0.83	10 973 731.568 511(82)	7.5×10 ⁻¹²	0.8736(77)	2.1389(32)
8	104	61	43	29.7	0.83	10 973 731.568 490(78)	7.1×10 ⁻¹²	0.8717(74)	2.1381(30)
9	104	61	43	30.2	0.84	10 973 731.568 546(76)	6.9×10 ⁻¹²	0.8769(71)	2.1402(29)
10	87	36	51	27.1	0.87	10 973 731.568 559(85)	7.8×10 ⁻¹²	0.8782(80)	
11	72	28	44	20.9	0.86	10 973 731.568 39(13)	1.1×10^{-11}		2.1285(93)

The proton charge radius puzzle : The hydrogen experiment

2010 Results

- Velocity distribution: $f(v,\sigma) = v^3 \exp(-v^2/2\sigma^2)$
- Line shape:

 $R(\omega_{laser}, \sigma, B)$

 $\rightarrow \sigma$ = 1.646 (89) km/s

We deduce: $r_p = 0.911 (65) \text{ fm}$

O. Arnoult, F. Nez, L. Julien, and F. Biraben, Eur. Phys. J. D 60 p.243 (2010)

The velocity distribution

$$P[Kn, \psi(z)] = \frac{(\pi)^{1/2}}{2} \frac{\operatorname{erf}[\psi(z)/2Kn]^{1/2}}{[\psi(z)/2Kn]^{1/2}}$$

•
$$\psi(z) = \frac{z \exp(-z^2) + [(\pi)^{1/2}/2](1+2z^2) \operatorname{erf}(z)}{(2\pi)^{1/2}z^2}$$

 $\Psi(\mathbf{x})$ as for the mean number of collisions per second Z experienced by a molecule of speed $c = x\alpha$ (where α is the most probable speed) is given by:

$$Z = \sqrt{\pi} N \sigma^2 \alpha \frac{\Psi(x)}{x},$$

⁶ E. H. Kennard, *Kinetic Theory of Gases* (McGraw-Hill, New York, 1938), pp. 97-113.

• $Kn = \lambda_s/L$.

The **Knudsen** number : *L*, the length of the circular tube from where escape the atoms. λ_s , the mean-free path in the source reservoir.

If $Kn > 1 \rightarrow$ the velocity distribution deviates from a Maxwellian distribution \rightarrow more fast atoms

D.R. Olander et al. J. Appl. Phys. 41 n°11 p.4388 (1970)

Prospect : cooling down the hydrogen beam Ţ Nitrogen reservoir H (300K) Earth magnetic field compensation coil Liquid Nitrogen Coil to determine the atomic velocity H (77K) H (300K)

The frequency comb

Sum frequency \implies simultaneous measurement of two laser frequencies

• Two photonic crystal fiber (PCF) spectrum:

Absolute frequency measurements

• Absolute frequency of the two lasers:

TiSa laser: $f_{TiSa} = 334\ 797\ 895\ 352,\ 900 \pm 0,\ 994\ kHz$ Verdi laser: $f_{Verdi} = 563\ 286\ 978\ 440,\ 6\pm 2,\ 6\ kHz$

Figure 5. Comparison of various determinations of the proton radius from hydrogen spectroscopy. Each value is obtained from the 1S–2S transition frequency, the $1/n^3$ law and one of the other hydrogen experimental data from 2S–n(S,P,D). ((a) From Lundeen & Pipkin [55], (b) from Hagley & Pipkin [56], (c) from Newton *et al.* [57], (d) from Weitz *et al.* [58], (e) from Berkeland *et al.* [59], (f) from Bourzeix *et al.* [60] combined with Arnoult *et al.* [53], (g) from de Beauvoir *et al.* [24], (h) from Schwob *et al.* [61], and (i) from Arnoult *et al.* [53]). The double line corresponds to the uncertainty of the proton radius determination obtained from muonic hydrogen spectroscopy. (Online version in colour.)

Phil. Trans. R. Soc. A (2011) 369, 4064–4077 doi:10.1098/rsta.2011.0233