

Lattice form factor activities in Mainz

Thomas Rae

University of Mainz

2 June, 2014

Contents

- Motivation
- Form factors
- Lattice formulation
- Extraction methods systematics
- * Results
 - Vector form factors arXiv hep-lat: 1311.5804
 - * Axial & Pseudoscalar form factors Preliminary
 - * Axial charge Phys. Rev. D 86, 074502 (2012)
- Outlook

Motivation

- Baryonic form factors
 - provide information on hadron structure
 - distribution of electric charge and magnetisation
 - charge radii
 - accurate experimental data available
 - relatively simple to compute on the lattice
 - * large systematic uncertainties remain and need to be controlled

Form factors

Rosenbluth formula describes electron-nucleon scattering

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \propto \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2\left(\frac{\theta}{2}\right)\right], \quad \tau = \frac{Q^2}{4M^2}$$

Form factors measured experimentally

* e.g at MAMI here in Mainz

Form factors

* The matrix element of a nucleon interacting with an electromagnetic current is decomposed by the Dirac and Pauli form factors - F_1 and F_2 respectively

$$\langle N(p',s')|V_{\mu}|N(p,s)\rangle = \overline{u}(p',s') \left[\gamma_{\mu}F_1(Q^2) + i\frac{\sigma_{\mu\nu}q_{\nu}}{2m_N}F_2(Q^2)\right]u(p,s)$$

* These are related to the Sachs form factors G_E and G_M that are measured in scattering experiments

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2}F_2(Q^2), \quad G_M(Q^2) = F_1(Q^2) + F_2(Q^2).$$

Understanding nucleon structure from first principles

- Systematic effects not fully controlled
 - Lattice artefacts
 - Chiral extrapolation to physical pion mass
 - Finite-volume effects
 - "Contamination" from excited states
 - Quark-disconnected diagrams ignored
- * Perform a systematic study of the form factors with controlled systematics

Baryon correlation functions

Lattice formulation

$$R_A(\vec{q}=0,t,t_s) = \frac{C_3(\vec{q}=0,t,t_s)}{C_2(\vec{q}=0,t,t_s)} \propto g_A + \mathcal{O}(e^{-\Delta t}, e^{-\Delta(t-t_s)})$$

- Plateau method
- Extract nucleon hadronic matrix elements from ratios of three- and twopoint functions
- Form factors should be independent of time and source position

Lattice formulation

$$R_V(\vec{q}, t, t_s) = \frac{C_3(\vec{q}, t, t_s)}{C_2(\vec{q}, t, t_s)} \sqrt{\frac{C_2(\vec{q}, t_s - t)C_2(\vec{0}, t)C_2(\vec{0}, t_s)}{C_2(0, t_s - t)C_2(\vec{q}, t)C_2(\vec{q}, t_s)}} \propto G_E(Q^2), G_M(Q^2)$$

Plateau method

- Extract nucleon hadronic matrix elements from ratios of three- and twopoint functions
- Form factors should be independent of time and source position

Lattice ensembles

Run	β	<i>a</i> [fm]	$L^3 \times T$	m_{π} [MeV]	<i>L</i> [fm]	$m_{\pi}L$ [MeV]	N _{meas}
A3	5.2	0.079	32 ³ ×64	473	2.5	6.0	2128
A4				363	2.5	4.7	3200
A5				312	2.5	4.0	4000
B6			48 ³ ×96	262	3.8	5.0	2544
E5	5.3	0.063	32 ³ ×64	451	2.0	4.7	4000
F6			48 ³ ×96	324	3.0	5.0	3600
F7				277	3.0	4.2	3000
G 8			64 ³ ×128	195	4.0	4.0	4176
N5	5.5	0.050	48 ³ ×96	430	2.4	5.2	1908
N6				340	2.4	4.0	3784
07			64 ³ ×128	270	3.2	4.4	1960

* $N_f = 2$ non-perturbatively O(a) improved Wilson fermions

Lattice ensembles

Form factor extraction

Statistically demanding calculation - requires many measurements

* Unclear as to whether $t_s=1.1$ fm is sufficient to rule out bias

Summation method

Vector form factors

- Model the Q² dependence
 - dipole ansatz:

$$G_{E,M}(Q^2) = \frac{G_{E,M}(0)}{\left(1 + \frac{Q^2}{M_{E,M}^2}\right)}$$

- used to determine the radius
- * and to determine the magnetic moment, $\mu = G_M(0)$

$$\mu = \lim_{Q^2 \to 0} \frac{G_M(Q^2)}{G_E(Q^2)}$$

* N6: measured 6 different source-sink separations

Excited state fits

alternative to summation method

* explicit excited state fits $R_V(t,t_s) \propto G_E + p_1 e^{-m_\pi t} + p_2 e^{-2m_\pi (t_s-t)}$

Mid-point/fit method

- alternative to summation method
 - extrapolate from plateau fits

Chiral extrapolations

Axial Charge

Summary

- * We observe a systematic variation in the form factors for the plateau method for different source-sink separations t_s
 - clearer for large statistics
- Summed insertions help control excited state contamination
 - remove the need to fit plateaus
- Explicit excited states fits may help further reduce contamination
- * Important to consider range of t_s
 - * small t_s have smallest statistical errors but most effected by excited state contamination

Outlook

- * N6 ensemble hints at bias for plateau method even for $t_s=1.1$ fm
 - check for the most chiral ensembles
- Finalise treatment of chiral behaviour of the form factors and derived quantities
- * Continue axial form factors $G_P(Q^2)$ and $G_A(Q^2)$ study
- Introduce dynamical strange quark
- Simulations at the physical pion mass

