Lattice form factor activities in Mainz

Thomas Rae

University of Mainz

Contents

* Motivation
* Form factors
* Lattice formulation
* Extraction methods - systematics
* Results
* Vector form factors arXiv hep-lat: 1311.5804
* Axial \& Pseudoscalar form factors - Preliminary
* Axial charge Phys. Rev. D 86, 074502 (2012)
* Outlook

Motivation

* Baryonic form factors
* provide information on hadron structure
* distribution of electric charge and magnetisation
* charge radii
* accurate experimental data available
* relatively simple to compute on the lattice
* large systematic uncertainties remain and need to be controlled

Form factors

* Rosenbluth formula describes electron-nucleon scattering

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right) \propto\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \tan ^{2}\left(\frac{\theta}{2}\right)\right], \quad \tau=\frac{Q^{2}}{4 M^{2}}
$$

* Form factors measured experimentally
* e.g at MAMI here in Mainz

Form factors

* The matrix element of a nucleon interacting with an electromagnetic current is decomposed by the Dirac and Pauli form factors - F_{1} and F_{2} respectively

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| V_{\mu}|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}\left(Q^{2}\right)+i \frac{\sigma_{\mu \nu} q_{\nu}}{2 m_{N}} F_{2}\left(Q^{2}\right)\right] u(p, s)
$$

* These are related to the Sachs form factors G_{E} and G_{M} that are measured in scattering experiments

$$
G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 m_{N}^{2}} F_{2}\left(Q^{2}\right), \quad G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
$$

Understanding nucleon structure from first principles

* Systematic effects not fully controlled
* Lattice artefacts
* Chiral extrapolation to physical pion mass
* Finite-volume effects
* "Contamination" from excited states
* Quark-disconnected diagrams ignored
* Perform a systematic study of the form factors with controlled systematics

Baryon correlation functions

* Exponentially increasing noise-to-signal ratio

* Provides a challenge for accurate calculations of baryon form factors

Lattice formulation

$$
R_{A}\left(\vec{q}=0, t, t_{s}\right)=\frac{C_{3}\left(\vec{q}=0, t, t_{s}\right)}{C_{2}\left(\vec{q}=0, t, t_{s}\right)} \propto g_{A}+\mathcal{O}\left(e^{-\Delta t}, e^{-\Delta\left(t-t_{s}\right)}\right)
$$

* Plateau method
* Extract nucleon hadronic matrix elements from ratios of three- and twopoint functions
* Form factors should be independent of time and source position

Lattice formulation

$$
R_{V}\left(\vec{q}, t, t_{s}\right)=\frac{C_{3}\left(\vec{q}, t, t_{s}\right)}{C_{2}\left(\vec{q}, t, t_{s}\right)} \sqrt{\frac{C_{2}\left(\vec{q}, t_{s}-t\right) C_{2}(\overrightarrow{0}, t) C_{2}\left(\overrightarrow{0}, t_{s}\right)}{C_{2}\left(0, t_{s}-t\right) C_{2}(\vec{q}, t) C_{2}\left(\vec{q}, t_{s}\right)}} \propto G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)
$$

* Plateau method
* Extract nucleon hadronic matrix elements from ratios of three- and twopoint functions
* Form factors should be independent of time and source position

Lattice ensembles

Run	β	$a[\mathrm{fm}]$	$L^{3} \times T$	$m_{\pi}[\mathrm{MeV}]$	L [fm]	$m_{\text {I }} L[\mathrm{MeV}]$	$N_{\text {meas }}$
A3	5.2	0.079	$32^{3} \times 64$	473	2.5	6.0	2128
A4				363	2.5	4.7	3200
A5				312	2.5	4.0	4000
B6			$48^{3} \times 96$	262	3.8	5.0	2544
E5	5.3	0.063	$32^{3} \times 64$	451	2.0	4.7	4000
F6			$48^{3} \times 96$	324	3.0	5.0	3600
F7				277	3.0	4.2	3000
G8			$64^{3} \times 128$	195	4.0	4.0	4176
N5	5.5	0.050	$48^{3} \times 96$	430	2.4	5.2	1908
N6				340	2.4	4.0	3784
O7			$64^{3} \times 128$	270	3.2	4.4	1960

- $N_{f}=2$ non-perturbatively $O(a)$ improved Wilson fermions

Lattice ensembles

Form factor extraction

* Statistically demanding calculation - requires many measurements
* Unclear as to whether $t_{s}=1.1 \mathrm{fm}$ is sufficient to rule out bias

Summation method

$$
R\left(t, t_{s}\right)=G+\mathcal{O}\left(e^{-\Delta t}, e^{-\Delta\left(t-t_{s}\right)}\right)
$$

$$
S\left(t_{s}\right)=\sum_{t=0}^{t_{s}} R\left(\vec{q}, t, t_{s}\right) \rightarrow c\left(\Delta, \Delta^{\prime}\right)+t_{s}\left(G+\mathcal{O}\left(e^{-\Delta t_{s}}\right)+\mathcal{O}\left(e^{-\Delta^{\prime} t_{s}}\right)\right)
$$

Vector form factors

* Model the Q^{2} dependence
* dipole ansatz:

$$
G_{E, M}\left(Q^{2}\right)=\frac{G_{E, M}(0)}{\left(1+\frac{Q^{2}}{M_{E, M}^{2}}\right)}
$$

* used to determine the radius
* and to determine the magnetic moment, $\mu=G_{M}(0)$

$$
\mu=\lim _{Q^{2} \rightarrow 0} \frac{G_{M}\left(Q^{2}\right)}{G_{E}\left(Q^{2}\right)}
$$

O7

* N6: measured 6 different source-sink separations

Excited state fits

* alternative to summation method
* explicit excited state fits $R_{V}\left(t, t_{s}\right) \propto G_{E}+p_{1} e^{-m_{\pi} t}+p_{2} e^{-2 m_{\pi}\left(t_{s}-t\right)}$

Mid-point/fit method

* alternative to summation method
* extrapolate from plateau fits

Chiral extrapolations

Axial Charge

$G_{A} \& G_{P}$

Summary

* We observe a systematic variation in the form factors for the plateau method for different source-sink separations t_{s}
* clearer for large statistics
* Summed insertions help control excited state contamination
* remove the need to fit plateaus
* Explicit excited states fits may help further reduce contamination
* Important to consider range of t_{s}
* small t_{s} have smallest statistical errors but most effected by excited state contamination

Outlook

* N6 ensemble hints at bias for plateau method even for $t_{s}=1.1 \mathrm{fm}$
* check for the most chiral ensembles
* Finalise treatment of chiral behaviour of the form factors and derived quantities
* Continue axial form factors $G_{P}\left(Q^{2}\right)$ and $G_{A}\left(Q^{2}\right)$ study
* Introduce dynamical strange quark
* Simulations at the physical pion mass

Thank you

