The 4 He radius from μ^4 He $^+$ spectroscopy

Aldo Antognini ETH Zurich for the CREMA collaboration

A. Antognini

MITP work bop,

U13 781780

op, Mainz

if polarisability contribution known with $u_r = 5\%$

Antognini et al., Can. J. Phys. 89, 47 (2011)

Benchmark for few-nucleon theories - absolute radii of ³He, ⁴He and ⁶He, ⁸He via isotopic shifts

R. van Rooij et al. Science 333, 196 (2011) Cancio Pastor et al., arXiv:1201.1362 Müller, Wang, Shiner...

Why testing bound-state QED?

Free QED

$$a_e = C_1 \left(\frac{\alpha}{\pi}\right) + C_2 \left(\frac{\alpha}{\pi}\right)^2 + C_3 \left(\frac{\alpha}{\pi}\right)^3 + C_4 \left(\frac{\alpha}{\pi}\right)^4 + C_5 \left(\frac{\alpha}{\pi}\right)^5 + \Delta(\text{had.}, \dots)$$

Bound-state QED

- Binding effects $(Z\alpha)$

- bad convergence, all-order approach/expansion
- Radiative corrections (α and $Z\alpha$)
- Recoil corrections $(m/M \text{ and } Z\alpha)$
- relativity \Leftrightarrow two-body system - Radiative–recoil corrections (α , m/M and $Z\alpha$)
- Nuclear structure corrections
- \rightarrow Cannot develop the calculation in a systematic way
- \rightarrow Corrections are mixed up: $\alpha^x \cdot (Z\alpha)^y \cdot (m/M)^z$
- \rightarrow Difficulty in finding out the desired order of corrections

New development: NRQED

QED	g-2 free particle particle mass only perturbative around free particle	Lamb shift bound-state particle three scales, hierarchy non-perturbative	[after Nio]
QCD	deep inelastic scattering pQCD	hadron lattice, Chiral perturbation	
	A. Antognini	MITP workshop, Mainz 02-06 June	e 2014 – p. 3

Few-nucleon theories and He-radius

Helium spectroscopy in Amsterdam

- Trap μ K cold ⁴He* and ³He*.
- Measure the double forbidden 1557 nm line (M1 transition between two metastable states).
 (200'000 times narrower than 2³P states
- Precision of $u_r = 8 \times 10^{-12}$ (1.5 kHz).

From isotope shift
$$R_{^{3}\text{He}}^{2} - R_{^{4}\text{He}}^{2} = 1.028(11) \text{ fm}^{2}$$

[R. van Rooij et al., Science 333, 196 (2011)]

2S-2P metrology of 3 He and 4 He in Florence

⁶He and ⁸He spectroscopy at GANIL

- Finite size shift: 1 MHz
- Mass shift: 50 GHz

- Measure the 389 nm transitions with 10...70 kHz precison.
- From isotope shift theory and knowledge of ⁴He charge radius

 $R_{^{6}\mathrm{He}} = 2.059(8) \text{ fm}$ $R_{^{8}\mathrm{He}} = 1.958(16) \text{ fm}$

[Lu, Müller, Drake et al., RMP 85 1383 (2013)]

A. Antognini

MITP workshop, Mainz

He⁺(1S-2S) and He(1S2-1S5P)

A. Antognini MITP workshop, Mainz 02-06 June 2014 – p. 8

The fine structure of He

Determine centroid position with 10^{-4} linewidth accuracy

Measure the fine structure intervals:

 $2^{3}P_{1} - 2^{3}P_{2}$ [Borbely et al., PRA 79, 060503(R) (2009)]

 $2^{3}P_{0} - 2^{3}P_{2}$ [Smiciklas and Shiner, PRL 105, 123001 (2010)]

of atomic helium. Compare with theory [Pachucki and Yerokhin, arXiv:1011.2467v2]

 $\rightarrow \alpha^{-1} = 137.03599955(64)(4)(368)$ with $u_r \sim 27 \times 10^{-9}$

A. Antognini MITP workshop, Mainz 02-06 June 2014 – p. 9

Muonic helium transitions

A. Antognini

MITP workshop, Mainz

The setup for $\mu \operatorname{He}^+$ is similar to μp

A. Antognini

MITP workshop, Mainz

H

A. Antognini

MITP workshop, Mainz

The K_{α} **time spectra**

Proton radius from muonic hydrogen

• Measure ΔE_{2P-2S}^{exp} in μp with $u_r = 10^{-5} \leftrightarrow 0.5 \text{ GHz} = \Gamma/20$

ETH

A. Antognini

MITP workshop, Mainz

18.4 me

μp , μd and μHe^+ measurements/theory (Prel.!!)

Measurements in muonic atoms

$\mu \mathrm{p}$:	$\Delta E_{\mathrm{LS}}^{\mathrm{exp}} = 202.3706(23)~\mathrm{meV}$	
μ d:	$\Delta E_{\mathrm{LS}}^{\mathrm{exp}} = 202.8 x x (34) \; \mathrm{meV}$	(preliminary !)
μ^{4} He ⁺ :	$\Delta E_{\rm LS}^{\rm exp} = 1524.xx(8)~{\rm meV}$	(preliminary !)

Pachucki, Borie, Eides, Karshenboim, Jentschura, Indelicato, Miller, Martynenko, Carlson, Birse, Gorshteyn, Paz Hill, Pascalutsa, Pineda, Bacca Friar, Nir, Pascalutsa... Einstein, Schrödinger

Theory			QED		Finite size $[R^2]$		TPE [$R^3_{(2)}$ + Pol. contr.]
$\mu \mathrm{p}$	$\Delta E_{\rm LS}^{\rm th}$	=	206.0336(15)	-	5.2275(10) $r_{ m p}^2$	+	0.0332(20) meV
$\mu \mathrm{d}$	$\Delta E_{\mathrm{LS}}^{\mathrm{th}}$	=	228.7972(15)	-	6.1094(10) $r_{ m d}^2$	+	1.6910(160) meV
$\mu^{4} \mathrm{He}^{+}$	$\Delta E_{\mathrm{LS}}^{\mathrm{th}}$	=	1668.598(100)	-	106.340(xx) $r_{ m He}^2$	+	1.40(4) $r_{ m He}^3$ + 2.470(150) meV

- recoil correction to two-photon with finite size: 0.266 meV (Borie). Is this included already in the TPE? - intrinsic polarizability of the nucleons has not been yet accounted. - shape dependence of the finite size corrections. $r_{\text{He}} = 1.681(4) \text{ fm}$ [Sick] $1\sigma_r \rightarrow \Delta E_{\text{LS}}^{\text{th}}$ changes by 1.4 meV

A. Antognini

MITP workshop, Mainz

nz 02-06 June 2014 – p. 15

Nuclear polarization contribution in μ He⁺

$$\Delta E_{\rm LS}^{\rm th} = \Delta E_{\rm QED} - \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^3 \rangle_{(2)} + \delta_{\rm pol}$$

• From nuclear response function $S_0(\omega) \rightarrow$ nuclear polarization contribution

- Two ways to get the response function:
 - From photo-absorption [Bernabeau & Jarlskog, Rinker, Friar] $\delta_{\rm pol} = 3.1 \text{ meV} \pm 20\%$
 - From state-of-the-art potentials (chiral EFT, AV18/UIX) [Nevo Dinur talk!!] $\delta_{\rm pol} = 2.47 \text{ meV} \pm 6\%$

Nuclear and nucleon polarizabilities in μ He⁺

Nuclear polarizability has been corrected for intrinsic nucleons finite size but not for the intrinsic nucleon polarizabilities

- Estimate [following in part Carlson, Gorchthein and Vanderhaegen, PRA 89, 022504 (2014)]
 - $\quad \delta_{\rm pol}(p) \approx \delta_{\rm pol}(n) \approx 13.5 \; \mu {\rm eV}$
 - $% \lambda = 0$ it is scaling with the number of nucleons ${\cal N}=4$
 - it is scaling with $|\Phi(0)|^2 \sim m^3 Z^3$
 - $\Rightarrow \delta_{\rm pol}({\rm nucleons}) \approx 4 \cdot 8 \cdot 13.5 \ \mu eV = 0.4 \ {\rm meV}$
 - \Rightarrow To be compared with $\delta_{pol}(nuclear) = 2.47(15) \text{ meV}$

Is the nucleons polarization contribution so large? (only a factor 6 smaller than the nuclear contribution)

A more precise quantification is urgently needed!!

Third Zemach contribution in μ He⁺

- The third Zemach contribution can be computed:
 - assuming a charge distribution (Gaussian) [Borie]
 - δ_{Zem} = 1.40(4) $\langle R_c^2 \rangle^{3/2}$
 - = 6.65(19) meV (using Sick ⁴He radius)
 - using state-of-the-art potentials

[Ji, Nevo Dinur et al., arXiv:1311.0938]

 δ_{Zem} = 6.12/5.94 meV (AV18/UIX-potential) = 6.53/6.34 meV (EFT-potential) using r_p = 0.88/0.84 fm

Agreement \rightarrow the charge distribution seems to be under control

BUT it would be interesting to

- compute the finite size contributions using the measured form factors
- demonstrate the convergence of the higher charge moments contributions
- determine the third Zemach radius from e-He scattering

Difficulties due to large-*r* **tail (from I. Sick)**

Slow convergence of the p rms radius vs upper cutoff $r_{\rm cut}$ calculated over the integral of the charge density $\rho(r)$

A. Antognini MITP workshop, Mainz

He radius from e-scattering

- world data of e-scattering.
- constraints density at large r:
 - shape: from p-wavefunction \sim Whittaker.
 - absolute density: from p-He scattering + FDR.
- point density from potential + GFMC (small r) + FDR (large r).
- fold point density with charge density distribution of p and n.
- include Coulomb distortions.

Fit with SOG

 $\rightarrow R = 1.681(4) \text{ fm}$

(best known radius from e-scattering)

[Sick, PRC 77, 941392(R) (2008)]

ETH

A. Antognini

MITP workshop, Mainz

Secret results!

Zavattini "resonance"

Conclusions

We have measured the $2S_{1/2} - 2P_{3/2}$ transition in μ^4 He⁺ with $u_r = 5 \times 10^{-5}$.

- \longrightarrow extract ⁴He charge radius with $u_r = 3 \times 10^{-4}$
- \longrightarrow agreement with the e-scattering value ($u_r = 2 \times 10^{-3}$)
- \rightarrow important information for the proton puzzle (spin-, isospin-dependence etc.)

 \longrightarrow interesting information for few-nucleons theory, to disentangle potentials....

Statistical accuracy of $\mu \mathrm{He^{+}}$ meas.	20 GHz
Systematics	<0.1 GHz
Natural linewidth	320 GHz
Uncertainty third Zemach	50 GHz
Uncertainty nucl. pol.	36 GHz

Missing:

- Intrinsic nucleon polarizability for $\mu\,{
 m He}^+$
- Charge distribution dependence of theory?
- Polarizability contr. to Lamb shift for $\mu^{\,3}\mathrm{He^{+}}$
- Polarizability contr. to HFS for $\mu\,{}^{3}\mathrm{He}^{+}$ and $\mu\mathrm{d}$
- Would be interesting to have a determinations of the He charge radius from few-nucleon th.
- Would be interesting to have calculations of polarizability using He breakup data
- Would be interesting to have a better ³He charge radius from scattering.
- Would be advantageous/possible in e-scattering to measure cross sections ratio of H/He?

2S-2P th. is converging.

Motivation, summary, outlook

New physics?

Low-energy QCD EFT, χ pt, lattice strong bound-state p-structure few-nucleon th.

 μ p, μ d, μ He $^+$

A. Antognini

MITP workshop, Mainz

F Biraben, S. Galtier, P. Indelicato, L. Julien, Labor. Kastler Brossel, Paris F. Nez, C. Szbabo

M. Diepold, B. Franke, J. Götzfried, T.W. Hänsch, MPQ, Garching, Germany J. Krauth,, F. Mulhauser, <u>R. Pohl</u>

F.D. Amaro, J.M.R. Cardoso, L.M.P. Fernandes, A. L. Gouvea, J.A.M. Lopes, C.M.B. Monteiro J.M.F. dos Santos

D.S. Covita, J.F.C.A. Veloso

M. Abdou Ahmed, T. Graf, A. Voss, B. Weich

J. Alpstäg, A. Antequal, K. Kirch, F. Kolt K. Schuhmann, D. Taequ

A. Dax, M. Hildebrandt, A

T.-L. Chen, Y.-W. Liu P.E. Knowles

P. Amaro, J.P. Santos

Uni Aveiro, Portugal

Miora Portugal-

ETH Zürich

T.H. Uni, Hstnchu, Taiwan Uni Fribourg, Switzerland

htestion, Portugal

MITP workshop, Mainz