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Quantum ChromoDynamics (QCD)

QCD-Gauge theory of the strong interaction
Lagrangian: formulated in terms of quarks and gluons

LQCD = −
1
4

F a
µνF aµν +

∑
f =u,d,s,c,b,t

ψ̄f
(
iγµDµ − mf

)
ψf

Dµ = ∂µ − ig
λa

2
Aa
µ

This “simple” Lagrangian produces the amazingly rich structure of strongly interacting matter in the universe.

Numerical simulation of QCD provides essential input for a wide class of complex strong interaction phenomena
→ In this talk: Nucleon Form Factors
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QCD on the lattice

a 

Uµ(n)=e iaAµ(n)  
ψ(n) 

ν 
µ 

L 

Lattice QCD: K. Wilson, 1974 provided the formulation; M. Creutz, 1980 per-
formed the first numerical simulation

Discretization of space-time with lattice spacing a: quark fields ψ(x)
and ψ̄(x) on lattice sites and gauge field Uµ(x) on links

Finite a provides an ultraviolet cutoff at π/a→ non-perturbative
regularization; Finite L→ discrete momenta in units of 2π/L if
periodic b.c.

Construct an appropriate action S and rotate into imaginary time→
Monte Carlo simulation to produce a representative ensemble of
{Uµ(x)} using the largest supercomputers→
Observables: 〈O〉 =

∑
{Uµ} O(D−1,Uµ), D−1 is the fermion

propagator

5.0 Pflop/s, biggest in Europe and 7th in the world
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Fermion action

Several O(a)-improved fermion actions, K. Jansen, Lattice 2008

Action Advantages Disadvantages

Clover improved Wilson computationally fast breaks chiral symmetry
needs operator improvement

Twisted mass (TM) computationally fast breaks chiral symmetry
automatic improvement violation of isospin

Staggered computational fast four doublers (fourth root issue)
complicated contractions

Domain wall (DW) improved chiral symmetry computationally demanding
needs tuning

Overlap exact chiral symmetry computationally expensive

Several collaborations:

Clover QCDSF, BMW, ALPHA, CLS, PACS-CS, NPQCD
Twisted mass ETMC
Staggered MILC
Domain wall RBC-UKQCD
Overlap JLQCD
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Systematic uncertainties

Finite lattice spacing a - take the continuum limit a→ 0

Finite volume L - take infinite volume limit L→∞
Identification of hadron state of interest - gA, σ-terms, EM form factors

Simulation at physical quark masses - now feasible

Inclusion of quark loop contributions - now feasible
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Recent achievements
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Simulation with physical quark masses

A number of collaborations are producing simulations with physical values of the quark mass

European Twisted Mass Collaboration (ETMC):
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Experiment
=1.90, Nf =2 +1 +1
=1.95, Nf =2 +1 +1
=2.10, Nf =2 +1 +1

=3.80, Nf =2
=3.90, Nf =2
=4.05, Nf =2
=2.10, Nf =2, w/ Clover

L ∼ 3 fm and a ∼ 0.1 fm; r0 ∼ 0.5 fm

Noise to signal increases with ts :∼ e(mh−
3
2 mπ )ts
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Hadron spectrum

SU(4) representations:
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Results by ETMC using simulations with physical pion mass, C.A., V. Drach, K. Jansen, Ch. Kallidonis and G. Koutsou
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Hadron spectrum

SU(4) representations:
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Results by ETMC using simulations with physical pion mass, C.A., V. Drach, K. Jansen, Ch. Kallidonis and G. Koutsou
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Isospin and electromagnetic mass splitting

RBC and BMW collaborations: Treat isospin and electromagnetic effects to LO

Baryon spectrum with mass splitting from BMW

Nucleon mass: isospin and electromagnetic effects with opposite signs

Physical splitting reproduced
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Nucleon Structure
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Methods for hadron structure

Evaluation of three-point functions:
Gµν(Γ,~q, ts, tins) =

∑
~xs,~xins

ei~xins·~q Γβα 〈Jα(~xs, ts)Oµν(~xins, tins)Jβ(~x0, t0)〉

q = p
′ − p

(xins, tins)

(x0, t0)(x
s
, t

s
)

OΓ

Form ratio by dividing the three-point correlator by an appropriate combination
of two-point functions:

connected contribution

R(ts, tins, t0)
(tins−t0)∆�1
−−−−−−−−→
(ts−tins)∆�1

M[1 + . . . e−∆(p)(tins−t0) + . . . e−∆(p′)(ts−tins)]

M the desired matrix element

ts, tins, t0 the sink, insertion and source time-slices

∆(p) the energy gap with the first excited state
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∑
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ei~xins·~q Γβα 〈Jα(~xs, ts)Oµν(~xins, tins)Jβ(~x0, t0)〉

q = p
′ − p

(xins, tins)

(x0, t0)(x
s
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)

OΓ

Form ratio by dividing the three-point correlator by an appropriate combination
of two-point functions:

connected contribution

R(ts, tins, t0)
(tins−t0)∆�1
−−−−−−−−→
(ts−tins)∆�1

M[1 + . . . e−∆(p)(tins−t0) + . . . e−∆(p′)(ts−tins)]

M the desired matrix element
ts, tins, t0 the sink, insertion and source time-slices
∆(p) the energy gap with the first excited state

Summing over tins:

ts∑
tins=t0

R(ts, tins, t0) = Const. +M[(ts − t0) +O(e−∆(p)(ts−t0)) +O(e−∆(p′)(ts−t0))].

So the excited state contributions are suppressed by
exponentials decaying with ts − t0, rather than ts − tins
and/or tins − t0.
However, one needs to fit the slope rather than
to a constant

Connect lattice results to measurements:
OMS(µ) = Z (µ, a)Olatt(a)
=⇒ evaluate Z (µ, a) non-perturbatively
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Axial charge gA

The good news:

Axial-vector FFs: A3
µ = ψ̄γµγ5

τ3
2 ψ(x) =⇒ 1

2 ūN (~p′)
[
γµγ5GA(q2) +

qµγ5
2m Gp(q2)

]
uN (~p)|q2=0

→ yields GA(0) ≡ gA: i) well known experimentally, & ii) no quark loop contributions

Nf = 2 + 1 + 1 twisted mass, a = 0.082 fm, mπ = 373 MeV, 1200 statistics
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Axial charge gA

The good news:

Axial-vector FFs: A3
µ = ψ̄γµγ5

τ3
2 ψ(x) =⇒ 1

2 ūN (~p′)
[
γµγ5GA(q2) +

qµγ5
2m Gp(q2)

]
uN (~p)|q2=0

→ yields GA(0) ≡ gA: i) well known experimentally, & ii) no quark loop contributions

Nf = 2 twisted mass plus clover, a=0.091 fm, mπ=134 MeV, 1020 statistics
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No detectable excited states contamination

Consistent results between summation and plateau methods
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Axial charge gA

The good news

Axial-vector FFs: A3
µ = ψ̄γµγ5

τ3
2 ψ(x) =⇒ 1

2 ūN (~p′)
[
γµγ5GA(q2) +

qµγ5
2m Gp(q2)

]
uN (~p)|q2=0

→ yields GA(0) ≡ gA: i) well known experimentally, & ii) no quark loop contributions

Results from ETMC at physical point mass

Results at physical pion mass are now becoming available→ need a dedicated study with high statistics,
a larger volume and 3 lattice spacings
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Axial charge gA
The good news

Axial-vector FFs: A3
µ = ψ̄γµγ5

τ3
2 ψ(x) =⇒ 1

2 ūN (~p′)
[
γµγ5GA(q2) +

qµγ5
2m Gp(q2)

]
uN (~p)|q2=0

→ yields GA(0) ≡ gA: i) well known experimentally, & ii) no quark loop contributions

Results from ETMC at physical point mass

Results at physical pion mass are now becoming available→ need a dedicated study with high statistics,
a larger volume and 3 lattice spacings
A number of collaborations are engaging in systematic studies, e.g.
• Nf = 2 + 1 Clover, J. R. Green et al., arXiv:1209.1687
• Nf = 2 Clover, R.Hosley et al., arXiv:1302.2233
• Nf = 2 Clover, S. Capitani et al. arXiv:1205.0180
• Nf = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668
• Nf = 2 + 1 + 1 Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435

• Nf = 2 + 1 Domain wall fermions, S. Ohta et al., RBC-UKQCD
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Disconnected quark loop contributions

The good news
Notoriously difficult:

I L(xins) = Tr [ΓG(xins; xins)] → need quark propagators from all
~xins or L3 more expensive as compared to the calculation of
hadron masses

I Large gauge noise→ large statistics

~q = ~p′ − ~p

(~xins, tins)

(~x0, t0)(~x
s
, t

s
)

OΓ

Use special techniques that utilize stochastic noise on all spatial lattice sites→ Nr more expensive that
hadron masses with Nr � L3

Reduce noise by increasing statistics
=⇒ take advantage of graphics cards (GPUs)→ need to develop special multi-GPU codes

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Nucleon Form Factors Proton radius, 2th June 2014 15 / 22



Disconnected quark loop contributions
The good news

Notoriously difficult:
I L(xins) = Tr [ΓG(xins; xins)] → need quark propagators from all
~xins or L3 more expensive as compared to the calculation of
hadron masses

I Large gauge noise→ large statistics

~q = ~p′ − ~p

(~xins, tins)

(~x0, t0)(~x
s
, t

s
)

OΓ

Use special techniques that utilize stochastic noise on all spatial lattice sites→ Nr more expensive that
hadron masses with Nr � L3

Reduce noise by increasing statistics
=⇒ take advantage of graphics cards (GPUs)→ need to develop special multi-GPU codes

A Fermi card

Cluster of 8 nodes of
Fermi GPUs at the
Cyprus Institute

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126
C.A., K. Hadjiyiannakou, G. Koutsou, A. O’Cais, A. Strelchenko, arXiv:1108.2473
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Axial charge gA

The good news
To compute ∆Σq we need also the isoscalar gu+d

A

Dedicated high statistics study

Choose one ensemble to perform a high statistics analysis for all disconnected contributions to nucleon
observables

Nf = 2 + 1 + 1 twisted mass, a = 0.082 fm, mπ = 373 MeV, ∼ 150, 000 statistics (on 4700 confs)
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Disconnected isoscalar, agrees with Bali et al. (QCDSF),

Phys.Rev.Lett. 108 (2012) 222001
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Electromagnetic form factors

Nf = 2 + 1 + 1 twisted mass, a = 0.082 fm, mπ = 373 MeV

Connected→ isovector: ∼ 1200 statistics
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Electromagnetic form factors

Nf = 2 + 1 + 1 twisted mass, a = 0.082 fm, mπ = 373 MeV

Disconnected: ∼ 150,000 statistics
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Electromagnetic form factors

The good news

Two studies at near physical pion mass:

ETMC: Nf = 2 twisted mass with clover, a = 0.091 fm, mπ = 134 MeV, 1020 statistics

MIT: Nf = 2 + 1 clover produced by the BMW collaboration, a = 0.116 MeV, mπ = 149 MeV, ∼7750
statistics, J.M. Green et al. 1404.4029

Agreement even before taking the continuum limit

BUT...
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Dirac and Pauli radii

Dipole fits: G0
(1+Q2/M2)2 ⇒ 〈r

2
i 〉 = − 6

Fi

dFi
dQ2 |Q2=0 = 12

M2
i
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Dirac and Pauli radii

Dipole fits: G0
(1+Q2/M2)2 ⇒ 〈r

2
i 〉 = − 6

Fi

dFi
dQ2 |Q2=0 = 12

M2
i

Need better accuracy at the physical point
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Dirac and Pauli radii

Dipole fits: G0
(1+Q2/M2)2 ⇒ 〈r

2
i 〉 = − 6

Fi

dFi
dQ2 |Q2=0 = 12

M2
i

Using results from summation method
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Momentum dependence of form factors

Avoid model dependence-fits: As a first step we calculated GM (0) or F2(0) at mπ = 373 MeV
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Conclusions

Nucleon structure is a benchmark for the Lattice QCD approach

Simulations at the physical point reproduce gA → need high statistics and careful cross-checks

Evaluation of disconnected quark loop diagrams has become feasible addressing an up to now unknown
systematic error→ but need high statistics and access to exascale computer resources

The study of excited states and resonances is under way

Errors are large→ noise reduction techniques crucial

Many challenges still ahead but...

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Nucleon Form Factors Proton radius, 2th June 2014 21 / 22



Conclusions

Nucleon structure is a benchmark for the Lattice QCD approach

Simulations at the physical point reproduce gA → need high statistics and careful cross-checks

Evaluation of disconnected quark loop diagrams has become feasible addressing an up to now unknown
systematic error→ but need high statistics and access to exascale computer resources

The study of excited states and resonances is under way

Errors are large→ noise reduction techniques crucial

Many challenges still ahead but...
as simulations at the physical pion mass and more computer resources are becoming available we expect
many physical results on key hadron observables with increased accuracy
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