

Re-Examination of the Shape of G_E^p Data

Keith Griffioen College of William & Mary

griff@physics.wm.edu

MITP Proton Radius Puzzle Workshop Schloß Waldthausen, Budenheim, Germany June 2–6 2014

- The Mainz *ep* elastic scattering data for Q² < 1 GeV² of Bernauer *et al.* are the best in the world.
- What do they tell us about the proton charge radius?
- Exploration by Carl Carlson, Sarah Maddox and KG

Elastic Scattering

 $\int \mathbf{q}^{\mathbf{r}} \left[\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} \left\{ \frac{G_E^2 + \boldsymbol{\tau} G_M^2}{1 + \boldsymbol{\tau}} + 2\boldsymbol{\tau} G_M^2 \tan^2 \frac{\theta}{2} \right\} \right]$ $\left(\frac{d\sigma}{d\Omega}\right)_{\rm Matt} = \frac{\alpha^2}{4E^2\sin^4\frac{\theta}{2}}\frac{E'}{E}\cos^2\frac{\theta}{2}$ E $\tau = \frac{\nu^2}{\Omega^2} = \frac{1}{\gamma^2} = \frac{Q^2}{4M^2} \qquad Q^2 = -q \cdot q = 4EE' \sin^2 \frac{\theta}{2}$ $E' = \frac{E}{1 + \frac{2E}{1+\sin^2\frac{\theta}{2}}} \qquad \epsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$ $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left\{\frac{G_E^2 + \frac{\tau}{\epsilon}G_M^2}{1 + \tau}\right\}$

MITP Proton Radius Workshop

Low Q²

 $-\frac{\sqrt{p}Q^2}{6\hbar^2c^2}$

- Only B spectrometer
- 3 of 34 norm sets
- 166 points

with Q⁴ term

- Extracted rp is "too small"
- We cannot ignore curvature

4 June 2014

Continued Fraction Fit

$$Q^{2}) = \frac{c_{1}}{1 + \frac{c_{2}Q^{2}}{1 + \frac{c_{3}Q^{2}}{1 + \frac{c_{4}Q^{2}}{1 + \frac{c_{4}Q^{2}}{1 + \dots}}}}$$

$$c_2 = (r_p \hbar c)^2 / 6$$

- Out of the box, the Mainz data (1422 points) yields a small radius
- Is χ^2 too big?

f(

Warts and All

- Wart-finding: fit a Gaussian with
 0.006 < σ < 0.06
- Peaks are 50-100% of errors

G^E

 Integrals are statistically significant

	A	Q_0^2	σ	$\sqrt{2\pi}\sigma A$	R	_
$(\times 1)$	$0^{-6})$	(GeV^2)	$(\times 10^{-4})$	$(\times 10^{-7})$	(%)	
3092(16)	940)	-0.006(57)	87(164)	674(3906)	182	
-1559(216)	0.033(1)	82(11)	-319(61)	-91	
687(133)	0.127(6)	264(60)	456(137)	58	
-832(158)	0.248(8)	326(75)	-608(203)	-76	
-925(594)	0.380(2)	59(34)	-137(117)	-103	
554(139)	0.504(16)	509(154)	707(279)	55	
-281(103)	0.670(21)	414(201)	-292(177)	-56	
735(270)	0.805(10)	276(84)	-508(243)	146	

What do the data tell us about G_E/G_M ?

- Look at χ²/dof for various Q₀²
- Minimum for Q₀²
 ≈ 8 GeV²
- Implies that the applied 2photon corrections are corrections are reasonable
- r_p is insensitive to Q₀²

MITP Proton Radius Workshop

- Bin ~100 points together to visualize trends
- Systematic variations on the order of 0.001, on the order of but smaller than the individual error bars.
- Are these variations real?

Renormalization of 34 Sets

- For each set determine the weighted ratio of G_E to the fit; correct G_E by this ratio
- Ratios are ≤ 0.2% from unity, well within uncertainties of normalization
- G_E-f(Q²) is now much flatter, especially for Spect. B (low Q²).

- 1422 extracted G_E values plotted versus ε
- Six curves correspond to the 6 beam energies

ε-Dependence

$$G_E(Q_{\text{average}}^2) = G_E(Q_{\text{measured}}^2 \frac{f(Q_{\text{average}}^2)}{f(Q_{\text{measured}}^2)})$$

- Check for ϵ (beam energy) dependence in G_E
- For each bin in G_E, evolve to a common Q² using the fit
- Fit a line versus ϵ for each bin in G_E

- |ε-slopes| ≤
 0.005
- At low Q² G_M does not contribute, so ε dependence is really an E_{beam} dependence
- Variations from zero are well within the error budget for absolute norms

MITP Proton Radius Workshop

Curvature Subtraction

- What if we subtract the deduced curvature of G_E and fit the result to a straight line for Q²<0.02 GeV²?
- Now r_p is "large"
- However, the linear term is over half of the contribution to G_E up to Q²=0.3 and should not be "wasted"

Either way you look at it, fitting only to Q²=0.02 is dangerous

Perspective

There still needs to be many consistent and accurate points for r_p on the graph above. Bring on the new measurements!

- The Mainz *ep* elastic scattering dat set of 1422 points, covering the range 0.004 < Q² < 1.0 GeV² is the most precise and accurate data set available.
- If G_E is a monotonically falling function of Q^2 , then these data yield $r_p = 0.804$ fm.
- Systematic variations (not fit statistics) suggest an error of about 0.004.
- Fitting the ratio σ/σ_{dipole} directly requires a fit-form with inflections which may bias a global fit to favor systematic fluctuations of G_E on a scale of $\Delta Q^2 \sim 0.05$ GeV².
- Bernauer's analysis is sound under the assumptions that fluctuations of G_E on a scale of $\Delta Q^2 \sim 0.05$ GeV² are real.
- Only an independent measurement of equivalent or better accuracy will be able to empirically address this.

All Mainz Data to Q²=0.2

Radius of 0.84 fm persists with 4-

parameter polynomial fit up to Q²=0.2 $G_E(Q^2)$

$$G_E = G_D \sqrt{\frac{\sigma_r (1 + \frac{\tau}{\epsilon} \mu_p^2)}{1 + \frac{\tau}{\epsilon} \mu_p^2 \left(1 - \frac{Q^2}{8 \text{GeV}^2}\right)^{-2}}}$$

Continued Fractions Fit with 5 Parameters

MITP Proton Radius Workshop

Global fit with rp fixed

- Generate pseudodata from:
- $C(x) = 0.9971(1+3.02229Q^2/(1 0.667Q^2/(1+0.610Q^2)))$
- Corresponds to r_p=0.8389 fm
- 0<Q²<0.02; 40 points; σ = 0.001
- Fit to: $P(x) = a(1+bQ^2+cQ^4+dQ^6) \times 25$
- Last term d is too small in magnitude
- First two terms a, b are within statistics

- a = 0.99711 (48) (46) [ave. fit error] [σ for 25 trials]
- b = -3.003 (111) (107)
- Polynomial fits on [0,0.02] are OK except for the last term