News from the Proton Radius Puzzle

111 18148:0

muonic deuterium

erc

Randolf Pohl

Max-Planck-Institut für Quantenoptik Garching, Germany

Outline

• The problem:

Proton rms charge radius r_p from muonic hydrogen μp is 4% smaller than the values from elastic electron-proton scattering and hydrogen spectroscopy.

That's $5\sigma \dots 8\sigma$.

But the μp result is 10 times more accurate than any other measurement.

- Introduction
- Muonic hydrogen
- Muonic deuterium
- Muonic helium
- Muonic future

Muonic measurements.

Setup

Randolf Pohl

Mainz, 2nd June 2014

Muon beam line

The laser system

Atomic physics

Wave functions of S and P states:

S states: max. at r=0

Electron sometimes inside the proton.

S states are shifted.

Shift ist proportional to the

size of the proton

P states: zero at r=0

Electron is **not** inside the proton.

Orbital pictures from Wikipedia

Atomic physics

7

Atomic and nuclear physics

Atomic and nuclear physics

Proton charge radius and muonic hydrogen

Lamb shift in μp [meV]:

 $\Delta E = 206.0668(25) - 5.2275(10) r_{\rm p}^2$

Proton size effect is 2% of the μp Lamb shift

Measure to $10^{-5} \Rightarrow r_{\rm p}$ to 0.05%

Experiment:

R. Pohl et al., Nature 466, 213 (2010).

A. Antognini, RP et al., Science 339, 417 (2013).

Theory summary:

A. Antognini, RP et al., Ann. Phys. 331, 127 (2013).

The resonance: discrepancy, sys., stat.

Randolf Pohl

Mainz, 2nd June 2014

The proton rms charge radius measured with electrons: 0.8770 ± 0.0045 fm muons: 0.8409 ± 0.0004 fm

The proton rms charge radius measured with electrons: 0.8770 ± 0.0045 fm muons: 0.8409 ± 0.0004 fm

Randolf Pohl

The proton rms charge radius measured with electrons: 0.8770 ± 0.0045 fm muons: 0.8409 ± 0.0004 fm

Randolf Pohl

Mainz, 2nd June 2014

Buly 2010 www.nature.com/nature \$10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

UI V9148:0

OIL SPILLS There's more to come

PLAGIARISM It's worse than you think

CHIMPANZEES The battle for survival

Randolf Pohl

NATURE

ers for hire

J. Bernauer, RP

Randolf Pohl

Mainz, 2nd June 2014

J. Bernauer, RP

Mainz, 2nd June 2014

ECT* Workshop

"The Proton Radius Puzzle", Trento, Italy, Oct. 28 - Nov. 2, 2012

G.A. Miller, R. Gilman, RP

47 theorists + experimentalists

- atomic physics
- electron scattering
- nuclear physics
- Beyond SM

38 talks

- 3 "fighting" sessions
- \Rightarrow no solution

voting: more data needed

RP, R. Gilman, G.A. Miller, K. Pachucki, "Muonic hydrogen and the proton radius puzzle",

Annu. Rev. Nucl. Part. Sci. 63, 175 (2013) (arXiv 1301.0905)

Randolf Pohl

What may be wrong?

Standard Model wrong?!?

RP, R. Gilman, G.A. Miller, K. Pachucki, "Muonic hydrogen and the proton radius puzzle", Annu. Rev. Nucl. Part. Sci. **63**, 175 (2013) (arXiv 1301.0905)

What may be wrong?

Muonic hydrogen

We have measured two transitions in μp

 $v_t = v(2S_{1/2}^{F=1} - 2P_{3/2}^{F=2})$ 2P fine structure delayed / prompt events [10⁻⁴] 2P_{3/2} F=2F=1 F=1 $\overline{2P_{1/2}}$ F=0 $\boldsymbol{\nu}_{triplet}$ 750 800 850 950 900 Lamb v - 49.0 THz (GHz) shift $v_s = v(2S_{1/2}^{F=0} - 2P_{3/2}^{F=1})$ ν_{singlet} delayed / prompt events [10⁻⁴] F=12S_{1/2} 2S hyperfine splitting 2 F=00[∏] 450 550 600 500 650

650 v **- 54.0 THz (GHz)**

We have measured two transitions in μp

We have measured two transitions in μp

Proton charge radius

$v(2S_{1/2}^{F=1} ightarrow$	$2P_{3/2}^{F=2}$)	= 49	881.88(76) GHz	R. P	Pohl <i>et al</i> ., Nature 466, 213 (2010))
		49	881.35(65) GHz)	A Antognini RP et al	
$v(2S_{1/2}^{F=0} \to 2P_{3/2}^{F=1})$		= 54	54611.16(1.05) GHz		z	Science 339, 417 (2013	
Proton charg	e radius:	<i>r</i> _p = ().84087	(26) _{exp} (2	9) _{th} =	0.84087 (39) fm	
μ p theory summary: A. Antognini, RP <i>et al.</i> , Ann. Phys. 331, 127 (2013) [arXiv :1208.2637 (atom-p							m-ph)]
		µp 201	3 •				
	· · · · · · · · · · · · · · · · · · ·					e-p, JLab	
	dispersion 2012				CODATA-2010		
µp 2010 ⊶						e-p, Mainz	
dispersion 2007						H/D	
	0.82).83	0.84	0.85	0.86	0.87 0.88	
Proton charge radius R [fm]							

Proton Zemach radius

2S hyperfine splitting in μp is: $\Delta E_{\text{HFS}} = 22.9843(30) - 0.1621(10) r_{\mathbb{Z}}$ [fm] meV with $r_{\mathbb{Z}} = \int d^3r \int d^3r' r \rho_E(r) \rho_M(r - r')$

We measured $\Delta E_{\rm HFS} = 22.8089(51) \,\,{\rm meV}$

This gives a proton Zemach radius $r_{\rm Z} = 1.082 \ (31)_{\rm exp} \ (20)_{\rm th} = 1.082 \ (37) \ {\rm fm}$

Rydberg constant

H(1S-2S): C.G. Parthey, RP et al., PRL 107, 203001 (2011).

Randolf Pohl

Rydberg constant

H(1S-2S): C.G. Parthey, RP *et al.*, PRL 107, 203001 (2011).

*r*_p: A. Antognini, RP *et al.*, Science 339, 417 (2013).

Rydberg constant

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010)

CODATA 2010 $r_d = 2.1424(21)$ fm

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL 104, 233001 (2010) CODATA 2010 $r_d = 2.1424(21) \text{ fm}$ $r_p = 0.84087(39) \text{ fm from } \mu \text{H gives}$ $r_d = 2.12771(22) \text{ fm}$

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL 104, 233001 (2010) CODATA 2010 $r_d = 2.1424(21) \text{ fm}$ $r_p = 0.84087(39) \text{ fm from } \mu\text{H gives}$ $r_d = 2.12771(22) \text{ fm}$ Lamb shift in muonic DEUTERIUM

Muonic deuterium

muonic deuterium

muonic deuterium

Muonic DEUTERIUM

Mainz, 2nd June 2014

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL 104, 233001 (2010) CODATA 2010 $r_d = 2.1424(21) \text{ fm}$ $r_p = 0.84087(39) \text{ fm from } \mu \text{H gives}$ $r_d = 2.1277(2) \text{ fm}$

• μ H and μ D are **CONSISTENT!**

(if BSM: no coupling to neutrons)

- WIP: deuteron polarizability (theory) complete? double-counting?
- WIP: shift from QM-interference

Proton-deuteron isotope shift

In other words: The muonic isotope shift agrees with the electronic one!

scattering

Randolf Pohl

 $r_d^2 - r_p^2$: H/D isotope shift muonic Lamb shift 3.82007 ± 0.00065 fm² 3.8221 ± 0.0052 fm² PRELIMINARY! $3.764 \pm 0.045 \,\mathrm{fm^2}$

The muonic error is conservative (nucl. structure terms).

Muonic helium.

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- ⇒ alpha particle and helion charge radius to 3×10^{-4} (± 0.0005 fm)

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- ⇒ alpha particle and helion charge radius to 3×10^{-4} (± 0.0005 fm)

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- ⇒ alpha particle and helion charge radius to 3×10^{-4} (± 0.0005 fm)
- aims:
 - help to solve the proton size puzzle
 - absolute charge radii of helion, alpha
 - low-energy effective nuclear models: ¹H, ²D, ³He, ⁴He
 - QED test with He⁺(1S-2S) [Udem @ MPQ, Eikema @ Amsterdam]

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- ⇒ alpha particle and helion charge radius to 3×10^{-4} (± 0.0005 fm)
- aims:
 - help to solve the proton size puzzle
 - absolute charge radii of helion, alpha
 - low-energy effective nuclear models: ¹H, ²D, ³He, ⁴He
 - QED test with He⁺(1S-2S) [Udem @ MPQ, Eikema @ Amsterdam]
- ⁴He beam time: Oct.-Dec. 2013
- ³He beam time: May-Aug. 2014
- Talk by Aldo Antognini, tomorrow morning!

Future muonic experiments

- Z=1:
 - Muonic hydrogen: HFS
 - Muonic deuterium: Lamb shift, HFS
 - Muonic tritium
- Z=2:
 - Muonic ⁴He: Fine structure
 - Muonic ³He: Lamb shift, fine and hyperfine structure
- Z=3, 4, 5:

PHYSICAL REVIEW A

VOLUME 32, NUMBER 2

AUGUST 1985

Lamb shifts and fine-structure splittings for the muonic ions μ^- -Li, μ^- -Be, and μ^- -B: A proposed experiment

G. W. F. Drake and Louis L. Byer* Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B3P4 (Received 28 February 1985)

Detailed calculations are presented for the energy splittings of the states $2s_{1/2}-2p_{1/2}$ and $2s_{1/2}-2p_{3/2}$ for the muonic ions μ^- -Li, μ^- -Be, and μ^- -B obtained by numerical integration of the Dirac equation. It is shown that there is severe cancellation between the vacuum polarization and finite nuclear size contributions to the energy differences, leading to transition frequencies which lie in the visible region of the spectrum. As a consequence of the cancellation, a measurement of the transition frequency would provide a sensitive probe of nuclear size and structure. The system μ^- -⁷Li appears to offer particularly good possibilities for performing such an experiment.

Lamb shift: absolute charge radius nuclear polarizability

2S-HFS: Zemach / magnetic radius nuclear polarizability

Future muonic experiments

- Z=1:
 - Muonic hydrogen: HFS
 - Muonic deuterium: Lamb shift, HFS
 - Muonic tritium
- Z=2:
 - Muonic ⁴He: Fine structure
 - Muonic ³He: Lamb shift, fine and hyperfine structure
- Z=3, 4, 5:

TABLE VII. Calculated absorption wavelengths (in Å) for transitions in muonic ions. The first uncertainty listed for the wavelengths is that due to nuclear polarization and the second is that due to the rms nuclear radius R.

Ion	<i>R</i> (fm)	$\lambda(2s_{1/2}-2p_{1/2})$	$\lambda(2s_{1/2}-2p_{3/2})$	
⁴ He	1.674±0.012	8978.0± 4±27	8118.0± 3±22	
⁶ Li	2.56 ± 0.05	$10097.0 \pm 33 \pm 1072$	$6275.0 \pm 13 \pm 414$	
⁷ Li	2.39 ± 0.03	7473.0± 18±334	5147.0± 9±159	
⁹ Be	2.520 ± 0.012	$-9520.0\pm116\pm703$	$11512.0 \pm 173 \pm 1048$	
¹⁰ B	2.45 ±0.12	$-1393.0\pm 3\pm354$	$-4033.0\pm27\pm2947$	
¹¹ B	2.42 ±0.12	$-1481.0\pm 4\pm 397$	$-4887.0\pm46{\pm}4286$	

Drake, Byer, PRA 32, 713 (1985)

- Lamb shift: absolute charge radius nuclear polarizability
- 2S-HFS: Zemach / magnetic radius nuclear polarizability

Future muonic experiments

- Z=1:
 - Muonic hydrogen: HFS
 - Muonic deuterium: Lamb shift, HFS
 - Muonic tritium
- Z=2:
 - Muonic ⁴He: Fine structure
 - Muonic ³He: Lamb shift, fine and hyperfine structure
- Z=3, 4, 5:
 - (Electronic) isotope shifts have been measured very accurately.
 ⇒ (squared) charge radius differences are very well known.
 - Muonic Lamb shifts provide absolute charge radii.
 - Test of few-electron (QED) calculations.
 - *Ab initio* nuclear structure calculations.
- Also: 1S-2S in (electronic) tritium. "Missing link" at A=3

Lamb shift: absolute charge radius nuclear polarizability

2S-HFS: Zemach / magnetic radius nuclear polarizability

Summary

- Muonic hydrogen gives:
 - Proton charge radius: $r_p = 0.84087 (39)$ fm
 - Proton Zemach radius: $R_Z = 1.082(37)$ fm
 - Rydberg constant:

 $R_{\infty} = 3.2898419602495 \ (10)^{\text{radius}} \ (25)^{\text{QED}} \ \times 10^{15} \ \text{Hz/c}$

- Deuteron charge radius: $r_d = 2.12771(22)$ fm from μ H + H/D(1S-2S)
- The "Proton radius puzzle"
- muonic deuterium: $r_d = 2.1289(12)$ fm from μ D (PRELIMINARY!)

Lamb shift in muD is ok. 2S-HFS is missing a large (polarizability) term!

- Proton radius puzzle persists. New data needed!
 - muonic helium
 - hydrogen
 - <u>ه</u> ...

Two muon puzzles

• Anomalous magnetic moment of the muon

The measured value of $a_{\mu} = (g-2)/2$ of the muon has been in disagreement

with the SM predictions for

>10 years now!

The discrepancy stands at $\sim 3.6\sigma$

Two muon puzzles

• Anomalous magnetic moment of the muon

The measured value of $a_{\mu} = (g-2)/2$ of the muon has been in disagreement with the SM predictions for

>10 years now!

The discrepancy stands at $\sim 3.6\sigma$

http://www.hep.ucl.ac.uk/muons/g-2/

- Anomalous magnetic moment of the muon $\sim 3.6\sigma$

Proton radius from muonic hydrogen

The measured value of the proton rms charge radius from muonic hydrogen μp is 10 times more accurate, but 4% smaller than the value from both hydrogen spectroscopy and elastic electron proton scattering.

Two muon puzzles

- Anomalous magnetic moment of the muon $\sim 3.6\sigma$
- Proton radius from muonic hydrogen $\,\sim7.9\sigma$
- These 2 discrepancies may be **connected**.

FIG. 1. Left: the effective proton-muon interaction resulting from unexpectedly large QCD effects or new physics that is responsible for the r_p discrepancy. Right: the two-loop contribution to the muon g - 2 that results from the interaction on the left after integrating out the proton.

Karshenboim, McKeen, Pospelov, arXiv 1401.6156

Both the r_p and the a_μ discrepancy could originate from the same new proton structure effect (two-photonexchange) or "New light Physics" (m \approx MeV)

Fixing r_p could give rise to $5 \times 10^{-9} < |\Delta(a_\mu)| < 10^{-7}$ (for $\Lambda_{had} = m_\pi \dots p_p$). JN (09) Davier et al, τ (10) Davier et al, e^+e^- (10) JS (11) HLMNT (10) HLMNT (11) --- experiment BNL BNL (new from shift in λ) 170 180 190 200 210 $a_{\mu} \times 10^{10} - 11659000$

HMNT (06)

J. Phys. G 38, 085003 (2011).

This is much larger than the $(g-2)_{\mu}$ discrepancy of $\sim 1 \times 10^{-9}$.

after Pospelov Karshenboim, McKeen, Pospelov, arXiv 1401.6156

June 22 – July 25, 2013

after Pospelov Karshenboim, McKeen, Pospelov, arXiv 1401.6156

Mainz, 2nd June 2014

after Pospelov Karshenboim, McKeen, Pospelov, arXiv 1401.6156

Both the r_p and the a_μ discrepancy could originate from the same new proton structure effect (two-photonexchange) or "New light Physics" (m \approx MeV)

Fixing r_p could give rise to $5 \times 10^{-9} < |\Delta(a_\mu)| < 10^{-7}$ (for $\Lambda_{had} = m_\pi \dots p_p$).

 $5 \times 10^{-9} < |\Delta(a_{\mu})| < 10^{-6}$ (for $\Lambda_{had} = m_{\pi} \dots p_p$). This is much larger than the $(g-2)_{\mu}$ discrepancy of $\sim 1 \times 10^{-9}$.

Maybe one can invert the argument:

 a_{μ} "not so wrong" \implies $r_{\rm p}$ is not due to proton TPE or this kind of BSM

Lundon lundon lundon lundon lu

 $a_{\rm m} \times 10^{10} - 11659000$

J. Phys. G 38, 085003 (2011).

170 180 190 200

after Pospelov Karshenboim, McKeen, Pospelov, arXiv 1401.6156

Proton Size Investigators thank you for your attention

CREMA collaboration in 2009

Charge Radius Experiment with Muonic Atoms

F. KOTTMANN

D. TAQQU

A. ANTOGNINI, T.W. HÄNSCH, T. NEBEL, R. POHL

E.-O. Le BIGOT, F. BIRABEN, P. INDELICATO, L. JULIEN, F. NEZ

A. GIESEN, K. SCHUHMANN

T. GRAF

F.D. AMARO, J.M.R. CARDOSO, D.S. COVITA, L.M.P. FERNANDES, J.A.M. LOPEZ, C.M.B. MONTEIRO, J.M.F. DOS SANTOS, J.F.C.A. VELOSO

C.-Y. KAO, Y.-W. LIU

P. RABINOWITZ

A. DAX, P. KNOWLES, L. LUDHOVA, F. MULHAUSER, L. SCHALLER

UNIVERSIDADE DE COIMBRA

PAUL SCHERRER INSTITUT

University of Stuttgart Germany

ETH Zürich, Switzerland PSI, Switzerland MPQ, Garching, Germany

Laboratoire Kastler Brossel, Paris, France

Dausinger + Giesen, Stuttgart, Germany Institut für Strahlwerkzeuge, Stuttgart, Germany Department of Physics, Coimbra, Portugal

National Tsing Hua University, Hsinchu, Taiwan Department of Chemistry, Princeton, USA former members, spent holidays at run 2009

Randolf Pohl

Mainz, 2nd June 2014