OLYMPUS and fits

Jan C. Bernauer

MITP Proton Radius Workshop, June 2014

Massachusetts Institute of Technology

- TPE: Motivation
- Status of OLYMPUS
- Mainz fits
- TPE results from VEPP-3, (JLab)

Cross section and form factors for elastic e-p scattering

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right]$$

with:
$$au = rac{Q^2}{4m_p^2}, \quad arepsilon = \left(1 + 2\left(1 + au
ight) \tan^2 rac{ heta_e}{2}
ight)^{-1}$$

Fourier-transform of G_E , $G_M \longrightarrow$ spatial distribution (Breit frame)

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}(G_{M}/\mu_{p})}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

Unpolarized: Rosenbluth

Polarized: Ratio

Ratio: Difference!

Most likely solution: Two Photon Exchange

Most likely solution: Two Photon Exchange

Two-Photon-Exchange

- Not in standard radiative corrections
- Off-shell proton!
- How to handle high momenta in loop?

Most likely solution: Two Photon Exchange

Two-Photon-Exchange

- Not in standard radiative corrections
- Off-shell proton!
- How to handle high momenta in loop?

Measurement

- Rosenbluth/polarized reconciled?
- How to treat the hadron line?

Measure Two Photon Exchange

- Interference term changes sign with lepton sign!
- Measured in the 1960s
- Not much data
- A lot of predictions!

Three modern experiments

CLAS

- e^- to γ to $e^{+/-}$ -beam
 - VEPP-3
- 1.6/1 GeV beam
- no field
- preliminary results

<u>OL¥MPUS</u>

- DORIS @ DESY
- 2 GeV beam
- data taking finished 01/2013

no results yet :(

The OLYMPUS collaboration

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN, Bari, Italy
- INFN, Ferrara, Italy
- INFN, Rome, Italy
- MIT Laboratory for Nuclear Science, Cambridge, USA
- Petersburg Nuclear Physics Institute, Gatchina, Russia
- University of Bonn, Bonn, Germany
- University of Glasgow, United Kingdom
- University of Mainz, Mainz, Germany
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

At DESY: DORIS

Projected performance

2 GeV beam, Q^2 -range: 0.6 to 2.2 GeV²

Target / Vacuum

- Open cell design
- Cryogenic
- Target density: $3 \cdot 10^{15} \text{ cm}^{-2}$
- Multi-stage pump system

Toroid

- From BLAST
- ±5000 A = 75% of BLAST
- \Rightarrow Peak field: 2.8 kG
- 8 coils

- From BLAST
- ±5000 A = 75% of BLAST
- \Rightarrow Peak field: 2.8 kG
- 8 coils
- 4 shown

Wire chamber

- From BLAST
- HDC design, 3 signal wires
- completely rewired
- 2 · 3 planes / chamber, 3 chambers / side
- 10° stereo angle

Time Of Flight

- From BLAST
- Rewrapped, tested
- Trigger
 - Top/bottom coinc.
 - kinematically constrained

Time Of Flight

- From BLAST
- Rewrapped, tested
- Trigger
 - Top/bottom coinc.
 - kinematically constrained
 - + 2nd level WC

Tight control crucial! Redundant systems:

- 12°-detector
- Symmetric
 Møller/Bhabha

- 3 GEM (Hampton) + 3 MWPC (PNPI) each
- highly redundant
- SiPM trigger scintillators

Symmetric Møller/Bhabha

2×9 crystals (Mainz)
1.2° symmetric angle
high rate, no deadtime

OLYMPUS full proposal Experiment funded by DOE **BLAST** moved to Germany Target test experiment Drift chambers installed Luminosity monitors installed Olympus roll-in First full Olympus test Sym. Møller/Bhabha installed First data run Second data run DORIS shut down

September 2008 January 2010 Spring 2010 February 2011 Spring 2011 Summer 2011 July 2011 August 2011 Fall 2011 January 2012 October-December 2012

January 2013

CAVEAT: The analysis is ongoing. All plots are preliminary.

Wire chamber / Event-Display

Luminosity: Comparison Data/MC

Analysis: Brian Henderson

Reconstructed proton momentum

Analysis: Axel Schmidt

Analysis: Axel Schmidt

Expect results end of 2014

Form factor fits

High-precision p(e,e')p measurement at MAMI

Three spectrometer facility of the A1 collaboration:

Measured settings

1400 settings

Cross sections: 180 MeV

• Extend data base with world data \implies Cross check, extend Q^2 reach

Inclusion of world data

- Extend data base with world data \Rightarrow Cross check, extend Q^2 reach
- Take cross sections from Rosenbluth exp's
- Sidestep unknown error correlation
 - Update / standardize radiative corrections
 - One normalization parameter per source (Andivahis: 2)

L. Andivahis et al. Phys. Rev. D50, 5491 (1994). F. Borkowski et al. Nucl. Phys. B93, 461 (1975). E Borkowski et al Nucl.Phys. A222, 269 (1974). P.E. Bosted et al.. Phys. Rev. C 42, 38 (1990). M. E. Christy et al., Phys. Rev. C70, 015206 (2004) M. Goitein et al.. Phys. Rev. D 1, 2449 (1970). T. Janssens et al. Phys. Rev. 142, 922 (1966). J. Litt et al., Phys. Lett. B31, 40 (1970). L. F. Price et al. Phys. Rev. D4, 45 (1971). I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005). S. Rock et al., Phys. Rev. D 46, 24 (1992). A. F. Sill et al., Phys. Rev. D 48, 29 (1993). G. G. Simon et al., Nucl. Phys. A 333, 381 (1980). S. Stein et al. Phys. Rev. D 12, 1884 (1975). R. C. Walker et al., Phys. Rev. D 49, 5671 (1994).

- Extend data base with world data \implies Cross check, extend Q² reach
- Take cross sections from Rosenbluth exp's
- Sidestep unknown error correlation
 - Update / standardize radiative corrections
 - One normalization parameter per source (Andivahis: 2)
- Two models:
 - Splines with variable knot spacing ⇒ Adapt knot density to data density
 - Padé-Expansion

 \Longrightarrow Low(er) flexibility, for comparison

L. Andivahis et al. Phys. Rev. D50, 5491 (1994). F. Borkowski et al. Nucl. Phys. B93, 461 (1975). E Borkowski et al Nucl.Phys. A222, 269 (1974). P.E. Bosted et al.. Phys. Rev. C 42, 38 (1990). M. E. Christy et al., Phys. Rev. C70, 015206 (2004) M. Goitein et al.. Phys. Rev. D 1, 2449 (1970). T. Janssens et al. Phys. Rev. 142, 922 (1966). J. Litt et al., Phys. Lett. B31, 40 (1970). L. F. Price et al. Phys. Rev. D4, 45 (1971). I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005). S. Rock et al., Phys. Rev. D 46, 24 (1992). A. F. Sill et al. Phys. Rev. D 48, 29 (1993). G. G. Simon et al., Nucl. Phys. A 333, 381 (1980). S. Stein et al. Phys. Rev. D 12, 1884 (1975). R. C. Walker et al., Phys. Rev. D 49, 5671 (1994).

 Spline model has variable knot spacing

- Spline model has variable knot spacing
- Vary knots, refit, record χ^2 .

- Spline model has variable knot spacing
- Vary knots, refit, record χ^2 .
- Select the 68% best tries.

- Spline model has variable knot spacing
- Vary knots, refit, record χ^2 .
- Select the 68% best tries.
- Construct envelope of models.

- Spline model has variable knot spacing
- Vary knots, refit, record χ^2 .
- Select the 68% best tries.
- Construct envelope of models.

Band will cover at least 68% of all model variations!

Form factor ratio G_E/G_M

Form factor ratio G_E/G_M

Form factor ratio G_E/G_M

- Available data are sparse
- Mostly Q² dependence
- Few data on ε dependence

- Available data are sparse
- Mostly Q² dependence
- Few data on ε dependence
- Only possible to fit simple model
- In addition to Feshbach Coulomb-correction!

$$\delta = a \cdot (1 - \varepsilon) \cdot \log \left(1 + b \cdot Q^2 \right)$$

G_E/G_M fit incl. polarized data

G_E/G_M fit incl. polarized data

Final result from flexible models

$$\begin{split} r_E = & 0.879 \pm 0.005_{\rm stat.} \pm 0.004_{\rm syst.} \pm 0.002_{\rm model} \pm 0.004_{\rm group} \ {\rm fm}, \\ r_M = & 0.777 \pm 0.013_{\rm stat.} \pm 0.009_{\rm syst.} \pm 0.005_{\rm model} \pm 0.002_{\rm group} \ {\rm fm}. \end{split}$$

Final result from flexible models

 $r_E = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm},$ $r_M = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm.}$

More fits

spline-type fits polynomial-type fits

 $r_{\rm F}$ (fm) 0.883(5)(5)(3)

 r_{M} (fm) 0.875(5)(4)(2) 0.775(12)(9)(4) 0.778(15)(10)(6)

Final result from flexible models

 $r_E = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm},$ $r_M = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm.}$

More fits

spline-type fits polynomial-type fits 0.883(5)(5)(3)var. spline +world cs.

 $r_{\rm F}$ (fm) 0.875(5)(4)(2) 0.878

 r_{M} (fm) 0.775(12)(9)(4) 0.778(15)(10)(6) 0.772

Final result from flexible models

 $r_F = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm},$ $r_M = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm.}$

More fits

spline-type fits 0.875(5)(4)(2) 0.775(12)(9)(4) polynomial-type fits 0.883(5)(5)(3)var. spline +world cs. " " + polarization

 $r_{\rm F}$ (fm) 0.878 0.878

 r_{M} (fm) 0.778(15)(10)(6) 0.7720.769

Final result from flexible models

$$\begin{split} r_E = & 0.879 \pm 0.005_{\rm stat.} \pm 0.004_{\rm syst.} \pm 0.002_{\rm model} \pm 0.004_{\rm group} \ {\rm fm}, \\ r_M = & 0.777 \pm 0.013_{\rm stat.} \pm 0.009_{\rm syst.} \pm 0.005_{\rm model} \pm 0.002_{\rm group} \ {\rm fm}. \end{split}$$

More fits

	r _F (fm)	r_M (fm)
spline-type fits	0.875(5)(4)(2)	0.775(12)(9)(4)
polynomial-type fits	0.883(5)(5)(3)	0.778(15)(10)(6)
var. spline +world cs.	0.878	0.772
" " + polarization	0.878	0.769
With o	ther TPE calculatio	ns:
D. Borisyuk et al.	0.876(5)(4)(2)(5)	0.803(13)(9)(5)(3)
Blunden et al.	0.875(5)(4)(2)(5)	0.799(13)(9)(5)(3)

Final result from flexible models

$$\begin{split} r_E = & 0.879 \pm 0.005_{\rm stat.} \pm 0.004_{\rm syst.} \pm 0.002_{\rm model} \pm 0.004_{\rm group} \ {\rm fm}, \\ r_M = & 0.777 \pm 0.013_{\rm stat.} \pm 0.009_{\rm syst.} \pm 0.005_{\rm model} \pm 0.002_{\rm group} \ {\rm fm}. \end{split}$$

More fits

	<i>r_E</i> (fm)	<i>r_M</i> (fm)						
spline-type fits	0.875(5)(4)(2)	0.775(12)(9)(4)						
polynomial-type fits	0.883(5)(5)(3)	0.778(15)(10)(6)						
var. spline +world cs.	0.878	0.772						
" " + polarization	0.878	0.769						
With other TPE calculations:								
D. Borisyuk et al.	0.876(5)(4)(2)(5)	0.803(13)(9)(5)(3)						
Blunden et al.	0.875(5)(4)(2)(5)	0.799(13)(9)(5)(3)						
" "+ world (Bad χ^2)	0.875	0.787						

Both VEPP-3 and JLab have preliminary results - let's see.

Plots by Alexander Gramolin

Plots by Alexander Gramolin

- TPE prime candidate to resolve form factor discrepancy at high Q²
- Preliminary results from VEPP-3 and JLab + Mainz fit indicate effect is of right magnitude.
- OLYMPUS progesses nicely.
- TPE has so far small effect on extracted charge radius.
- Bigger on magnetic radius!

61

Input		Analysis							
		Dipole	Dbl-D.	Poly.	P.+D.	₽×D.	Spline	S.×D.	F./W.
Std. dipole	811	0±1	0±1	0±3	0±3	0±4	0±5	0±7	0±1
Arrington 07	878	-18 ± 1	3±3	-3 ± 3	-2 ± 3	-1 ± 4	-4 ± 5	-1±6	-2 ± 3
Arr. 03 (P)	829	29±1	10±1	1±3	1±3	0±4	-1 ± 5	0±6	2±6
Arr. 03 (R)	868	-9±1	0±2	0±3	0±3	0±4	-3 ± 5	0±6	-1 ± 3
FW	860	-4±1	31±14	-1 ± 3	-1 ± 3	1±4	0±5	0±6	0±3

Arrington 07: Phys. Rev. C 76 035205 (2007) Arr. 03: Phys. Rev. C 68 034325 (2003) FW: Eur. Phys. J. A 17 607 (2003)

Model dependence: Magnetic Radius

Input		Analysis							
		Dipole	Dbl-D.	Poly.	P.+D.	₽×D.	Spline	S.×D.	F./W.
Std. dipole	811	0±1	0±1	-1 ± 7	0±7	0±10	2±14	1±18	0±1
Arrington 07	858	-55 ± 1	4±4	-5 ± 6	-4 ± 6	-1±9	2±13	0±17	$-10{\pm}4$
Arr. 03 (P)	837	-33 ± 1	12±3	-1 ± 7	0±7	0±9	2±13	0±19	-5 ± 5
Arr. 03 (R)	863	-52 ± 1	2±4	-4 ± 6	-3 ± 6	0±9	3±13	0±17	-8 ± 4
FW	805	4±1	49±2	0±7	1±7	-1 ± 10	1±13	-1 ± 18	-1 ± 4

TPE dependence on Q^2

TPE dependence on ε

