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We consider the two-photon exchange contribution to the 2P�2S Lamb shift in muonic deuterium
in the framework of forward dispersion relations. The dispersion integrals are evaluated using
experimental data on elastic deuteron form factors and inelastic electron-deuteron scattering, both in
the quasielastic and hadronic range. The subtraction constant that is required to ensure convergence
of the dispersion relation for the forward Compton amplitude T1(⌫, Q

2) is related to the deuteron
magnetic polarizability �(Q2). Based on phenomenological information, we obtain for the Lamb
shift �E2P�2S = 2.01 ± 0.74 meV. The main source of the uncertainty of the dispersion analysis
is due to lack of quasielastic data at low energies and forward angles. We show that a targeted
measurement of the deuteron electrodesintegration in the kinematics of upcoming experiments A1
and MESA at Mainz can help quenching this uncertainty significantly.

PACS numbers: 31.30.jr, 13.40.Gp, 14.20.Dh, 36.10.Ee

I. INTRODUCTION

The proton radius puzzle—that the proton radius ob-
tained from the Lamb shift in muonic hydrogen [1, 2] is
di↵erent from what should be the same radius obtained
from data involving electrons [3, 4]—has attracted
much attention in recent years. The explanation of the
problem is not known so far. There are proposals of new
dedicated scattering experiments with electrons [5, 6]
and muons [7]. On the theory side, the discrepancy
was addressed in terms of e↵ective non-relativistic QED
interactions [8], dispersion relations [9], exotically large
hadronic e↵ects [10], or of new physics a↵ecting the
muon and electron di↵erently [11–13].

Further information can come from measuring the
deuteron radius using the Lamb shift in muonic deu-
terium. The deuteron radius from electron based ex-
periments is already known to good accuracy. The best
results come from using the isotope shift, that is, mea-
suring the 1S-2S splittings in electron-proton (e-H) and
electron-deuteron (e-D) hydrogen and finding from resid-
ual corrections that

r2E(d) � r2E(p) = 3.82007(65) fm2 , (1)

as quoted in [14, 15], where the rE(p, d) are charge radii.
The isotope shift number is so accurate that the uncer-
tainty in the deuteron radius-squared becomes in practice

⇤
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the same as for the proton, and using the CODATA 2010
value for the proton radius one finds [3],

rE(d) = 2.1424(21) fm . (2)

The uncertainty is 0.1%. In contrast, the current best
direct electron-deuteron scattering results yield rE(d) =
2.128(11) fm [16], or 0.5% uncertainty. Planned experi-
ments are expected to reduce this uncertainty [17].

To obtain the charge radius from the Lamb shift re-
quires not only accurate data but also accurate calcu-
lation of all corrections that are not hadronic size cor-
rections. Of these, the two-photon correction, which
includes the relativistically correct polarizability correc-
tion, has drawn continued attention. A deuteron is eas-
ily distorted compared to a single proton, and we shall
see that the polarizability correction for the µ-D system
is about two orders of magnitude larger than for µ-H.
The requirement that the µ-D polarizability correction
be safely smaller than the radius-related energy shift can
become quite severe.

Of course, without knowing the underlying reason for
the proton radius discrepancy, we cannot with certainty
predict what the deuteron discrepancy will be. However,
we will give the anticipated energy discrepancy in one
scenario, and thereby obtain a working number with the
expectation that other scenarios would give results sim-
ilar within a factor of a few. As a reminder, the main
energy shift due to finite hadron (or nuclear) size is

�Efinite size =
2⇡Z↵

3

(mrZ↵)3

n3⇡
r2E(h) , (3)

for a hydrogen-like atom in the nS state, where mr is
the reduced mass. Experiment shows about a 320 µeV
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Deuteron Radius from Lamb Shift
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Modern QED calculations:!
Borie, Annals Phys. 327 (2012) 733; 
Eides et al., Phys.Rept. 342 (2001) 63; 
Indelicato, arXiv:1210.5828,  
...
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We consider the two-photon exchange contribution to the 2P�2S Lamb shift in muonic deuterium
in the framework of forward dispersion relations. The dispersion integrals are evaluated with minimal
model dependence using experimental data on elastic deuteron form factors and inelastic electron-
deuteron scattering, both in the quasielastic and hadronic range. The subtraction constant that
is required to ensure convergence of the dispersion relation for the forward Compton amplitude
T1(⌫, Q2) is related to the deuteron magnetic polarizability �(Q2) and represents the main source
of uncertainty in our analysis. We obtain for the Lamb shift �E2P�2S

= 1.528 ± 0.080 meV and
discuss ways to further reduce this uncertainty.
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Recent precise measurements of the Lamb shift be-
tween 2P1/2 and 2S1/2 in muonic hydrogen [1, 2] allowed
for a very precise determination of the charge radius of
the proton,

rE = 0.84087(39) fm. (1)

On the other hand, atomic level splittings in usual elec-
tronic hydrogen and electron scattering experiments [3, 4]
are consistent with a considerably larger radius,

rE = 0.8775(51) fm, (2)

i.e., a 7� discrepancy is observed that constitutes the
so-called proton radius puzzle. The origin of this dis-
crepancy is as of yet not known.

The accurate measurement of the isotop shift of the
1S-2S transition in hydrogen and deuterium can be used
to determine the di↵erence of the RMS radii of the proton
and the deuteron [5, 6],

r2
E(d)� r2

E(p) = 3.82007(65) fm2. (3)

We can use this to propagate the proton radius puzzle to
the deuteron charge radius as well,

rE(d) = 2.1277(3) fm , (4)

if using the µ-H value for the proton radius, and

rE(d) = 2.1424(21) fm . (5)

if the CODATA value [3] is used. The latter agrees
with the electron scattering result for the charge radius,
rE(d) = 2.128(11) fm [7], but has a 5 times better error
limit, and the error limit quoted for the former is only
from the errors on the muonic Lamb shift proton radius
and on the isotope shift.

The deuteron charge radius can be accessed in an inde-
pendent measurement of the Lamb shift in muonic deu-
terium [8]. The contribution of rE(d) to the 2P -2S Lamb
shift can be represented as [9]

�E2P�2S = 230.2972(400)�6.10940 r2
E(d)+ETPE , (6)

where energy is understood in meV and radii in fm. The
deuteron Lamb shift energies obtained by using the CO-
DATA radius and the propagated µ-H proton radius dif-
fer by about 380 µeV, with an uncertainty of 55µeV from
the uncertainty in the CODATA deuteron radius.

For the muonic hydrogen Lamb shift, one of the rea-
sons for the high accuracy of the measurement was the
small size and high accuracy of the two-photon exchange
corrections [10–13], the last term in the previous equa-
tion. This paper is dedicated to assessing the theory
uncertainty entering this term for the deuteron. The
low threshold for deuteron breakup means that the in-
elastic, or polarizability, contributions to the two photon
exchange corrections will be much higher than for the
proton. The quality of the experimental data in the nec-
essary kinematic regions. along with the ability to model
the extension of some amplitudes into unphysical regions,
will determine the significance of the uncertainties. To
draw strong conclusions from deuteron Lamb shift data
will need two-photon corrections accurate to 100 µeV or
better.

The diagram that contains the nuclear and hadronic
structure-dependent O(↵5) correction to the Lamb shift
is shown in Fig. 1.

The lower part of the diagram, the blob containing the
nuclear and hadronic structure dependence is encoded in

Isotopic shift: 2S-1S transition in eD vs. eH

07 November 2013, with amendments 13 November 2013

Notes on the hydrogen-deuterium 1S-2S isotope shift

• The experimenters have measured (Parthey et al., 2010) an energy difference between the 1S-2S hyper-
fine centroids in hydrogen and deuterium in frequency units,

D fexp = 670 994 334 606(15) Hz. (1)

The theory for everything except the main nuclear finite size effects is

D fth = 670 999 566 900(660)(600) Hz. (2)

The first error comes from mass uncertainties, the second from everything else, including uncertainties
in the polarizability corrections. The difference is

DEfinite size = 5 232 290(890)Hz, (3)

where the errors have been added in quadrature.

• The polarizability corrections are from Friar, Martorell, and Sprung (1997), as quoted in Huber (1998)
and apparently credited to Friar and Payne,

D fpol = 18 580(70) Hz, (4)

to which another 460 Hz may be added for an elastic part, or in total 19, 040 Hz. The uncertainty coming
from the polarizability term as quoted here is not significant.

• The main finite size term for a given hadronic nucleus and given nS state is,

Eh
finite size =

2
3n3 (Za)4

µ

3
hR2

h , (5)

where Rh is a charge radius. The reduced masses are slightly different, and
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Factors to convert the first term to fm2 are shown. One needs a seed value for Rp to obtain the second
term; we used Rp from CODATA(2010) and found �0.00063 fm2 for this term, about the same as the
coming uncertainty limit. The result is

R2
d � R2

p = 3.819 94(65) fm2 . (7)

This can be said to agree with the result in Parthey et al. (3.82007(64) fm2), but is 0.00013 fm2 lower. The
reason for the difference is not currently known.

• The uncertainty in the isotope radius difference comes from the 890 Hz uncertainty in the finite size
energy shift, Eq. (3) above, using Eq. (6).

• If the polarizability result were, for some reason, D fpol = 18(12) kHz, it would blow up the error on the
radius-squared difference by a factor about 10 and but still leaving it useful. More numerically, adding 12
kHz and 0.89 kHz in quadrature is still 12 kHz (to three figures), and then (also reducing the polarizability
correction by 1040 Hz),

R2
d � R2

p = 3.8192(88) fm2, (8)

leading to Rd = 2.1414(29) fm [0.14%] compared to the CODATA 2010 value Rd = 2.1424(21) fm [0.10%].

1

Huber et al. 1998; 
Parthey et al. 2010
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Notes on the hydrogen-deuterium 1S-2S isotope shift

• The experimenters have measured (Parthey et al., 2010) an energy difference between the 1S-2S hyper-
fine centroids in hydrogen and deuterium in frequency units,

D fexp = 670 994 334 606(15) Hz. (1)

The theory for everything except the main nuclear finite size effects is

D fth = 670 999 566 900(660)(600) Hz. (2)

The first error comes from mass uncertainties, the second from everything else, including uncertainties
in the polarizability corrections. The difference is

DEfinite size = 5 232 290(890)Hz, (3)

where the errors have been added in quadrature.

• The polarizability corrections are from Friar, Martorell, and Sprung (1997), as quoted in Huber (1998)
and apparently credited to Friar and Payne,

D fpol = 18 580(70) Hz, (4)

to which another 460 Hz may be added for an elastic part, or in total 19, 040 Hz. The uncertainty coming
from the polarizability term as quoted here is not significant.

• The main finite size term for a given hadronic nucleus and given nS state is,

Eh
finite size =

2
3n3 (Za)4

µ

3
hR2

h , (5)

where Rh is a charge radius. The reduced masses are slightly different, and

R2
d � R2

p =
DEfinite size

7
12 a

4
µ

3
d

2p

c
(h̄c)3 �

 
1 �

µ

3
p

µ

3
d

!
R2

p . (6)

Factors to convert the first term to fm2 are shown. One needs a seed value for Rp to obtain the second
term; we used Rp from CODATA(2010) and found �0.00063 fm2 for this term, about the same as the
coming uncertainty limit. The result is

R2
d � R2

p = 3.819 94(65) fm2 . (7)

This can be said to agree with the result in Parthey et al. (3.82007(64) fm2), but is 0.00013 fm2 lower. The
reason for the difference is not currently known.

• The uncertainty in the isotope radius difference comes from the 890 Hz uncertainty in the finite size
energy shift, Eq. (3) above, using Eq. (6).

• If the polarizability result were, for some reason, D fpol = 18(12) kHz, it would blow up the error on the
radius-squared difference by a factor about 10 and but still leaving it useful. More numerically, adding 12
kHz and 0.89 kHz in quadrature is still 12 kHz (to three figures), and then (also reducing the polarizability
correction by 1040 Hz),

R2
d � R2

p = 3.8192(88) fm2, (8)

leading to Rd = 2.1414(29) fm [0.14%] compared to the CODATA 2010 value Rd = 2.1424(21) fm [0.10%].

1

Very high precision;!
Consistency check if Rp is known



Deuteron radius from µd and µp (preliminary)
H-D iso-shift: r2d − r2p =3.820 07(65) fm2

µp : rp =0.84087(39) fm

⎫

⎬

⎭

⇒rd = 2.12771(22) fm

Deuteron charge radius [fm]
2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

PRELIMINARYd Borie+Pachucki+Ji+Friarµ

d Borie+Jiµ

d Borie+Pachuckiµ

d Martynenkoµ

p + iso(1S-2S)µ

CODATA-2010

CODATA D + e-d

e-d scatt.

n-p scatt.               

Directly from µd spectroscopy using
µd polarizabiliy with ±0.03 meV

- double counting (th)?
- missing terms (th)?
- shifts due to close levels (exp)?

A. Antognini ECT∗, Trento 01.08.2013 – p. 22

If using the electronic 
proton radius

If using the muonic proton radius



D Polarizability Correction to μD Lamb Shift
The rather small seagull terms are primarily required to enforce gauge invariance of the nuclear currents, and can
therefore also be ignored here (but will be incorporated in Appendix A and estimated in Appendix B).

In Coulomb gauge for non-relativistic muons the contribution of Fig. (1b) vanishes for the interactions between
charges (virtual muon-pair intermediate states required by relativity are the primary contribution). Thus we only
need to calculate the contribution of Fig. (1a), which precisely equates to the muon and deuteron charges interacting
via static Coulomb potentials.

The (attractive) energy shift for the nth S-state of the atom due to nuclear polarization is given to leading order
in the fine-structure constant ↵ by

�ENR

pol

= �8↵2|�
n

(0)|2
X

N 6=0

Z
d3q

4⇡

h0|⇢
ch

(�q)|NihN |⇢
ch

(q)|0i
q2 (!

N

+ q

2

2mr
) q2

. (1)

This is nothing more than ordinary second-order perturbation theory in non-relativistic quantum mechanics for an
energy shift in configuration-space that has been rewritten in momentum space (and derived as Eqn. (7) in Ref. [7]).

The (virtual) nuclear excitations driven by the muon are localized inside the nucleus at the center of the atom,
which accounts for the factor of |�

n

(0)|2 = (Z↵m
r

/n)3/⇡ , the square of the muon wave function at the nucleus for
the nth S-state. Note that the deuteron has charge Z = 1 and that m

r

is the usual µ-d reduced mass formed from m
and m

t

. In the energy denominator !
N

= E
N

� E
0

is the energy di↵erence between the Nth intermediate (excited)
state (|Ni) of the deuteron and its ground state (|0i), while q2/2m

r

is the kinetic energy di↵erence in the atom of
the intermediate state and the ground state (which has none to leading order in ↵). Two factors of �4⇡↵ ⇢

ch

(q)/q2

arise from the Fourier transform of the static Coulomb interaction between muon and deuteron, while ⇢
ch

(q) is the
Fourier transform of the deuteron’s charge operator in configuration space: ⇢

ch

(q) =
R
d3x exp (iq · x) ⇢

ch

(x). The
usual phase space factor of 1/(2⇡)3 accompanies d3q, and with that inclusion all numerical factors in Eqn. (1) are
accounted for.

Moving the Fourier exponentials from the two factors of ⇢
ch

(q) in Eqn. (1) directly into the q-integral produces a
much more tractable form

�ENR

pol

= �8↵2|�
n

(0)|2
X

N 6=0

Z
d3x

Z
d3y h0|⇢

ch

(y)|NihN |⇢
ch

(x)|0i I
NR

(z) , (2a)

where z ⌘ x � y. All of the coupling between the atomic and nuclear physics is now contained in the structure
function

I
NR

(z) ⌘ 1

4⇡

Z
d3q

q4
eiq·z

!
N

+ q

2

2mr

=
�2

!
N

z

Z 1

0

dq

q3
sin(qz)

�2 + q2
, (2b)

where we have defined � =
p
2m

r

!
N

. Changing integration variables to q = � t and defining � = � z then produces
a simple result

I
NR

(z) =
1

�!
N

�

Z 1

0

dt

t3
sin(�t)

1 + t2
=

1

�!
N

�
J
NR

(�) . (3)

The dimensionless integral J
NR

(�) in Eqn. (3) diverges at small t. However, the small-t limit of sin (�t) contains
a factor of � that cancels an identical term in the prefactor of the integral. This term in the expansion is then
independent of nuclear coordinates and thus incapable of exciting the nucleus. It therefore doesn’t contribute to
nuclear polarization and we ignore it. The second term in the expansion of sin (�t) is proportional to �3 and is finite.
This is the dominant term. The next term in the expansion would be proportional to �5, but is linearly divergent,
implying the existence of a �4 term. Thus we have J

NR

(�) ⇠ a�3+b�4+c�5+ · · · . Equation (3) will be the template
for calculating most of the corrections that we require.

The simplest way to calculate J
NR

(�) is to di↵erentiate it twice and use identity 3.725.1 of Ref. [11]

J 00
NR

(�) = �
Z 1

0

dt

t

sin(�t)

1 + t2
=

⇡

2
(e�� � 1) . (4a)

4

Non-relativistic nuclear calculations

Various calculations compare well
Friar 2013
Pachucki 2013

Leidemann, Rosenfelder 1995 �E
pol

= 1.500 meV

Polarizability correction will have a larger impact in μD
↵p

E = 1.1⇥ 10�3fm3 ↵d
E = 0.633(1)fm3

�p
M = 3⇥ 10�4fm3 �d

M = 0.072(5)fm3

�Epol
µH ⇡ 13 µeV ! �Epol

µD ⇡ few100⇥ 13 µeV ⇠ few meV

Polarizability correction in μH - talks by Jerry, Mike, Vladimir

�E
pol

= 1.698(0� range + Coulomb + rel. corr.)

�E
pol

= 1.941(0� range + finite size)

Ji et al. 2013
�E

pol

= 1.680(0� range + Coulomb + ret. + nucleon pol.)



Polarizability Correction to Lamb Shift

Questions to be raised:!
!

• what’s the model dependence of NR calculations?!
!

• is the claimed 1% uncertainty feasible?!
 NR models work reasonably well (how well, exactly?)!
 Sum Rules (TRK, Coulomb) obey at 10-15% level!
!

• can the pol. correction be constrained from data?



M = e4

Z
d4q

(2⇡)4
1
q4

ū(k)

�⌫ 1
6 k� 6 q �ml + i✏

�µ + �µ 1
6 k+ 6 q �ml + i✏

�⌫

�
u(k)Tµ⌫

Formulas for deuteron Lamb shift O(↵5) terms: quasi-elastic contributions

(Dated: start on October 7, 2012, this copy October 8, 2012)

Regarding the quasi-elastic O(�5) contributions to the Lamb shift in atomic deuterium, we can start with the usual
diagram,

q q

kk

p p

and begin by obtaining the Compton tensor for the deuteron.
• We will apply the smearing formula to the Compton structure functions,

T1,2(⌅, Q2) = 2
⇤

d3p

(2⇧)3
|⌥d(p)|2 T1,2S(⌅�, Q2) (1)

where T1,2S are the isoscalar structure functions, defined as the average of the proton and neutron structure functions.
(We could also consider applying the smearing formula to the Compton tensor, Tµ⇥ .)

• We will make a spectator approximation, wherein one nucleon is struck and the other is an inert spectator that
exits with the 3-momentum it had before the collision, neglecting further interaction. Photon energy ⌅� is the photon
energy in the rest frame of the stuck nucleon while ⌅ is the photon energy in the rest frame of the deuteron.

• For the nucleon energy before collision, we will give each nucleon an energy of half the deuteron mass, which can
most of the time be taken as mN .

Other approximations are possible, in particular, giving the spectator the energy that goes with an unbound particle
with the same 3-momentum and obtaining the energy of the active quark from energy conservation. This will not
qualitatively change the formulas below; how it may change the numerical results I do not know.

Further possibilities are to use the relativistic spectator on-shell treatment of Gross and collaborators, or the use a
light front treatment favored by Strikman and collaborators.

If the spectator energy is the nucleon mass, and p1 is the notation for the struck nucleon 4-momentum, then

mN⌅� = p1 · q = mN⌅ � |p||q| cos ⇤ . (2)

• We will treat the bound nucleon structure functions as being the same as on-shell structure functions.
We will treat the DIS structure functions, and obtain the Compton structure functions using dispersion theory.

The elastic contributions to the DIS structure functions are known to be

F1N (⌅, Q2) =
1
2
G2

MN (Q2)⇥(1� x) =
1
2
G2

MN (Q2) Q2⇥(2mN⌅ �Q2) ,

F2N (⌅, Q2) =
GEN (Q2) + ⌃NGMN (Q2)

1 + ⌃N
⇥(1� x) . (3)

where ⌃N = Q2/(4m2
N ).

Thus,

FQE
1d (⌅, Q2) =

1
2
Q2

�
G2

Mp + G2
Mn

⇥ ⇤ |p|2d|p|d(cos ⇤)
4⇧2

|⌥d(p)|2⇥(2mN⌅ � 2|p||q| cos ⇤ �Q2)

=
Q2

2|q|
�
G2

Mp + G2
Mn

⇥ ⇤ ⇥

|�p|min

|p|d|p|
8⇧2

|⌥d(p)|2. (4)

Kinematics: 2 loop variables !
q² and ν=(pq)/M

Forward virtual Compton amplitude

�E = � ↵2

2⇡mlMd
�2

n(0)
Z

d4q
(q2 + 2⌫2)T1(⌫, q2)� (q2 � ⌫2)T2(⌫, q2)

q4[(q2/2ml)2 � ⌫2]

Lamb shift (nS-nP)

T

µ⌫ =
i

8⇡M

Z
d

4
xe

iqxhp|T j

µ(x)j⌫(0)|pi

=
✓
�gµ⌫ +

qµq⌫

q2

◆
T1(⌫, Q2) +

1
M2

(p� pq

q2
q)µ(p� pq

q2
q)⌫T2(⌫, Q2)

Two photon exchange contribution to Lamb shift

+ crossed



Two photon exchange contribution to Lamb shift

Real parts - from forward dispersion relation
F1(⌫ !1, q2) ⇠ ⌫1+✏

F2(⌫ !1, q2) ⇠ ⌫✏

- subtraction needed
- no subtraction

T₁, T₂ - the imaginary parts known (Optical theorem)
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where for T1 the subtraction at q0 = 0 was per-
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tial (final) deuteron with momenta p(p0), respectively,
and Q2 = �q2 stands for the four-momentum transfer.
The form factors G1,2,3 are related to the charge, mag-
netic and quadrupole deuteron form factors as

GM = G2,

GC = G1 +
2

3
⌧dGQ,

GQ = G1 � G2 + (1 + ⌧d)G3, (10)

and ⌧d = Q2/(4M2
d ). The elastic contribution to the

structure functions reads

F el
1 =

1

3
(1 + ⌧d)G

2
M�(1 � xd), (11)

F el
2 =



G2
C +

2

3
⌧dG

2
M +

8

9
⌧2
dG2

Q

�

�(1 � xd),

with the Bjorken variable xd = Q2/(2Md⌫).
Correspondingly, we distinguish three contributions,

�En0 = �Esubt
n0 + �Eel

n0 + �Einel
n0 where

�Esubt
n0 =

4⇡↵2

m
�2
n0(0)

Z 1

0

dQ2

Q2

�1(⌧l)p
⌧ l

T̄1(0, Q2),(12)

�Eel
n0 =

m↵2

Md(M2
d � m2)

�2
n0(0)

Z 1

0

dQ2

Q2
(13)

⇥
⇢

2

3
G2

M (1 + ⌧d)

✓

�1(⌧d)p
⌧d

� �1(⌧l)p
⌧ l

◆

�
✓

�2(⌧d)p
⌧d

� �2(⌧l)p
⌧ l

◆ 

G2
C

⌧d
+

2

3
G2

M +
8

9
⌧dG

2
Q

��

�Einel
n0 = � 2↵2

Mdm
�2
n0(0)

Z 1

0

dQ2

Q2

Z 1

⌫
thr

d⌫

⌫
(14)

⇥


�̃1(⌧, ⌧l)F1(⌫, Q2) +
Md⌫

Q2
�̃2(⌧, ⌧l)F2(⌫, Q2)

�

.

Above, we denote ⌧ = ⌫2/Q2, ⌧l = Q2/(4m2), and the
auxiliary functions are given by

�1(⌧) = (1 � 2⌧)
p

1 + ⌧ + 2⌧3/2

�2(⌧) = (1 + ⌧)3/2 � ⌧3/2 � 3

2

p
⌧

�̃1(⌧, ⌧l) =

p
⌧�1(⌧) � p

⌧ l�1(⌧l)

⌧ � ⌧l

�̃2(⌧, ⌧l) =
1

⌧ � ⌧l



�2(⌧l)p
⌧ l

� �2(⌧)p
⌧

�

. (15)

III. EVALUATION AND DATA FITS

A. Elastic contribution

We start with the elastic contribution. It can be noted
that the integral in Eq. (13) is IR divergent due to an
exchange of soft Coulomb photons. Such contributions,
however, were already taken into account within the non-
relativistic calculations on a pointlike deuteron. Further-
more, the finite size e↵ects were accounted for, as well,
and have to be subtracted from the full result of Eq. (13)
to avoid double-counting. This subtraction leads to
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We evaluate Eq. (16) with the most recent deuteron
form factors’ parametrization from [32]. We use the
parametrization I and II of that Ref. to estimate the
uncertainty, and list the result with the uncertainty in
Table II.
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We start with the elastic contribution. It can be noted
that the integral in Eq. (13) is IR divergent due to an
exchange of soft Coulomb photons. Such contributions,
however, were already taken into account within the non-
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more, the finite size e↵ects were accounted for, as well,
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We evaluate Eq. (16) with the most recent deuteron
form factors’ parametrization from [32]. We use the
parametrization I and II of that Ref. to estimate the
uncertainty, and list the result with the uncertainty in
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III. EVALUATION AND DATA FITS

A. Elastic contribution

We start with the elastic contribution. It can be noted
that the integral in Eq. (13) is IR divergent due to an
exchange of soft Coulomb photons. Such contributions,
however, were already taken into account within the non-
relativistic calculations on a pointlike deuteron. Further-
more, the finite size e↵ects were accounted for, as well,
and have to be subtracted from the full result of Eq. (13)
to avoid double-counting. This subtraction leads to
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We evaluate Eq. (16) with the most recent deuteron
form factors’ parametrization from [32]. We use the
parametrization I and II of that Ref. to estimate the
uncertainty, and list the result with the uncertainty in
Table II.

The inelastic contributions contain two parts,

�Einel
n0 = �EQE

n0 + �Ehadr
n0 , (17)

On-shell Deuteron electromagnetic vertex 

Charge, magnetic and quadrupole FF’s



TPE: elastic contribution to Lamb shift
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TPE: hadronic contribution to Lamb shift
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FIG. 5: Comparison of the quasi-elastic model (dot-dashed curves), PWIA part of the inelastic

model (dashed curves), “dip region” part of the inelastic model (short dashed curves), and their

sum (solid curves) with F2 data from Ref. [8] at a) Q2 = 0.525 GeV2 and b) Q2 = 2.075 GeV2.
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FIG. 3: (Color online) High energy photo-absorption cross sections per nucleon for six nuclear targets compared to the fit
results (solid lines) using the Breit-Wigner resonance plus background pametrization of Eq. (19). Data are from [27] for the
proton and the deuteron, and from [22–24] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The
background fit parameters are given in Table I.
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r.h.s of Eq. (17) �4.21 ± 0.35 �5.92 ± 0.65 �6.04 ± 0.88 �9.17 ± 2.24 �5.61 ± 0.77 �4.16 ± 1.66

�
`
2 + ZN

A2

´
↵
M �6.06 �6.82 �6.82 �6.82 �6.81 �6.78

1
2⇡2 cP (E/GeV ) 6.72 ± 0.02 6.92 ± 0.12 5.65 ± 0.11 6.19 ± 0.59 4.53 ± 0.06 4.16 ± 0.25

�Z2

A2
↵
M �3.03 �0.76 �0.76 �0.70 �0.60 �0.48

ReT ↵=0 �0.72 ± 0.35 0.25 ± 0.65 �1.14 ± 0.89 �3.68 ± 2.31 �1.71 ± 0.77 �0.48 ± 1.68

TABLE II: Contributions to the finite energy sum rule for selected targets in units of GeV·µb. The entries in the second row
are taken from a review on nuclear data in Ref. [25].

In Ref. [16], Dominguez, Gunion and Suaya extended
this analysis by including the deuteron photoabsorption
data. They employed a model for nuclear e�ects to ex-
tract parameters of the neutron from deuteron and pro-
ton data, and evaluated the FESR for both nucleons.
Their conclusions were that the � = 0 pole is consistent

with the respective Thomson term for both,

ReT�=0
n = (0± 1.5)µb GeV,

ReT�=0
p = (�3± 0.8)µb GeV, (26)

where ReT�=0
p(n) refers to the proton (neutron), respec-

tively. Tait and White in Ref. [15] re-analyzed the FESR
using a more recent data set, and obtained a much more

Q²=0

Bosted and Christy, PR C77 (2008) 065206; 
MG et al, PR C84 (2011) 065202

Compare to
Pachucki, 2013

�Ehadr = 0.043 meV

Contribution to the Lamb shift

The difference is 15 μeV!
Claimed uncertainty is 16 μeV

�Ehadr = 0.028 meV



TPE: quasielastic contributions to Lamb shift

Paris NN potential !
Lacombe et al. 1981

QE in the Plane-Wave Born Approximation

F d,QE
1,2 (⌫, Q2) =

1
4⇡

Z
d3~k�2(~k)

⇥
F p

1,2(⌫
0, Q2) + Fn

1,2(⌫
0, Q2)

⇤

S(⌫, Q2) =
1
2

Z k
max

k
min

kdk�2(k)

Deuteron momentum distribution

Works fine at substantial photon virtualities, not so fine at low Q².!
But we just need to parametrize data - rescale by a function of Q² !
that will be obtained from a fit to all available data.

At low relative knock-out nucleon momenta:!
strong rescattering effects in the I=1 channel!
Input: p-n scattering lengths (both I=0,1)



Fit to Photo- and Electro disintegration data
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Constraint from real photon data and Baldin Sum Rule

F1,2(⌫, Q2) = fFSI
1,2 (Q2) FFSI

1,2 (⌫, Q2) + fPW
1,2 (Q2)FPW

1,2 (⌫, Q2) + fReal
1,2 (Q2)FReal

1,2 (⌫, Q2)

Fit function of the following form:

Take from ModelObtain from a fit

EFT: Chen et al.

Potential Models: Friar, Payne

↵E = 0.634 fm3 �M = 0.067 fm3

↵E = 0.633 fm3 �M = 0.077 fm3



Fit of QE Data 0.005 GeV²< Q²< 3 GeV²
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Fit of QE Data 0.005 GeV²< Q²< 3 GeV²
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TPE: QE contribution to Lamb shift

1% uncertainty in one parameter ~ 50% uncertainty in Lamb shift

�EPWBA = 1.616(739) meV
�EFSI = 0.391(44) meV
�EReal = 0.322(3) meV

�Einel =
2↵2

mlMd
�2

n(0)
Z 1

0

dQ2

Q2

Z 1

⌫thr

d⌫

⌫

2

4
p

⌧ l�1(⌧l)�
p

⌧�1(⌧)
⌧l � ⌧

F1(⌫, Q2) +
Md⌫

Q2

�2(⌧)p
⌧
� �2(⌧l)p

⌧ l

⌧l � ⌧
F2(⌫, Q2)

3

5

Parametrization of world QE data!
 at 0.005 < Q²< 3 GeV²;!
Output of the fit: !
rescaling functions for PWBA, FSI

5

model for the transverse and longitudinal cross sections,

�0
T =

r

⌫ � ⌫min

M + ⌫ � ⌫min

[Gp
M (Q2) � Gn

M (Q2)]2

1 + M(⌫ � ⌫min)a2
S

(23)

�0
L =

r

⌫ � ⌫min

M + ⌫ � ⌫min

[Gp
E(Q2) + Gn

E(Q2)]2

1 + M(⌫ � ⌫min)a2
T

, (24)

with the n � p singlet and triplet scattering lengths
entering the FSI part, aS = �23.74 fm, aT = 5.38
fm, respectively. Above, we note that the combina-
tion

p

M(⌫ � ⌫min) = |~p| corresponds to the three-
momentum of the knocked-out nucleon.

As a result, we obtain the following representation of
the quasielastic structure functions of the deuteron:

F d,QE
1,2 = F?

1,2 + FPWBA
1,2 + FFSI

1,2 , (25)

according to the ingredients discussed above. To describe
data at arbitrary kinematics, we allow for a rescaling
of each ingredient by a function of Q2 that should be
obtained from the fit to the deuteron photo- and elec-
trodesintegration data.

F?
1 = C?

G2
E + ⌧G2

M

1 + ⌧

1

2|~q|S?(⌫, Q2),

F?
2 =

⌫Q2

Md|~q|2F?
1 ,

FPWBA
1 = fPWBA

T (Q2)
Q2

4|~q|G
2
MS(⌫, Q2),

FPWBA
2 = fPWBA

T (Q2)
⌫Q4

Md|~q|5
G2

E + ⌧G2
M

1 + ⌧

⇥ S(⌫, Q2)(M +
⌫

2
)2,

FFSI
1 = Mdf

FSI
T (Q2)�0

T ,

FFSI
2 =

⌫Q2

|~q|2 (fFSI
T (Q2)�0

T + fFSI
L (Q2)�0

L), (26)

where we adopted the following forms:

fPWBA
T (Q2) =

h

1 � a1e
�b1Q

2
i

,

fFSI
T (Q2) =

100a2Q
2

(1 + b2Q2)2
,

fFSI
L (Q2) =

1

MeV

1 � e�a3Q
2

1 + b3Q2
. (27)

We fitted the available data from Q2 = 0.005 GeV2 to
Q2 = 3 GeV2, and the resulting values of the parameters
are listed in Table I.

The parameter C? is obtained from a fit to real photon
data and the value of Baldin sum rule for real photons,

↵d
E + �d

M =
2↵em

Md

⌫
⇡

Z

⌫
th

d⌫

⌫3
F d
1 (⌫, 0), (28)

where ↵d
E and �d

M are the deuteron electric and magnetic
polarizabilities, respectively. There exist calculations in
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FIG. 3: (Color online) Scaling factors f i

T

(Q2) with uncer-
tainty thereof: i = PWBA (red solid lines), and i = FSI
(blue solid line) with uncertainty thereof (thin blue short-
dashed lines) plotted vs. QE data as function of Q2.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
ν (GeV)

0

5

10

15

d²
σ/

dΩ
dE

' (
μb

/M
eV

)
Dytman 292.6 MeV, 60°
Central Value
Central Value ± Uncertainty

FIG. 4: (Color online) Rescaled PWBA model of Eqs. (25,
26) vs data from Ref. [38].
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Subtraction Contribution to Lamb Shift

F�(Q2) = Gd
C(Q2)

F�(Q2) = Gd
M (Q2)

�d
M = 0.072(5) fm3

Uncertainty estimate:

�EThomson = �0.023(1) meV�E� = �0.740(40) meV

Total subtraction: �ESubt = �0.763(40) meV

7

Adopting these ingredients, the QE contribution of the
two-photon exchange (TPE) to Lamb shift in deuterium
can be calculated. We evaluated this contribution with
the nucleon form factors in Kelly’s parametrization [36]
and using S(⌫, Q2), S?(⌫, Q2) from Paris WF [37], and
list the result with the uncertainty in Table II.

D. Subtraction term

Following Ref. [27], we identify

T̄1(0, Q2) = TB
1 (0, Q2) � T pole

1 (0, Q2)

+
Q2

e2
�d
M (0)F�(Q2), (30)

where TB represents the Born contribution, and where
in the polarizability term we explicitly factored out the
Q2-dependence. The polarizability contribution to the
nS-level is given by

�E�
n0 = 2↵�2

n0(0)�d
M (0)

1
Z

0

dQ2 �1(⌧l)
p

Q2
F�(Q2), (31)

with �d
M (0) = 0.072(5) fm3. The Q2-dependent form

factor F�(Q2) is generally not known. We estimate it by
setting F�(Q2) = Gd

C(Q2)/Gd
C(0), and to estimate the

uncertainty we also try F�(Q2) = Gd
M (Q2)/Gd

M (0). The
average result and uncertainty is quoted in Tab. 2.

Finally, the subtraction function Eq.30 contains the
di↵erence between the Born and pole contributions,
which results from the contact two-photon deuteron in-
teraction (Thomson term). The pointlike part of it,
�1/4⇡Md was already taken into account in atomic cal-
culations, thus we need to account for

[TB
1 � T pole

1 ](0, Q2) � [TB, point
1 � T pole, point

1 ](0, Q2)

=
1 � G2

C(Q2)

4⇡Md
, (32)

thus leading to the shift of an S-level

�ETh
n0 =

2↵2

Md
�2
n0(0)

Z 1

0
dQ2 �1(⌧l)

p

Q2

1 � G2
C(Q2)

Q2
(33)

The result of the numerical evaluation is listed in Table
II.

IV. DISCUSSION OF RESULTS AND IMPACT
OF FURTHER SCATTERING EXPERIMENTS

The total result for the 2P � 2S Lamb shift obtained
from the sum of all terms O(↵5) due to two-photon ex-
change amounts to

�E2P�2S = 2.01(74) meV. (34)

�Ēel – 0.417(2)

�EPWBA – 1.616(739)

�EFSI – 0.391(44)

�E? – 0.322(3)

�Ehadr – 0.028(2)

�E� 0.740(40)

�ETh 0.023(1)

�E
total

– 2.011(740)

TABLE II: TPE corrections to the 2S1/2 energy level in
muonic deuterium in units of meV.

The uncertainty of our result comes from three sources:
elastic deuteron form factors, inelastic hadronic exci-
tations and nuclear (quasi-elastic) contributions. The
deuteron elastic form factors have been measured over
a wide Q2-range with good precision, and the error as-
sociated with di↵erent parametrizations of these data
amounts to 2µeV or relative 2% uncertainty. The
hadronic part contribution is constrained to a relative
7%, however fortunately the contribution itself is rather
small, so this somewhat large relative uncertainty trans-
lates in 2µeV absolute uncertainty.

At the moment, for the calculation of the subtraction
contribution we rely on the Q2-dependence for the mag-
netic polarizability obtained from a model. A direct cal-
culation of T̄1(0, Q2), for instance in chiral EFT would
help reducing the corresponding uncertainty.

The largest contribution and the source of the largest
uncertainty is the quasielastic piece, in particular the Q2-
dependence of the inelastic structure function F2(⌫, Q2)
in the range ⌫  10 MeV, Q2  0.01 GeV2 from which
the dominant contribution to the Lamb shift stems. A
dedicated measurement at Mainz with the existing A1
apparatus at E0 = 180 MeV and angles ✓lab � 15� is
planned [47], and it would help somewhat to constrain
the uncertainty with Q2 & 2.2 ⇥ 10�3 GeV2. Going to
lower energies will be possible with the new linear accel-
erator machine MESA at Mainz, and we include a few
plots demonstrating the sensitivity to the parameter a1

in several representative kinematics in Fig. 11.
To bring the discussion to a more quantitative level, we

list the projected impact of a d(e, e0)pn measurement in
several kinematics of A1 and MESA for the uncertainty
of the dispersion calculation of the Lamb shift in Table
III. For this analysis, we assumed for simplicity that the
uncertainty of the fit will be equal to the precision of the
data.1 For the kinematics Elab = 80 MeV, ✓ = 16� the
uncertainty of the quasielastic contribution is reduced by
a factor of 15 and the theory uncertainty starts being
dominated by that due to the subtraction constant (es-

1
If the experimental uncertainty is dominated by the systematics

this will be a correct estimate. In the opposite case the fit to 2%

data will typically return an uncertainty of at most 1%.

EFT: Chen et al. ↵E = 0.634 fm3 �M = 0.067 fm3

Potential Models: Friar, Payne ↵E = 0.633 fm3 �M = 0.077 fm3

What is β? - input from theory

What is Fᵦ? - input from theory is needed!
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�Eel 0.417(2) meV

�EPWBA 1.616(739) meV

�EFSI 0.391(44) meV

�E? 0.322(3) meV

�Ehadr 0.028(2) meV

�Esubt -0.740(40) meV

�EThomson -0.023(1) meV

�E
total

2.011(740) meV

TABLE I: TPE corrections to the 2S1/2 energy level in muonic
deuterium.

taken into account in atomic calculations, thus we need
to account for

TB
1 (0, Q2)� TB, point

1 =
1

4⇡Md
(1�G2

C(Q2)), (33)

the result of the numerical evaluation is listed in Table I.
Conclusions

The total result for the 2P �2S Lamb shift obtains from
the sum of all terms O(↵5) due to two-photon exchange
and amounts to

�E2P�2S = 2.11(74) meV. (34)

The uncertainty of our result comes about from
three sources: elastic deuteron form factors, inelastic
hadronic excitations and nuclear (quasi-elastic) contribu-
tions. The deuteron elastic form factors have been mea-
sured over a wide Q2-range with good precision, and the
error associated with di↵erent parametrization of these
data amounts to 2µeV or relative 2% uncertainty. The
hadronic part contribution is constrained to a relative
7%, however fortunately the contribution itself is rather
small, so this somewhat large relative uncertainty trans-
lates in 2µeV absolute uncertainty. The largest contri-
bution and the source of the largest uncertainty is the
quasielastic piece, in particular the Q2-dependence of
the inelastic structure function F2(⌫, Q2) in the range
⌫  10 MeV, Q2  0.01 GeV2 from which the domi-
nant contribution to the Lamb shift stems. A dedicated
measurement at Mainz with the existing A1 apparatus at
E0 = 180 MeV and angles ✓lab � 15� is planned [42], and
it would help somewhat to constrain the uncertainty with
Q2 � 2.2 ⇥ 10�3 GeV2. Going to lower energies will be
possible with the new linear accelerator machine MESA
at Mainz, and we include a few plots demonstrating the
sensitivity to the parameter a1 in several representative
kinematics in Fig. 11.

At the moment, for the calculation of the subtraction
contribution we rely on the Q2-dependence for the mag-
netic polarizability obtained from a model. A direct cal-
culation of T̄1(0, Q2), for instance in chiral EFT would
help reducing the uncertainty.
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FIG. 11: Sensitivity to the variation of the parameter a1 from
0.99 to 1 is shown by the dashed and solid lines, respectively,
in the kinematics relevant for the MAMI A1 apparatus [42]
(two upper panels), and for more forward angles (two lower
panels).

Putting Pieces Together

Elastic

Nuclear

Hadronic

Subtraction

Total

{
Constrained by data

Constrained by data

Constrained by data

NOT Constrained 
by data

NOT related to data

�E
pol

= 1.680(16) meV
Compare to Pachucki’s NR calculation

Constrained by data



Effect of the TPE on the Isotopic Shift
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FIG. 11: (Color online) Sensitivity to the variation of the
parameter a1 entering fPWBA

T

in the range [0.99, 1] and a2

entering fFSI

T

in the range [180, 250] is shown by the dashed
and solid lines, respectively, in the kinematics relevant for the
MAMI A1 apparatus [47] (three upper panels), and for MESA
at 80 MeV (lower panel).

from other works. Ref. [19] quotes 1.500 meV cor-
rection due to the deuteron nuclear electric dipole po-
larizability; in Ref. [18] a result of 1.680(16) meV is
obtained by considering the electric polarizability (and
various corrections thereto), elastic and hadronic contri-
butions, and magnetic polarizability. Ref. [18] further-
more obtains the sum of the proton and neutron intrinsic
polarizabilities to the Lamb shift in muonic deuterium
by rescaling the total Lamb shift for muonic hydrogen,
�EµH = �36.9 µeV obtained in Ref. [26] with the ra-
tio (µD

r /µH
r )3 with the result �Ehadr.

µD = �43(3) µeV.
This estimate is not correct because the main contribu-
tion to �EµH is due to the elastic contribution, and only
about a third of it, �13.5 µeV comes from polarizabil-
ities. Since proton and neutron electric polarizabilities
are very close, ↵p ⇡ ↵n, one should expect that the re-
sult for the deuteron should be roughly equal to their
sum, �Ehadr

µD ⇠ 2�EµH = �27 µeV. Indeed, our result
(third entry in Table II) is consistent with this simple es-
timate, �Ehadr

µD = �28(2) µeV. This suggests that after
correction the full result of Ref. [18] should be 1.665(16)
meV. On the other hand, Ref. [22] estimates the Lamb
shift in the zero-range approximation to be 1.912 meV
(1.942 with further corrections), and quotes the result
of Ref. [18] in that approximation as 1.899 meV. These
numbers are close to each other, nevertheless, we point
out that the di↵erences are not small, especially com-
pared to the uncertainty of 16 µeV claimed in Ref. [18].
As mentioned above, the correct account of the nucleon
polarizability corrections alone shifts the result of Ref.
[18] by 15 µeV that exhausts the claimed precision of the
calculation. In Ref. [23] the calculation of the polarizabil-
ity correction is reexamined and higher-order relativistic
corrections from longitudinal and transverse two-photon
exchanges were included, leading to an additional contri-
bution of 18 µeV.

V. ELECTRONIC HYDROGEN

To complete the discussion, we assess the nuclear po-
larizability correction for the nS-levels in the usual (elec-
tronic) deuterium, too. In particular, the isotopic shift
measurement of 1S � 2S splitting of Ref. [14] relies on
the theoretical estimate according to Ref. [21],

�Ee�D
2S�1S = 19.04(7) kHz, (34)

where the polarizability correction of 18.58(7) kHz and
the elastic contribution of 0.46 kHz were added together.
Ref. [50] gives a somewhat di↵erent result,

�Ee�D
2S�1S = 19.25 kHz, (35)

with the Coulomb contribution 17.24 kHz, the magnetic
contribution 2.28 kHz and the magnetic polarizability
correction -0.27 kHz. Our evaluation for the 1S � 2S
splitting in deuterium is

�Ee�D
2S�1S = 28.8± 12.0 kHz, (36)
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FIG. 11: (Color online) Sensitivity to the variation of the
parameter a1 entering fPWBA

T

in the range [0.99, 1] and a2

entering fFSI

T

in the range [180, 250] is shown by the dashed
and solid lines, respectively, in the kinematics relevant for the
MAMI A1 apparatus [47] (three upper panels), and for MESA
at 80 MeV (lower panel).

from other works. Ref. [19] quotes 1.500 meV cor-
rection due to the deuteron nuclear electric dipole po-
larizability; in Ref. [18] a result of 1.680(16) meV is
obtained by considering the electric polarizability (and
various corrections thereto), elastic and hadronic contri-
butions, and magnetic polarizability. Ref. [18] further-
more obtains the sum of the proton and neutron intrinsic
polarizabilities to the Lamb shift in muonic deuterium
by rescaling the total Lamb shift for muonic hydrogen,
�EµH = �36.9 µeV obtained in Ref. [26] with the ra-
tio (µD

r /µH
r )3 with the result �Ehadr.

µD = �43(3) µeV.
This estimate is not correct because the main contribu-
tion to �EµH is due to the elastic contribution, and only
about a third of it, �13.5 µeV comes from polarizabil-
ities. Since proton and neutron electric polarizabilities
are very close, ↵p ⇡ ↵n, one should expect that the re-
sult for the deuteron should be roughly equal to their
sum, �Ehadr

µD ⇠ 2�EµH = �27 µeV. Indeed, our result
(third entry in Table II) is consistent with this simple es-
timate, �Ehadr

µD = �28(2) µeV. This suggests that after
correction the full result of Ref. [18] should be 1.665(16)
meV. On the other hand, Ref. [22] estimates the Lamb
shift in the zero-range approximation to be 1.912 meV
(1.942 with further corrections), and quotes the result
of Ref. [18] in that approximation as 1.899 meV. These
numbers are close to each other, nevertheless, we point
out that the di↵erences are not small, especially com-
pared to the uncertainty of 16 µeV claimed in Ref. [18].
As mentioned above, the correct account of the nucleon
polarizability corrections alone shifts the result of Ref.
[18] by 15 µeV that exhausts the claimed precision of the
calculation. In Ref. [23] the calculation of the polarizabil-
ity correction is reexamined and higher-order relativistic
corrections from longitudinal and transverse two-photon
exchanges were included, leading to an additional contri-
bution of 18 µeV.

V. ELECTRONIC HYDROGEN

To complete the discussion, we assess the nuclear po-
larizability correction for the nS-levels in the usual (elec-
tronic) deuterium, too. In particular, the isotopic shift
measurement of 1S � 2S splitting of Ref. [14] relies on
the theoretical estimate according to Ref. [21],

�Ee�D
2S�1S = 19.04(7) kHz, (34)

where the polarizability correction of 18.58(7) kHz and
the elastic contribution of 0.46 kHz were added together.
Ref. [50] gives a somewhat di↵erent result,

�Ee�D
2S�1S = 19.25 kHz, (35)

with the Coulomb contribution 17.24 kHz, the magnetic
contribution 2.28 kHz and the magnetic polarizability
correction -0.27 kHz. Our evaluation for the 1S � 2S
splitting in deuterium is

�Ee�D
2S�1S = 28.8± 12.0 kHz, (36)
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that is the sum of the elastic (0.53(1) kHz), inelastic
(33.4(12.0) kHz) and subtraction (-4.60(3) kHz) contri-
butions. The uncertainty is about a half of the full re-
sult. Since for the electronic deuterium the integrals over
structure functions are even more strongly weighted at
low values of Q2 where no experimental information is
available, the large uncertainty does not come unexpect-
edly. We show in Table III (fourth column) how future
electron-deuteron scattering measurements can help im-
proving on this estimate.

Note that this uncertainty estimate exceeds the one
in Eq. (34) by two orders of magnitude. However, the
main uncertainty in the isotope shift given in [14] is actu-
ally due to uncertainties in other theoretical corrections,
largely caused by uncertainties in parameters such as par-
ticle masses. The total radius-related energy uncertainty
in [14] is 0.89 kHz. The uncertainty from the dispersive
polarizability calculation is still an order of magnitude
larger; using it would change the radius di↵erence result
to

r2
E(d)� r2

E(p) = 3.8274(88) fm2, (37)

increasing the uncertainty by a factor of ⇠ 10 as com-
pared to Eq. (1). Using the CODATA value for the
proton charge radius rE(p) = 0.8775(51) fm leads us to
a new extracted value of the deuteron radius,

rE(d) = 2.1442(29) fm, (38)

that should be compared to the previous extraction [3],
rE(d) = 2.1424(21) fm. Thus, in the electron case the
increase in the polarizability uncertainty for the isotope
shift makes it comparable to the existing uncertainty in

the proton radius-squared. Using it merely increases the
uncertainty in the inferred deuteron radius by a factor ofp

2.

VI. CONCLUSION

We conclude that in the case of deuterium, model in-
dependence that is the main objective of our approach
comes at a high price. Scattering data do not constrain
the behavior of structure functions, especially the lon-
gitudinal one, at low values of the momentum transfer.
Microscopical nuclear calculations do a much better job
in terms of intrinsic precision that typically is of order of
fractions of a per cent. However, in absence of data this
claimed precision is not warranted, and once new low-Q2

electrodisintegration data will be available they will serve
as a useful cross check for nuclear calculations, as well.
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New evaluation of the polarizability correction in eD

Previous evaluation: Friar, Payne 1997

Total uncertainty in isotopic shift was 0.89 kHz"
not dominated by the polarizability

Only a mild effect in eD if eH proton radius is used; !
huge effect if 𝜇H proton radius is used!
(is the former way the right way?)

The D radius extraction uncertainty"
is dominated by that in the proton radius
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TPE: QE contribution to Lamb shift
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Sensitivity in MAMI (180MeV - 16°, 22°) and P2 (80 MeV - 16°) kinematics

Where does the bulk of the uncertainty come from?
All kinematics contribute;!
not all are weighted equally:

hQ2i = 0.003 � 0.006 (GeV/c)2

h⌫i = 6 � 10 MeV
At low Q² longitudinal cross section dominates

A1@MAMI: 180 MeV run for θ ≥ 15° - in early 2014; more if needed (MESA/P2)!
Will test EFT and potential mod. calculations in their validity domain
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New QE data to constrain the TPE correction7

�Ēel -0.417(2) meV

�EPWBA -1.616(739) meV

�EFSI -0.391(44) meV

�E? -0.322(3) meV

�Ehadr -0.028(2) meV

�Esubt 0.740(40) meV

�EThomson 0.023(1) meV

�E
total

-2.011(740) meV

TABLE II: TPE corrections to the 2S1/2 energy level in
muonic deuterium.

with �d
M (0) = 0.072(5) fm3. The Q2-dependent form

factor F�(Q2) is generally not known. We estimate it by
setting F�(Q2) = Gd

C(Q2)/Gd
C(0), and to estimate the

uncertainty we also try F�(Q2) = Gd
M (Q2)/Gd

M (0). The
average result and uncertainty is quoted in Tab. 2.

Finally, the subtraction function obtains a contribu-
tion from the contact two-photon-deuteron interaction
(Thomson term). The pointlike part of it, �1/4⇡Md was
already taken into account in atomic calculations, thus
we need to account for

TB
1 (0, Q2)� TB, point

1 =
1

4⇡Md
(1�G2

C(Q2)), (32)

the result of the numerical evaluation is listed in Table
II.

IV. DISCUSSION OF RESULTS AND IMPACT
OF FURTHER SCATTERING EXPERIMENTS

The total result for the 2P � 2S Lamb shift obtained
from the sum of all terms O(↵5) due to two-photon ex-
change amounts to

�E2P�2S = 2.01(74) meV. (33)

The uncertainty of our result comes from three sources:
elastic deuteron form factors, inelastic hadronic exci-
tations and nuclear (quasi-elastic) contributions. The
deuteron elastic form factors have been measured over
a wide Q2-range with good precision, and the error as-
sociated with di↵erent parametrizations of these data
amounts to 2µeV or relative 2% uncertainty. The
hadronic part contribution is constrained to a relative
7%, however fortunately the contribution itself is rather
small, so this somewhat large relative uncertainty trans-
lates in 2µeV absolute uncertainty. The largest contri-
bution and the source of the largest uncertainty is the
quasielastic piece, in particular the Q2-dependence of
the inelastic structure function F2(⌫, Q2) in the range
⌫  10 MeV, Q2  0.01 GeV2 from which the domi-
nant contribution to the Lamb shift stems. A dedicated
measurement at Mainz with the existing A1 apparatus at
E0 = 180 MeV and angles ✓lab � 15� is planned [47], and
it would help somewhat to constrain the uncertainty with

E
lab

, ✓
lab

Exp. precision �(�EµD

2S�2P

) �(�EeD

1S�2S

)

180 MeV, 30� 2% 740 µeV 12 kHz

1% 370 µeV 6 kHz

180 MeV, 22� 2% 390 µeV 6.32 kHz

1% 195 µeV 3.16 kHz

180 MeV, 16� 2% 211 µeV 3.36 kHz

1% 110 µeV 1.68 kHz

80 MeV, 16� 2% 67 µeV 1.078 kHz

1% 48 µeV 0.780 kHz

TABLE III: Impact of future measurements of the deuteron
electrodesintegration at MAMI A1 and MESA (kinematics in
the first column and experimental precision in the second col-
umn) on the theoretical uncertainty of the TPE contribution
to the Lamb shift in muonic deuterium (third column), as well
as the (1S � 2S) splitting in the electronic deuterium (fourth
column).

Q2 & 2.2 ⇥ 10�3 GeV2. Going to lower energies will be
possible with the new linear accelerator machine MESA
at Mainz, and we include a few plots demonstrating the
sensitivity to the parameter a1 in several representative
kinematics in Fig. 11.

To bring the discussion to a more quantitative level, we
list the projected impact of a d(e, e0)pn measurement in
several kinematics of A1 and MESA for the uncertainty
of the dispersion calculation of the Lamb shift in Table
III. For this analysis, we assumed for simplicity that the
uncertainty of the fit will be equal to the precision of the
data.1 For the kinematics Elab = 80 MeV, ✓ = 16� the
uncertainty of the quasielastic contribution is reduced by
a factor of 15 and the theory uncertainty starts being
dominated by that due to the subtraction constant (es-
timated to be 40 µeV). It can be seen that already the
next MAMI A1 runs at the lowest energy of 180 MeV
and the most forward angle of 16� with a 2% precision
have the potential to reduce the uncertainty of our dis-
persion calculation by at least factor of 4. The sensitivity
to the value of the parameter a1 is further enhanced at a
lower energy as can be seen in the lower panel of Fig. 11.
Future measurements will allow to test other theoretical
frameworks, such as potential models and EFT, as well.

At the moment, for the calculation of the subtraction
contribution we rely on the Q2-dependence for the mag-
netic polarizability obtained from a model. A direct cal-
culation of T̄1(0, Q2), for instance in chiral EFT would
help reducing the corresponding uncertainty.

Our result should be compared to those obtained by
other groups: [18–20, 22, 23, 31, 48, 49]. Note that
[31, 48, 49] did not perform a complete calculation and
take, for instance, the nuclear polarizability correction

1
If the experimental uncertainty is dominated by the systematics

this will be a correct estimate. In the opposite case the fit to 2%

data will typically return an uncertainty of at most 1%.

A1@MAMI: 180 MeV run for θ ≥ 16° - under analysis (Michael Distler’s talk); !
already these data may help reducing the uncertainty significantly!!

more if needed with the new LINAC MESA/P2)!
Will test EFT and potential mod. calculations in their validity domain



 Dispersion Relations: adequate tool to compute 
structure-dependent corrections with reliable 
uncertainty estimate!

 If necessary data are available: firm prediction for 
the polarizability correction to μH Lamb Shift!

 For deuteron lack of data in kinematics that 
matters - large uncertainty in μD Lamb Shift!

 Magnetic polarizability  - input from EFT desirable!

 New measurements of QE eD scattering at low Q² 
and forward angles - to reduce the uncertainty!

 Polarizability correction for He-3, He-4?

SUMMARY & OUTLOOK


