CHIRAL PERTURBATION THEORY OF MUONIC HYDROGEN LAMB SHIFT

Vladimir Pascalutsa

PRISMA Cluster of Excellence Institute for Nuclear Physics University of Mainz, Germany

@ MITP Workshop "Proton charge radius" Mainz, June 2-6, 2014

Proton structure in hydrogen spectrum

Proton structure in hydrogen spectrum

$$\delta V^{(2\gamma)} = \delta V_{\text{elastic}}^{(2\gamma)} + \delta V_{\text{polariz.}}^{(2\gamma)}$$

ChPT prediction: finite (free-LEC free) result

2

Proton structure in hydrogen spectrum

Correction to Coulomb due to proton's charge distribution:

$$\delta V_{\rm FF}(r) = -\int \frac{d\vec{q}}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{4\pi\alpha}{\vec{q}^2} \left[G_E(-\vec{q}^2) - 1 \right]$$
$$= \frac{\alpha}{\pi r} \int_{t_0}^{\infty} \frac{dt}{t} e^{-r\sqrt{t}} \operatorname{Im} G_E(t)$$

3

Correction to Coulomb due to proton's charge distribution:

$$\delta V_{\rm FF}(r) = -\int \frac{d\vec{q}}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{4\pi\alpha}{\vec{q}^2} \left[G_E(-\vec{q}^2) - 1 \right]$$
$$= \frac{\alpha}{\pi r} \int_{t_0}^{\infty} \frac{dt}{t} e^{-r\sqrt{t}} \operatorname{Im} G_E(t)$$

Ist order PT

$$\Delta E_{2P-2S}^{\rm FF(1)} = -\frac{\alpha^4 m_r^3}{2\pi} \int_{t_0}^{\infty} dt \, \frac{{\rm Im} \, G_E(t)}{(\sqrt{t} + \alpha m_r)^4}$$
$$= -\frac{\alpha^4 m_r^3}{12} \sum_{N=2}^{\infty} \frac{(-\alpha m_r)^{N-2}}{(N-2)!} \left\langle r^N \right\rangle$$
$$= -\frac{\alpha^4 m_r^3}{12} \left(\left\langle r^2 \right\rangle - \alpha m_r \left\langle r^3 \right\rangle \right) + O(\alpha^6)$$

Moments of charge distribution:

$$\left\langle r^{N}\right\rangle \equiv \int d\vec{r} \, r^{N} \rho(r) = \frac{(N+1)!}{\pi} \int_{t_{0}}^{\infty} dt \, \frac{\operatorname{Im} G_{E}(t)}{t^{1+N/2}}.$$

Correction to Coulomb due to proton's charge distribution:

$$\delta V_{\rm FF}(r) = -\int \frac{d\vec{q}}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{4\pi\alpha}{\vec{q}^2} \left[G_E(-\vec{q}^2) - 1 \right]$$
$$= \frac{\alpha}{\pi r} \int_{t_0}^{\infty} \frac{dt}{t} e^{-r\sqrt{t}} \operatorname{Im} G_E(t)$$

Ist order PT

2nd order PT

$$\Delta E_{2P-2S}^{\rm FF(1)} = -\frac{\alpha^4 m_r^3}{2\pi} \int_{t_0}^{\infty} dt \, \frac{{\rm Im} \, G_E(t)}{(\sqrt{t} + \alpha m_r)^4} \qquad \Delta E_{2S}^{\rm FF(2)} = -\alpha^5 m_r^4 \frac{2}{\pi} \int_0^{\infty} dk \left\{ \frac{1}{\pi} \int_{t_0}^{\infty} \frac{dt}{t} \, \frac{1}{t + k^2} \, {\rm Im} \, G_E(t) \right\}^2 + O(\alpha^6) = -\frac{\alpha^4 m_r^3}{12} \sum_{N=2}^{\infty} \frac{(-\alpha m_r)^{N-2}}{(N-2)!} \left\langle r^N \right\rangle \qquad = -\alpha^5 m_r^4 \frac{2}{\pi} \int_0^{\infty} \frac{dk}{k^4} \left\{ G_E(-k^2) - 1 \right\}^2 + O(\alpha^6) . = -\frac{\alpha^4 m_r^3}{12} \left(\left\langle r^2 \right\rangle - \alpha m_r \left\langle r^3 \right\rangle \right) + O(\alpha^6) . \qquad \Delta E_{2P-2S}^{(2)} = -\frac{1}{12} \alpha^5 m_r^4 \left(\left\langle r^3 \right\rangle - \frac{1}{2} \left\langle r^3 \right\rangle_{(2)} \right)$$

Moments of charge distribution: $\langle r^N \rangle \equiv \int d\vec{r} r^N \rho(r) = \frac{(N+1)!}{\pi} \int_{t_0}^{\infty} dt \frac{\text{Im} G_E(t)}{t^{1+N/2}}.$

$$\left\langle r^{3} \right\rangle = \frac{48}{\pi} \int_{0}^{\infty} \frac{dk}{k^{4}} \left\{ G_{E}(-k^{2}) - 1 + \frac{1}{6} \left\langle r^{2} \right\rangle k^{2} \right\}$$
$$\left\langle r^{3} \right\rangle_{(2)} = \frac{48}{\pi} \int_{0}^{\infty} \frac{dk}{k^{4}} \left\{ G_{E}^{2}(-k^{2}) - 1 + \frac{1}{3} \left\langle r^{2} \right\rangle k^{2} \right\}$$

Correction to Coulomb due to proton's charge distribution:

$$\delta V_{\rm FF}(r) = -\int \frac{d\vec{q}}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{4\pi\alpha}{\vec{q}^2} \left[G_E(-\vec{q}^2) - 1 \right]$$
$$= \frac{\alpha}{\pi r} \int_{t_0}^{\infty} \frac{dt}{t} e^{-r\sqrt{t}} \operatorname{Im} G_E(t)$$

Ist order PT

2nd order PT

$$\begin{split} \Delta E_{2P-2S}^{\rm FF(1)} &= -\frac{\alpha^4 m_r^3}{2\pi} \int_{t_0}^{\infty} dt \, \frac{{\rm Im} \, G_E(t)}{(\sqrt{t} + \alpha m_r)^4} & \Delta E_{2S}^{\rm FF(2)} = -\alpha^5 m_r^4 \, \frac{2}{\pi} \int_0^{\infty} dk \left\{ \frac{1}{\pi} \int_{t_0}^{\infty} \frac{dt}{t} \, \frac{1}{t + k^2} \, {\rm Im} \, G_E(t) \right\}^2 + O(\alpha^6) \\ &= -\frac{\alpha^4 m_r^3}{12} \sum_{N=2}^{\infty} \frac{(-\alpha m_r)^{N-2}}{(N-2)!} \left\langle r^N \right\rangle &= -\alpha^5 m_r^4 \, \frac{2}{\pi} \int_0^{\infty} \frac{dk}{k^4} \left\{ G_E(-k^2) - 1 \right\}^2 + O(\alpha^6) \\ &= -\frac{\alpha^4 m_r^3}{12} \left(\left\langle r^2 \right\rangle - \alpha m_r \left\langle r^3 \right\rangle \right) + O(\alpha^6) . & \Delta E_{2P-2S}^{(2)} = -\frac{1}{12} \, \alpha^5 m_r^4 \, \left(\left\langle r^3 \right\rangle - \frac{1}{2} \left\langle r^3 \right\rangle_{(2)} \right) \end{split}$$

cancellation

Moments of charge distribution: $\langle r^N \rangle \equiv \int d\vec{r} r^N \rho(r) = \frac{(N+1)!}{\pi} \int_{t_0}^{\infty} dt \frac{\text{Im} G_E(t)}{t^{1+N/2}}.$

$$\left\langle r^{3} \right\rangle = \frac{48}{\pi} \int_{0}^{\infty} \frac{dk}{k^{4}} \left\{ G_{E}(-k^{2}) - 1 + \frac{1}{6} \left\langle r^{2} \right\rangle k^{2} \right\}$$
$$\left\langle r^{3} \right\rangle_{(2)} = \frac{48}{\pi} \int_{0}^{\infty} \frac{dk}{k^{4}} \left\{ G_{E}^{2}(-k^{2}) - 1 + \frac{1}{3} \left\langle r^{2} \right\rangle k^{2} \right\}$$

Polarizability contribution in ChPT

Eur. Phys. J. C (2014) 74:2852 DOI 10.1140/epjc/s10052-014-2852-0 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

Jose Manuel Alarcón^{1,a}, Vadim Lensky^{2,3}, Vladimir Pascalutsa¹

¹ Cluster of Excellence PRISMA Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz 55099, Germany

² Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

³ Institute for Theoretical and Experimental Physics, Bol'shaya Cheremushkinskaya 25, 117218 Moscow, Russia

4

Proton polarizability effect in mu-H

		[Alarcon, Lensky & VP, EPJC (2014)]					
(µeV)	Pachucki [9]	Martynenko [10]	Nevado and Pineda [11]	Carlson and Vanderhaeghen [12]	Birse and McGovern [13]	Gorchtein et al. [14]	LO-BχPT [this work]
$\Delta E_{2S}^{(\mathrm{subt})}$	1.8	2.3	_	5.3 (1.9)	4.2 (1.0)	$-2.3 (4.6)^{a}$	-3.0
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-13.8	_	-12.7 (5)	-12.7 (5) ^b	-13.0 (6)	-5.2
$\Delta E_{2S}^{(\text{pol})}$	-12 (2)	-11.5	-18.5	-7.4 (2.4)	-8.5 (1.1)	-15.3 (5.6)	$-8.2(^{+1.2}_{-2.5})$

^a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions ^b Taken from Ref. [12]

- [9] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

5

Proton polarizability effect in mu-H

		[Alarcon, Lensky & VP, EPJC (2014)]					
(µeV)	Pachucki [9]	Martynenko [10]	Nevado and Pineda [11]	Carlson and Vanderhaeghen [12]	Birse and McGovern [13]	Gorchtein et al. [14]	LO-BχPT [this work]
$\Delta E_{2S}^{(\mathrm{subt})}$	1.8	2.3	_	5.3 (1.9)	4.2 (1.0)	$-2.3 (4.6)^{a}$	-3.0
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-13.8	_	-12.7 (5)	-12.7 (5) ^b	-13.0 (6)	-5.2
$\Delta E_{2S}^{(\text{pol})}$	-12 (2)	-11.5	-18.5	-7.4 (2.4)	-8.5 (1.1)	-15.3 (5.6)	$-8.2(^{+1.2}_{-2.5})$

^a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions ^b Taken from Ref. [12]

- [9] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

$$\Delta E_{2S}^{(\text{pol})}(\text{LO-HB}\chi\text{PT}) \\\approx \frac{\alpha_{\text{em}}^5 m_r^3 g_A^2}{4(4\pi f_\pi)^2} \frac{m_\mu}{m_\pi} (1 - 10G + 6\log 2) = -16.1 \text{ }\mu\text{eV},$$

Proton polarizability effect in mu-H

	Heavy-Baryon (HB)ChPT					[Alarcon, Lensky & VP, EPJC (2014)]	
(µeV)	Pachucki [9]	Martynenko [10]	Nevado and Pineda [11]	Carlson and Vanderhaeghen [12]	Birse and McGovern [13]	Gorchtein et al. [14]	LO-BχPT [this work]
$\Delta E_{2S}^{(\mathrm{subt})}$	1.8	2.3	_	5.3 (1.9)	4.2 (1.0)	$-2.3 (4.6)^{a}$	-3.0
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-13.8	_	-12.7 (5)	-12.7 (5) ^b	-13.0 (6)	-5.2
$\Delta E_{2S}^{(\text{pol})}$	-12 (2)	-11.5	-18.5	-7.4 (2.4)	-8.5 (1.1)	-15.3 (5.6)	$-8.2(^{+1.2}_{-2.5})$

^a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions ^b Taken from Ref. [12]

- [9] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

$$\Delta E_{2S}^{(\text{pol})}(\text{LO-HB}\chi\text{PT}) \approx \frac{\alpha_{\text{em}}^5 m_r^3 g_A^2}{4(4\pi f_\pi)^2} \frac{m_\mu}{m_\pi} (1 - 10G + 6\log 2) = -16.1 \ \mu\text{eV}, \quad G \simeq 0.9160 \text{ is the Catalan constant.}$$

Chiral Perturbation Theory

(low-energy EFT of QCD) [Weinberg (1979), Gasser & Leutwyler (1984, 85)]

Schematically,

$$Z_{QCD} = \int \prod_{x} \left(dG \, dq \right) e^{i \int d^{4}x \left[-G \cdot G + \bar{q}(\mathcal{P} - m)q + \ldots \right]}$$
$$\stackrel{E \ll 1GeV}{=} \int \prod_{x} \left(dU \, dN \ldots \right) e^{i \int d^{4}x \left[\partial U^{\dagger} \partial U - m(U + U^{\dagger})B_{0} + \bar{N}(\mathcal{P} - M_{0})N + \ldots \right]}$$

where $U(x) = e^{2i\pi(x)/f_{\pi}}$, $m_{\pi}^2 = B_0(m_u + m_d) + O(m^2)$, $B_0 \simeq -\langle \bar{q}q \rangle / f_{\pi}^2 \approx 3 \, GeV$

Chiral Perturbation Theory

(low-energy EFT of QCD) [Weinberg (1979), Gasser & Leutwyler (1984, 85)]

Schematically,

$$Z_{QCD} = \int \prod_{x} \left(dG \, dq \right) e^{i \int d^{4}x \left[-G \cdot G + \bar{q}(\mathcal{P} - m)q + \ldots \right]}$$
$$\stackrel{E \ll 1GeV}{=} \int \prod_{x} \left(dU \, dN \ldots \right) e^{i \int d^{4}x \left[\partial U^{\dagger} \partial U - m(U + U^{\dagger})B_{0} + \bar{N}(\mathcal{P} - M_{0})N + \ldots \right]}$$

where $U(x) = e^{2i\pi(x)/f_{\pi}}$, $m_{\pi}^2 = B_0(m_u + m_d) + O(m^2)$, $B_0 \simeq -\langle \bar{q}q \rangle / f_{\pi}^2 \approx 3 \, GeV$

Consequence of chiral symmetry: pion fields enters with a derivative or mass, i.e. interactions have positive powers of pion 4-momentum

$$\frac{p^{\mu}}{4\pi f_{\pi}}$$
, or $\frac{|\vec{p}|}{4\pi f_{\pi}}$, $\frac{m_{\pi}}{4\pi f_{\pi}}$

Chiral Perturbation Theory

(low-energy EFT of QCD) [Weinberg (1979), Gasser & Leutwyler (1984, 85)]

Schematically,

$$Z_{QCD} = \int \prod_{x} \left(dG \, dq \right) e^{i \int d^{4}x \left[-G \cdot G + \bar{q}(\mathcal{D} - m)q + \ldots \right]}$$
$$\stackrel{E \ll 1GeV}{=} \int \prod_{x} \left(dU \, dN \ldots \right) e^{i \int d^{4}x \left[\partial U^{\dagger} \partial U - m(U + U^{\dagger})B_{0} + \bar{N}(\mathcal{D} - M_{0})N + \ldots \right]}$$

where $U(x) = e^{2i\pi(x)/f_{\pi}}$, $m_{\pi}^2 = B_0(m_u + m_d) + O(m^2)$, $B_0 \simeq -\langle \bar{q}q \rangle / f_{\pi}^2 \approx 3 \, GeV$

Consequence of chiral symmetry: pion fields enters with a derivative or mass, i.e. interactions have positive powers of pion 4-momentum

$$\frac{p^{\mu}}{4\pi f_{\pi}}$$
, or $\frac{|\vec{p}|}{4\pi f_{\pi}}$, $\frac{m_{\pi}}{4\pi f_{\pi}}$

Power-counting: how many powers of p will a given Feynman graph contribute

Baryon ChPT

pion cloud + Delta(1232) excitation

7

Baryon ChPT

pion cloud + Delta(1232) excitation

Jenkins & Manohar, PLB (1991) Hemmert, Holstein, Kambor, JPhysG (1998) V.P. & Phillips, PRC (2003)

E (GeV)

- The 1st nucleon excitation Delta(1232) is within reach of chiral perturbation theory (293 MeV excitation energy is a light scale)
- Include into the chiral effective Lagrangian as explicit dof
- Power-counting for Delta contributions (SSE, ``deltacounting") depends on what chiral order is assigned to the excitation scale.

$0.00 \quad 0.03 \quad 0.10 \quad 0.13 \quad 0.20 \quad 0.23 \quad 0.30$

Lame (Gevient in terms of VVCS amplitudes

where unpolarized, **forward** Doubly-Virtual Compton scattering (VVCS) amplitude:

$$T^{\mu\nu}(p,q) = \frac{i}{8\pi M} \int d^4x \, e^{iqx} \langle p|Tj^{\mu}(x)j^{\nu}(0)|p\rangle$$

= $\left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu,Q^2)$
+ $\frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right) T_2(\nu,Q^2)$

NB stands for non-Born, i.e. w/o elastic FFs $T_1^{(\text{NB})}(0, Q^2) \simeq Q^2 \beta_{M1}$ $T_2^{(\text{NB})}(0, Q^2) \simeq Q^2 (\alpha_{E1} + \beta_{M1}), \text{ for low } Q$

8

$0.00 \quad 0.03 \quad 0.10 \quad 0.13 \quad 0.20 \quad 0.23 \quad 0.30$

Lame (Gevient in terms of VVCS amplitudes

$$\Delta E_{nS}^{(\text{pol})} = -4\alpha_{em}\phi_n^2 \int_0^\infty \frac{dQ}{Q^2} w \left(Q^2/4m_\ell^2\right) \left[T_2^{(\text{NB})}(0,Q^2) - T_1^{(\text{NB})}(0,Q^2)\right]$$

'inelastic'

empirically known

unknown 'subtraction'

8

 $\phi_n^2(0) = m_r^3 \alpha^3 / (\pi n^3)$

where unpolarized, **forward** Doubly-Virtual Compton scattering (VVCS) amplitude:

$$T^{\mu\nu}(p,q) = \frac{i}{8\pi M} \int d^4x \, e^{iqx} \langle p|Tj^{\mu}(x)j^{\nu}(0)|p\rangle$$

= $\left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu,Q^2)$
+ $\frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right) T_2(\nu,Q^2)$

NB stands for non-Born, i.e. w/o elastic FFs $T_1^{(\text{NB})}(0, Q^2) \simeq Q^2 \beta_{M1}$ $T_2^{(\text{NB})}(0, Q^2) \simeq Q^2 (\alpha_{E1} + \beta_{M1}), \text{ for low } Q$

$0.00 \quad 0.03 \quad 0.10 \quad 0.13 \quad 0.20 \quad 0.23 \quad 0.30$

Lame (Gevient in terms of VVCS amplitudes

empirically known 'inelastic' unknown 'subtraction'

$$\Delta E_{nS}^{(\text{pol})} = -4\alpha_{em}\phi_n^2 \int_0^\infty \frac{dQ}{Q^2} w \left(Q^2/4m_\ell^2\right) \left[T_2^{(\text{NB})}(0,Q^2) - T_1^{(\text{NB})}(0,Q^2)\right] dQ_{em}^2 dQ_{em$$

where unpolarized, **forward** Doubly-Virtual Compton scattering (VVCS) amplitude:

$$T^{\mu\nu}(p,q) = \frac{i}{8\pi M} \int d^4x \, e^{iqx} \langle p|Tj^{\mu}(x)j^{\nu}(0)|p\rangle$$

= $\left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu, Q^2)$
+ $\frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right) T_2(\nu, Q^2)$

NB stands for non-Born, i.e. w/o elastic FFs $T_1^{(\text{NB})}(0, Q^2) \simeq Q^2 \beta_{M1}$ $T_2^{(\text{NB})}(0, Q^2) \simeq Q^2 (\alpha_{E1} + \beta_{M1}), \text{ for low } Q$

8

 $\phi_n^2(0) = m_r^3 \alpha^3 / (\pi n^3)$

Effectiveness of BChPT vs. HBChPT

Heavy-Baryon is an expansion of Baryon ChPT in powers of m_{π}/M_N and keeping only the LO term — approximation.

HB result has high-momentum contribution greater than expected uncertainty..

9

Effectiveness of BChPT vs. HBChPT

Heavy-Baryon is an expansion of Baryon ChPT in powers of m_π/M_N and keeping only the LO term — approximation.

HB result has high-momentum contribution greater than expected uncertainty..

$$\Delta E_{nS}^{(\text{pol})} = -4\alpha_{em}\phi_n^2 \int_0^\infty \frac{dQ}{Q^2} w \left(Q^2/4m_\ell^2\right) \left[T_2^{(\text{NB})}(0,Q^2) - T_1^{(\text{NB})}(0,Q^2)\right]$$

9

Effectiveness of BChPT vs. HBChPT

Heavy-Baryon is an expansion of Baryon ChPT in powers of $\,m_\pi/M_N$ and keeping only the LO term — approximation.

HB result has high-momentum contribution greater than expected uncertainty..

Predictions of BChPT for VVCS

Alarcon, Lensky & VP, in preparation

BChPT for polarised VVCS (deltaLT puzzle)

Alarcon, Lensky & VP, in preparation

ChPT of Compton scattering off protons

Unpolarized cross sections for RCS

Proton polarizabilities

BChPT - Lensky & V.P., EPJC(2010) HBChPT - Griesshammer, McGovern, Phillips, EPJA (2013)

Proton polarizabilities

2013 on-line edition (orange)

Antognini et al, Ann Phys (2013):

Antognini et al, Ann Phys (2013):

15

(2014)

Antognini et al, Ann Phys (2013):

Antognini et al, Ann Phys (2013):

Backup slides

$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where

$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative

$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

E.g.: the effective range parameters of the NN force

$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

E.g.: the effective range parameters of the NN force are such quantities -- hope for "perturbative pions" (KSW)

From beam asymmetry

PRL 110, 262001 (2013) PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa

PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany (Received 3 April 2013; published 25 June 2013)

Vladimir Pascalutsa — A few moments in ChPT — Workshop on Tagged Structure Functions — JLab, Jan 16-18, 2014 18

New Mainz data for Compton beam asymmetry

Data taken: 28.05. – 17.06.2013, 327 h

HBChPT@LO

Bernard, Keiser, Meissner Int J Mod Phys(1995)

$$\alpha_p = \alpha_n = \frac{5 \pi \alpha}{6m_{\pi}} \left(\frac{g_A}{4 \pi f_{\pi}}\right)^2 = 12.2 \times 10^{-4} \text{ fm}^3,$$

$$\beta_p = \beta_n = \frac{\pi \alpha}{12m_{\pi}} \left(\frac{g_A}{4\pi f_{\pi}}\right)^2 = 1.2 \times 10^{-4} \text{ fm}^3,$$

HBChPT@LO

Bernard, Keiser, Meissner Int J Mod Phys(1995)

$$\alpha_p = \alpha_n = \frac{5 \pi \alpha}{6m_{\pi}} \left(\frac{g_A}{4 \pi f_{\pi}}\right)^2 = 12.2 \times 10^{-4} \text{ fm}^3,$$

$$\beta_p = \beta_n = \frac{\pi \alpha}{12m_{\pi}} \left(\frac{g_A}{4\pi f_{\pi}}\right)^2 = 1.2 \times 10^{-4} \text{ fm}^3,$$

BChPT@NLO

Lensky & V.P., EPJC (2010)

$$\alpha = \underbrace{6.8}_{\mathscr{O}(p^3)} + \underbrace{(-0.1) + 4.1}_{\mathscr{O}(p^4/\Delta)} = 10.8,$$

$$\beta = \underbrace{-1.8}_{\mathscr{O}(p^3)} + \underbrace{7.1 - 1.3}_{\mathscr{O}(p^4/\Delta)} = 4.0.$$

HBChPT@LO

Bernard, Keiser, Meissner Int J Mod Phys(1995)

$$\alpha_p = \alpha_n = \frac{5 \pi \alpha}{6m_{\pi}} \left(\frac{g_A}{4 \pi f_{\pi}}\right)^2 = 12.2 \times 10^{-4} \text{ fm}^3,$$

$$\beta_p = \beta_n = \frac{\pi \alpha}{12m_{\pi}} \left(\frac{g_A}{4\pi f_{\pi}}\right)^2 = 1.2 \times 10^{-4} \text{ fm}^3,$$

BChPT@NLO

Lensky & V.P., EPJC (2010)

$$\alpha = \underbrace{6.8}_{\mathscr{O}(p^3)} + \underbrace{(-0.1) + 4.1}_{\mathscr{O}(p^4/\Delta)} = 10.8,$$

$$\beta = \underbrace{-1.8}_{\mathscr{O}(p^3)} + \underbrace{7.1 - 1.3}_{\mathscr{O}(p^4/\Delta)} = 4.0.$$

$$\mu = m_{\pi}/M_N \qquad \beta = \frac{e^2 g_A^2}{192\pi^3 F^2 M_N} \left[\frac{\pi}{4\mu} + 18\log\mu + \frac{63}{2} - \frac{981\pi\mu}{32} - (100\log\mu + \frac{121}{6})\mu^2 + \mathcal{O}(\mu^3) \right]$$

$$\begin{split} & \text{HBChPT@LO} & \text{BChPT@NLO} \\ & \text{Bernard, Keiser, Meissner} \\ & \text{Int J Mod Phys(1995)} & \text{Lensky & V.P., EPJC (2010)} \\ & \alpha_p = \alpha_n = \frac{5\pi\alpha}{6m_\pi} \Big(\frac{g_A}{4\pi f_\pi}\Big)^2 = 12.2 \times 10^{-4} \text{ fm}^3, \\ & \beta_p = \beta_n = \frac{\pi\alpha}{12m_\pi} \Big(\frac{g_A}{4\pi f_\pi}\Big)^2 = 1.2 \times 10^{-4} \text{ fm}^3, \\ & \beta_p = \beta_n = \frac{\pi\alpha}{12m_\pi} \Big(\frac{g_A}{4\pi f_\pi}\Big)^2 = 1.2 \times 10^{-4} \text{ fm}^3, \\ & \beta_p = \frac{-1.8}{0(p^3)} + \frac{7.1 - 1.3}{0(p^4/\Delta)} = 4.0. \\ & \text{diamagnetic} \\ & \text{diamagnetic} \\ & \mu = m_\pi/M_N \\ & \left[\beta = \frac{e^2 g_A^2}{192\pi^3 F^2 M_N} \left[\frac{\pi}{4\mu} + 18 \log \mu + \frac{63}{2} - \frac{981\pi\mu}{32} - (100 \log \mu + \frac{121}{6})\mu^2 + \mathcal{O}(\mu^3) \right] \right] \end{split}$$

Bernard, Keiser, Meissner PRL(1991)

Bernard, Keiser, Meissner PRL(1991)

HBChPT@NLO: Griesshammer & Hemmert (2004) Griesshammer, McGovern, Phillips (2012) The Delta contribution is accompanied by "promoted" LECs, hence not predictive

