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Lamb shift in muonic hydrogen: ∆EL = E(2p1
2
)−E(2s1

2
)'+0.2 eV

Much larger than in electronic hydrogen, dominated by vacuum polarisation

and much more sensitive to proton structure , in particular, its charge radius

∆E th
L = 206.0668(25)−5.2275(10)〈r2

E〉meV

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others;

collated in Antognini et al, Ann. Phys. 331 (2013) 127
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Lamb shift in muonic hydrogen: ∆EL = E(2p1
2
)−E(2s1

2
)'+0.2 eV

Much larger than in electronic hydrogen, dominated by vacuum polarisation

and much more sensitive to proton structure , in particular, its charge radius

∆E th
L = 206.0668(25)−5.2275(10)〈r2

E〉meV

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others;

collated in Antognini et al, Ann. Phys. 331 (2013) 127

Includes contribution from two-photon exchange

∆E2γ = 33.2±2.0 µeV

Sensitive to polarisabilities of proton by virtual photons

Focus of this talk
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CREMA experiment at PSI: 2p3
2
→ 2s1

2
transitions to both hyperfine 2s states

Pohl et al, Nature 466 (2010) 213; Antognini et al, Science 339 (2013) 417

Eliminate hyperfine splitting to get

∆Eexpt
L = 202.3706(23) meV
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CREMA experiment at PSI: 2p3
2
→ 2s1

2
transitions to both hyperfine 2s states

Pohl et al, Nature 466 (2010) 213; Antognini et al, Science 339 (2013) 417

Eliminate hyperfine splitting to get

∆Eexpt
L = 202.3706(23) meV

CODATA 2010 value for charge radius, rE = 0.8775(51) fm (electronic H),

gives

∆E th
L = 202.042(47) meV

Discrepancy: 0.330(47) meV (7σ!)

New value for charge radius: rE = 0.84087±0.00026(exp)±0.00029(th) fm

In 2010: ∆E2γ ∼ 0.03 meV was least-well determined contribution to ∆E th
L

Still contributes largest single uncertainty

But would need to be 10 times larger to explain the discrepancy



Two-photon exchange
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Integral over T µν(ν,q2) – doubly-virtual Compton amplitude for proton

Spin-averaged, forward scattering→ two independent tensor structures

Common choice:

T µν =
(
−gµν +

qµqν

q2

)
T1(ν,Q2)+

1
M2

(
pµ− p ·q

q2 qµ
)(

pν− p ·q
q2 qν

)
T2(ν,Q2)

multiplied by scalar functions of ν = p ·q/M and Q2 =−q2
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Integral over T µν(ν,q2) – doubly-virtual Compton amplitude for proton

Spin-averaged, forward scattering→ two independent tensor structures

Common choice:

T µν =
(
−gµν +

qµqν

q2

)
T1(ν,Q2)+

1
M2

(
pµ− p ·q

q2 qµ
)(

pν− p ·q
q2 qν

)
T2(ν,Q2)

multiplied by scalar functions of ν = p ·q/M and Q2 =−q2

Amplitude contains elastic (Born) and inelastic pieces: T µν = T µν

B +T µν

• elastic: photons couple independently to proton (no excitation)

• need to remove terms already accounted for in Lamb shift (iterated Coulomb,

leading dependence on 〈r2
E〉)

• inelastic: proton excited→ polarisation effects



Doubly-virtual Compton scattering
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Elastic amplitude from Dirac nucleon with Dirac and Pauli form factors

K. Pachucki, Phys. Rev. A 60 (1999) 3593

Γ
µ = FD(q2)γµ + iFP(q2)

σµν qν

2M
Gives

T B
1 (ν,Q2) =

e2

M

[
Q4
(

FD(Q2)+FP(Q2)
)2

Q4−4M2ν2 −FD(Q2)2

]

T B
2 (ν,Q2) =

4e2MQ2

Q4−4M2ν2

[
FD(Q2)2 +

Q2

4M2 FP(Q2)2

]
Final term in T1 – no pole corresponding to on-shell intermediate nucleon

But this depends on choice of tensor basis (energy-dependent tensors)

cf Walker-Loud et al, Phys Rev Lett 108 (2012) 232301

Also parts of this term required by low-energy theorems (eg Thomson limit)

→ keep it as part of Born amplitude
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V2CS not directly measurable, but constrained by LETs

Expand in tensor basis without kinematic singularities (1/q2)

Tarrach, Nuov Cim 28A (1975) 409

→ two independent tensors of order q2: correspond to polarisabilities α+β and β

from real Compton scattering

T 1(ω,Q2) = 4πQ2
β+4πω

2(α+β)+O(q4)

T 2(ω,Q2) = 4πQ2(α+β)+O(q4)
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V2CS not directly measurable, but constrained by LETs

Expand in tensor basis without kinematic singularities (1/q2)

Tarrach, Nuov Cim 28A (1975) 409

→ two independent tensors of order q2: correspond to polarisabilities α+β and β

from real Compton scattering

T 1(ω,Q2) = 4πQ2
β+4πω

2(α+β)+O(q4)

T 2(ω,Q2) = 4πQ2(α+β)+O(q4)

Nonpole term in Born amplitude T B
1 contains piece ∝ Q2:

FD(Q2)2 = 1−
[

1
3
〈r2

E〉−
κ

2M2

]
Q2 +O(Q4)

Moving this to inelastic amplitude would require modified LET

(if β defined in usual way from real Compton scattering)

All these LETs automatically built into EFTs at 4th order (NRQED, HBChPT)

eg Hill and Paz, Phys Rev Lett 107 (2011) 160402
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Information on forward V2CS away from q = 0 from structure functions F1,2(ν,Q2)
via dispersion relations

T 2(ν,Q2) =−
Z

∞

ν2
th

dν
′2 F2(ν′,Q2)

ν′2−ν2

– integral converges since F2 ∼ 1/ν at high energies
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Information on forward V2CS away from q = 0 from structure functions F1,2(ν,Q2)
via dispersion relations

T 2(ν,Q2) =−
Z

∞

ν2
th

dν
′2 F2(ν′,Q2)

ν′2−ν2

– integral converges since F2 ∼ 1/ν at high energies

But F1 ∼ ν so need to use subtracted dispersion relation

T 1(ν,Q2) = T 1(0,Q2)−ν
2

Z
∞

ν2
th

dν′2

ν′2
F1(ν′,Q2)
ν′2−ν2

F1,2(ν,Q2) well determined from electroproduction experiments at JLab

Subtraction function T 1(0,q2) not experimentally accessible

Satisfies LET: T 1(0,Q2)/Q2→ 4πβ as Q2→ 0
But how does it depend on Q2?



Subtraction term
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Define form factor

T 1(0,Q2) = 4πβQ2 Fβ(Q2)

Large Q2: operator-product expansion, quark counting rules give Fβ(Q2) ∝ Q−4

Small Q2: use HBChPT at 4th order, plus leading effect of γN∆ form factor

• same diagrams as for real Compton scattering

McGovern et al, Eur. Phys. J. A 49 (2013) 12

• minor modifications for different kinematics

• subtract elastic (Born) contribution calculated to this order
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Match at Q2 = 0→ Mβ = 462 MeV; at Q2 ∼ m2
π→ Mβ = 510 MeV
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Extrapolate to higher Q2 by matching ChPT form onto dipole

Fβ(Q2)∼ 1
(1+Q2/2M2

β
)2

Match at Q2 = 0→ Mβ = 462 MeV; at Q2 ∼ m2
π→ Mβ = 510 MeV

Mβ = 485±100±40±25 MeV

• generous allowance for higher-order effects and uncertainties in input (shaded)
• β = (3.1±0.5)×10−4 fm3

• matching uncertainty
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.

∆E2γ

sub =
αEM φ(0)2

4πm

Z
∞

0
dQ2 T 1(0,Q2)

Q2 ×

1+

(
1− Q2

2m2

)√4m2

Q2 +1−1


• with dipole form, 90% comes from Q2 < 0.3 GeV2

• rather insensitive to value of Mβ

• main source of error: β = 3.1±0.5
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But with errors under much better control
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• with dipole form, 90% comes from Q2 < 0.3 GeV2

• rather insensitive to value of Mβ

• main source of error: β = 3.1±0.5
Result:

∆E2γ

sub =−4.2±1.0 µeV

Comparable to previous, model-based results Pachucki, Phys. Rev. A 60 (1999) 3593;

Carlson and Vanderhaeghen, Phys. Rev. A 84 (2011) 020102

But with errors under much better control

Combined with results of Carlson and Vanderhaeghen

• elastic (with nonpole term reinstated): ∆E2γ

el = 24.7±1.3 µeV

• inelastic (dispersive): ∆E2γ

inel = 12.7±0.5 µeV

→ total: ∆E2γ = 33.2±2.0 µeV
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Extrapolation not needed in ChPT at 3rd order – two-photon loop finite

→ calculate ∆E2γ directly

• errors larger than at 4th order

• inconsistencies between different versions:

◦ heavy-baryon, with ∆

∆E2γ

inel +∆E2γ

sub = 18.5+8.0 = 26±13 µeV

Nevado and Pineda, Phys Rev C 77 (2008) 035202; Peset and Pineda, arXiv:1403.3408

◦ relativistic BChPT, ∆ not included – contributions expected to cancel

∆E2γ

inel +∆E2γ

sub = 8.2+1.2
−2.5 µeV

Alarcón, Lensky and Pascalutsa, Eur Phys J C 74 (2014) 2852
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Extrapolation not needed in ChPT at 3rd order – two-photon loop finite

→ calculate ∆E2γ directly

• errors larger than at 4th order

• inconsistencies between different versions:

◦ heavy-baryon, with ∆

∆E2γ

inel +∆E2γ

sub = 18.5+8.0 = 26±13 µeV

Nevado and Pineda, Phys Rev C 77 (2008) 035202; Peset and Pineda, arXiv:1403.3408

◦ relativistic BChPT, ∆ not included – contributions expected to cancel

∆E2γ

inel +∆E2γ

sub = 8.2+1.2
−2.5 µeV

Alarcón, Lensky and Pascalutsa, Eur Phys J C 74 (2014) 2852

ChPT at 4th order

• consistent with current determination of magnetic polarisability β

• lowest order that makes direct contact with LETs

• but form factors unphysical above breakdown scale→ extrapolate (8.5±1.1 µeV)
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Results not sensitive to details of extrapolation, unless...

nucleons become very soft for momentum scales Q2 & 2 GeV2

Miller, Phys Lett B 718 (2013) 1078

But no evidence from related processes:

• dispersion relations for T2(0,Q2) (∼ α+β)

• proton-neutron mass difference Walker-Loud et al, Phys Rev Lett 108 (2012) 232301

• quasi-elastic electron-nucleus scattering Miller, Phys Rev C 86 (2012) 065201
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Results not sensitive to details of extrapolation, unless...

nucleons become very soft for momentum scales Q2 & 2 GeV2

Miller, Phys Lett B 718 (2013) 1078

But no evidence from related processes:

• dispersion relations for T2(0,Q2) (∼ α+β)

• proton-neutron mass difference Walker-Loud et al, Phys Rev Lett 108 (2012) 232301

• quasi-elastic electron-nucleus scattering Miller, Phys Rev C 86 (2012) 065201

Nor from energy-weighted sum rules (despite large uncertainties)

Gorchtein et al, Phys Rev A 87 (2013) 052501

• after transfer of nonpole Born term back to elastic piece

∆E2γ

sub = +1.5±4.6 µeV

(opposite sign for central value since β =−0.3±4.0)
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Subtraction term in two-photon-exchange contribution to Lamb shift calculated

using HBChPT at 4th order

∆E2γ

sub =−4.2±1.0 µeV

Important to maintain consistency between definition of elastic/Born contribution

and LET satisfied by subtraction term

Complete two-photon exchange contribution now well determined

∆E2γ = 33±2 µeV

• factor 10 too small to explain proton radius puzzle (330 µeV)

• extrapolation of ChPT result needed at 4th order

• no evidence for unnatural behaviour at Q2 & 2 GeV2

• main sources of uncertainty: β (subtraction) and form factors (elastic)


