ELECTROMAGNETIC RADII OF THE PROTON FROM ATOMIC SPECTROSCOPY

Pulkovo Observatory

Savely Karshenboim

Max-Planck-Institut für Quantenoptik (Garching)

Pulkovo Observatory (ΓΑΟ PAH) (St. Petersburg)

æ

MAX-PLANCK-INSTITUTE OF QUANTUM OPTICS GARCHING

OUTLINE

- Different determinations of the electric and magnetic radii
- Proton-finite-size contributions to the energy level
 - Leading and next-to-leading contributions
 - Spin-independent and spin-dependent terms
 - Former evaluations
 - Consistency problem
 - Fits and fits
- Strategy of the self-consistent consideration
 - Low momentum area
 - High momentum area
- The proton charge radius
 - Results
 - Tests
- Hyperfine interval in H and μ H and proton magnetic radius

> • Spectroscopy of hydrogen (and deuterium)

• Electron-proton scattering

• The Lamb shift in muonic hydrogen

• Electron-proton scattering

- Spectroscopy of hydrogen (and deuterium)
 - spectroscopic data are fitted with R_{∞} and R_p (H) or R_{∞} and R_d (D)
- The Lamb shift in muonic hydrogen
 - higher-order finiteproton-size corrections are involved

- Electron-proton scattering
 - *QED* corrections
 - two-photon exchange (polarizability)
 - limited accuracy of data points
 - extrapolation to q²=0 and differentiation
- overall model dependence

- Spectroscopy of hydrogen (and deuterium)
 - spectroscopic data are fitted with R_{∞} and R_p (H) or R_{∞} and R_d (D)
- The Lamb shift in muonic hydrogen
 - higher-order finiteproton-size corrections are involved
- No results on magnetic radius

- Electron-proton scattering
 - *QED* corrections
 - two-photon exchange (polarizability)
 - limited accuracy of data points
 - extrapolation to q²=0 and differentiation
- overall model dependence
- Results on the magnetic radius are controversial

CONTRADICTION IN THE DETERMINATION: TWO QUESTIONS

• How to resolve it?

• I partly address this question producing an independent value of the magnetic radius.

• How to live with it?

• The contradiction means that the overall picture is not self-consistent and certain calculations may involve inconsistencies.

HIGHER-ORDER PROTON-FINITE-SIZE CONTRIBUTIONS: NEW APPROACH

- The Lamb in muonic hydrogen
 - consistency (between form factors from scattering and extracted radius)
 - a model-independent self-consistent treatment

• HFS in ordinary and muonic hydrogen

- sensitive to the destribution of the magnetic moment
- no model independent result up to date
- a self-consistent treatment and a model-independent constraint for the first time

PROTON FINITE-SIZE CONTRIBUTIONS

• Leading term:

$$\Delta E_{\rm pfs}^{\rm lead}(ns) = \frac{2}{3} \frac{(Z\alpha)^4}{n^3} m_r^3 R_E^2$$

• Next-to-leading (spin-independent): Friar term

$$I_{3}^{\rm E} \equiv \int_{0}^{\infty} \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G'_E(0) q^2 \right]$$

• Next-to-leading (spin-dependent): Zemach term

$$I_1^{\rm EM} \equiv \int_0^\infty \frac{dq}{q^2} \left[\frac{G_E(q^2)G_M(q^2)}{\mu_p} - 1 \right]$$

STANDARD DIPOLE APPROXIMATION AND EMPIRIC FITS

$$G_{dip}(q^2) = \left(\frac{\Lambda^2}{q^2 + \Lambda^2}\right)^2$$

$$R_p = 0.81 \text{ fm}$$

$$A^{G/G}_{0.04}_{0.02}_{0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0}^{G/GeV}_{q(GeV)}$$

THE LAMB SHIFT IN MUONIC HYDROGEN: CONSISTENCY PROBLEM !!!

• The integrand includes Three terms:

$$I_{3}^{\rm E} \equiv \int_{0}^{\infty} \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G'_E(0) \, q^2 \right]$$

THE LAMB SHIFT IN MUONIC HYDROGEN: CONSISTENCY PROBLEM

$$I_{3}^{\rm E} \equiv \int_{0}^{\infty} \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G'_E(0) q^2 \right]$$

THE LAMB SHIFT IN MUONIC HYDROGEN: CONSISTENCY PROBLEM

$$I_{3}^{\rm E} \equiv \int_{0}^{\infty} \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G'_E(0) q^2 \right]$$

THE FITS & THE FITS

- The fits theoretically motivated
 - the shape is determined independently of the fitting
 - fitting serves to find the related parameters
 - suitable for any operations on the fit
- There is no a priori model for the proton form factors

• The fits produced empirically

- the shape is arbitrary chosen
- literally it has no sense
- just a good smooth function
- suitable for rough application
- Suitable with reservations for extrapolations, differentiations, large subtractions

THE FITS & THE FITS

- The fits theoretically motivated
 - the shape is determined independently o fitting
 Empiric
 - fitting serves to
 related paramet
 - suitable for any operations on th
- There is no a primodel for the proton form factors

- The fits produced empirically
 - the shape is arbitrary

Empiric fits of the proton form factors

- Literally incorrect:
 - wrong analytic behavior
 - questionable asymptotic behavior
- Based on certain rough theoretical constraints

reservations for extrapolations, differentiations, large subtractions

EVALUATIONS OF ${\rm I_3}^{\rm EM}$ within the former extractions

• Natural extraction

- following Borie, Eides et al, and others
- dipole shape with an adjustable parameter
- A posteriori: the parameter follows the radius from muonic hydrogen
 - does not well agree with the expt data!

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben³, João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan³, Luis M. P. Fernandes³, Adolf Giesen⁴n, Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato³, Lucile Julien³, Cheng-Yang Kao³, Paul Knowles⁹, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhause⁴n, Tobias Nebel¹, Paul Rabinowitz⁹, Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqu¹¹, João F. C. A. Veloso⁵ & Franz Kottmann¹²

• Scientific extraction

- Crema cited Birse and McGovern
- B&M cited Carlson and Vanderhaeghen
- C&V calculated TPE
- TPE includes recoil, but the Friar term dominates
 - empiric fits (with a bad radius!)

Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen

Aldo Antognini,^{1,2,4} François Nez,³ Karsten Schuhmann,^{2,4} Fernando D. Amaro,⁵ François Biraben,³ Jošo M. R. Cardoso,⁵ Daniel S. Covita,^{6,4} Andreas Dax,⁷ Satish Dhawan,⁷ Marc Diegold, Luis M. P. Fernandes, ⁵ Addi Gisen,^{6,4} Andrea L. Gouvea,⁵ Thomas Graf,⁸ Theodor W. Hänsch,^{4,5} Paul Indelicato,¹ Lucile Julien,² Cheng-Yang Kao,¹0⁵ Paul Knowles,¹¹ Franz Kottmann,² Eric-Olivier Le Bigot,⁷ Yi-Wei Liu,²¹ José A. M. Lopes,⁵ Livia Ludhova,¹¹ Cristina M. B. Monteiro,⁵ Françoise Mulhauser,¹¹ Toblas Nebel,¹ Paul Rabinowitz,²¹ Joaquim M. F. dos Santos,⁵ Lukas A. Schaller,¹² Catherine Schwob,⁵ David Taqqu,³³ João F. C. A. Veisos,⁵ Jan Vogatang,¹ Randol Pohl¹

STRATEGY OF THE EVALUATION

• Split the integral

$$I = \int_0^\infty dq... \equiv I_{<} + I_{>} \equiv \int_0^{q_0} dq... + \int_{q_0}^\infty dq...$$

• Low momentum

$$\left(G_E(q^2)\right)^2 \simeq 1 - \frac{R_E^2}{3}q^2 + C^{\operatorname{dip}}(1\pm 1)q^4$$

• High momentum

$$I_{3>}^{\rm E} = \int_{q_0}^{\infty} \frac{dq}{q^4} \left(G_E(q^2) \right)^2 - \frac{1}{3q_0^3} + \frac{1}{3} \frac{R_E^2}{q_0}$$

$$\delta I_{3>}^{\rm E} = \frac{1}{3q_0^3} \frac{2\delta G_E(q_0^2)}{G_E(q_0^2)} \left(G_{\rm dip}(q_0^2)\right)^2$$

• Minimization of the uncertainty

LOW MOMENTUM CONTRIBUTION

• The integrand involves a substantial cancelation

$$I_{3}^{\rm E} \equiv \int_{0}^{\infty} \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G'_E(0) q^2 \right]$$

• The low-momentum approximation

$$\left(G_E(q^2)\right)^2 \simeq 1 - \frac{R_E^2}{3}q^2 + C^{\operatorname{dip}}(1 \pm 1)q^4$$

• The result:

$$I_{3<}^{\rm E} = 10\,(1\pm1)\,\frac{q_0}{\Lambda^4}$$

LOW MOMENTUM CONTRIBUTION

• The integrand involves a substantial cancelation

$$I_{3}^{\rm E} \equiv \int_{0}^{\infty} \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G'_E(0) q^2 \right]$$

o The low-momentum approximation

HIGH MOMENTUM CONTRIBUTION

• The integral

$$I_{3>}^{\rm E} = \int_{q_0}^{\infty} \frac{dq}{q^4} \left(G_E(q^2) \right)^2 - \frac{1}{3q_0^3} + \frac{1}{3} \frac{R_E^2}{q_0}$$

• The central value is the median of a few empiric fits

• The uncertainty

$$\delta I_{3>}^{\rm E} = \frac{1}{3q_0^3} \frac{2\delta G_E(q_0^2)}{G_E(q_0^2)} \left(G_{\rm dip}(q_0^2)\right)^2$$

 $\delta G_E(q_0^2)/G_E(q_0^2)\simeq 1\%$

THE EMPIRIC FITS: SHAPE

 $\Delta G/G$

• Chain fraction

• Padé approximation

- [9] J.J. Kelly, Phys. Rev. C 70, 068202 (2004).
- [10] J. Arrington and I. Sick, Phys. Rev. C76, 035201 (2007). [11] J. Arrington, W. Melnitchouk, and J.A. Tjon, Phys. Rev.
- [12] W.M. Alberico, S.M. Bilenky, C. Guinti, and K.M. Graczyk, Phys. Rev. C79, 065204 (2009).
- [13] S. Venkat, J. Arrington, G.A. Miller and X. Zhan, Phys. Rev. C83, 015203 (2011).

$$\tau = q^2 / 4m_p^2$$

THE EMPIRIC FITS: PARAMETERS

fit	ref.	type	R_E [fm]	$C \; [\text{GeV}^{-4}]$
(A1)	[10]	chain fraction	0.90	34.3
(A2)	[10]	chain fraction	0.90	35.3
(A3)	[9]	Padé approximation (q^2)	0.86	28.0
(A4)	[11]	Padé approximation (q^2)	0.88	31.1
(A5)	[12]	Padé approximation (q^2)	0.87	28.2
(A6)	[13]	Padé approximation (q^2)	0.88	31.3

$$C = 19.8 \text{ GeV}^{-4}$$

SCATTER, UNCERTAINTY AND THE BOSTED'S FIT (1995)

q_0/Λ	q_0	$\delta I_{3<}^{\rm E}/I_3^{\rm dip}$	$\delta(I_{3>}^{\mathrm{E}} - I_{3}^{\mathrm{R}})/I_{3}^{\mathrm{dip}}$	total	scatter
0.10	$0.084 { m ~GeV}$	9.7%	62%	63%	11%
0.15	$0.126~{\rm GeV}$	14.6%	17.5%	22.3%	5.5%
0.20	$0.169~{\rm GeV}$	19.4%	6.9%	20.6%	3.0%
0.25	$0.211~{\rm GeV}$	24.2%	3.2%	24.4%	1.7%
0.30	$0.253~{ m GeV}$	29.1%	1.7%	29.2%	0.9%
0.40	$0.337~{\rm GeV}$	38.8%	0.6%	38.8%	0.3%

SCATTER, UNCERTAINTY AND THE BOSTED'S FIT (1995)

q_0/Λ	$I_3^{\rm E} - I_3^{\rm R}$	scatter of $I_{3>}^{\rm E}$	scatter [*] of $I_{3>}^{\rm E}$		
0.10	$-57(11) \mathrm{GeV}^{-3}$	$2.0 \ \mathrm{GeV}^{-3}$	$18 \ \mathrm{GeV}^{-3}$		
0.15	$-30.8(3.9) \mathrm{GeV}^{-3}$	$1.0 \ \mathrm{GeV}^{-3}$	$5.0 \ \mathrm{GeV}^{-3}$		
0.20	$-18.0(3.5) \mathrm{GeV^{-3}}$	$0.5 \ \mathrm{GeV}^{-3}$	$1.7 \ \mathrm{GeV}^{-3}$		
0.25	$-10.4(4.2) \mathrm{GeV^{-3}}$	$0.3 \ \mathrm{GeV}^{-3}$	$0.6 \ \mathrm{GeV}^{-3}$		
0.30	$-5.4(5.0) \mathrm{GeV^{-3}}$	$0.2 \ \mathrm{GeV}^{-3}$	$0.2 \ \mathrm{GeV}^{-3}$		
0.40	$+0.9(6.7) \mathrm{GeV^{-3}}$	$0.06~{\rm GeV^{-3}}$	$0.06 { m ~GeV^{-3}}$		
$C_{-}(a^2) = 1$					
$G_E(q^{-}) = \frac{1}{1 + 0.62Q + 0.68Q^2 + 2.8Q^3 + 0.83Q^4}$					

 $G'(0) = \infty$ (the fit was designed only for medium q)

STRATEGY: THE CENTRAL VALUE AND THE UNCERTAINTY

• The central value

- Low-momentum part
 Dipole value for G"(0)
 G'(0) is adjustable
- High-momentum part
 - \circ empiric fits with somewhat different $R_{\rm E}$ and G"(0)
 - the median

• The uncertainty

- Low-momentum part
 100% uncertainty
- High-momentum part
 1% uncertainty due to integration around q₀
 - that is larger than the scatter

MINIMIZATION OF THE UNCERTAINTY

• The uncertainty is modeled with a smooth simple function and we find its minimum

DETERMINATION OF THE CHARGE RADIUS

• Extraction equation

$$(R_E)^2 - (R_E^0)^2 = \frac{1}{\left[1 - \frac{8(Z\alpha)}{\pi}\frac{m_r}{q_0}\right]} \left[\frac{8(Z\alpha)}{\pi}\frac{m_r}{q_0}(R_E^0)^2 + \frac{24(Z\alpha)m_r}{\pi}\left(I_3^{\text{E-R}} - I_3^0\right)\right]$$

$$I_{3}^{\mathrm{E-R}} = \int_{0}^{q_{0}} \frac{dq}{q^{4}} \left[\left(G_{E}(q^{2}) \right)^{2} - 1 - 2G'_{E}(0) q^{2} \right] + \int_{q_{0}}^{\infty} \frac{dq}{q^{4}} \left[\left(G_{E}(q^{2}) \right)^{2} - 1 \right]$$

• Results

Ref.	R_E^0 [fm]	$I_3^0 [{ m GeV}^{-3}]$	$R_E - R_E^0$ [fm]	R_E [fm]
[1]	0.841 84(67)	19.25	-0.000 19(43)	0.841 65(79)
[2]	0.840 87(39)	22.9(1.2)	-0.000 65(43)(15)	0.840 22(56)

DETERMINATION OF THE CHARGE RADIUS

• Extraction equation

$$(R_E)^2 - (R_E^0)^2 = \frac{1}{\left[1 - \frac{8(Z\alpha)}{\pi}\frac{m_r}{q_0}\right]} \left[\frac{8(Z\alpha)}{\pi}\frac{m_r}{q_0}(R_E^0)^2 + \frac{24(Z\alpha)m_r}{\pi}\left(I_3^{\text{E-R}} - I_3^0\right)\right]$$

$$I_{3}^{\mathrm{E-R}} = \int_{0}^{q_{0}} \frac{dq}{q^{4}} \left[\left(G_{E}(q^{2}) \right)^{2} - 1 - 2G'_{E}(0) q^{2} \right] + \int_{q_{0}}^{\infty} \frac{dq}{q^{4}} \left[\left(G_{E}(q^{2}) \right)^{2} - 1 \right]$$

• Results

Ref.	R_E^0 [fm]	$I_3^0 [{ m GeV}^{-3}]$	$R_E - R_E^0$ [fm]	R_E [fm]
[1]	0.841 84(67)	19.25	-0.009 19(43)	0.841 65(79)
[2]	0.840 87(39)	22.9(1.2)	-0.000 65(43)(15)	0.840 12(56)

DEPENDENCE ON Q_0

• Plot for scientific extraction

DEPENDENCE ON Q_0

CONTINUITY OF THE FORM FACTOR:

o Low momentum (R_E is extracted from μH)

• High momentum (the median)

CONTINUITY OF THE FORM FACTOR: *A POSTERIORI*

o Low momentum (R_E is extracted from μH)

 $G_E^2(q^2) = 1 - \frac{R_E^2 q^2}{3} + Cq^4$

MAGNETIC RADIUS OF THE PROTON: THE STRATEGY

• Zemach correction

$$I_1^{\rm EM} \equiv \int_0^\infty \frac{dq}{q^2} \left[\frac{G_E(q^2)G_M(q^2)}{\mu_p} - 1 \right]$$

• Low-momentum part

$$\frac{G_{E}(q^{2})G_{M}(q^{2})}{\mu_{p}} \simeq 1 - \frac{R_{E}^{2} + R_{M}^{2}}{6}q^{2} + C^{\text{dip}}(1 \pm 1)q^{4}$$

$$I_{1<} = -\frac{R_{E}^{2} + R_{M}^{2}}{6}q_{0} + \frac{10}{3}(1 \pm 1)\frac{q_{0}^{3}}{\Lambda^{4}}$$
o High-momentum part
$$I_{1>} = \int_{q_{0}}^{\infty} \frac{dq}{q^{2}} \frac{G_{E}(q^{2})G_{M}(q^{2})}{\mu_{p}} - \frac{1}{q_{0}}$$

$$\delta I_{1>}^{\text{EM}} = \left[\frac{\delta G_{E}(q_{0}^{2})}{G_{E}(q_{0}^{2})} + \frac{\delta G_{M}(q_{0}^{2})}{G_{M}(q_{0}^{2})}\right] \frac{\left(G_{\text{dip}}(q_{0}^{2})\right)^{2}}{q_{0}}$$

MAGNETIC RADIUS OF THE PROTON: THE CONSTRAINTS

• Extraction equation

$$R_E^2 + R_M^2 = -\frac{6}{q_0} \left(I_1^{\exp} - I_1^{\text{EM-R}} \right)$$

$$I_1^{\text{EM-R}} = \int_0^{q_0} \frac{dq}{q^2} \left[\frac{G_E(q^2)G_M(q^2)}{\mu_p} - 1 - \left(G'_E(0) + \frac{G'_M(0)}{\mu_p} \right) q^2 \right] + \int_{q_0}^{\infty} \frac{dq}{q^2} \left[\frac{G_E(q^2)G_M(q^2)}{\mu_p} - 1 \right]$$

o Data

Atom	State	I_1^{\exp}	$\delta I_1/I_1$
Н	1 <i>s</i>	$-4.17(6) \mathrm{GeV^{-1}}$	1.5%
μH	2 <i>s</i>	$-4.31(15)\mathrm{GeV}^{-1}$	3.4%

MAGNETIC RADIUS OF THE PROTON: THE RESULTS

