locality and multi-level sampling of hadronic correlators

Marco Cè

Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz

Scattering Amplitudes and Resonance Properties from Lattice QCD Mainz Institute for Theoretical Physics, 30th August 2018

references

based on work with L. Giusti and S. Schaefer

- Phys. Rev. D 93 (2016) 094507 [arXiv:1601.04587]
- PoS(LATTICE2016)263 [arXiv:1612.06424]
- Phys. Rev. D 95 (2017) 034503 [arXiv:1609.02419]
- EPJ Web Conf. 175 (2018) 01003 [arXiv:1710.09212]
- EPJ Web Conf. 175 (2018) 11005 [arXiv:1711.01592]

and ongoing work, not discussed in this talk

motivations

fermions in Monte Carlo simulations

the path integral of Euclidean, lattice-regulated QCD

$$\mathcal{Z} = \int \mathcal{D}[U, \psi, \bar{\psi}] \exp\left\{-S_{g}[U] - \int d^{4}x \,\bar{\psi} D\psi\right\}$$

to apply Monte Carlo methods, fermions are integrated out analytically

$$\mathcal{Z} = \int \mathcal{D}[U] \det D \exp\{-S_{g}[U]\}$$

with det *D* typically simulated with pseudofermions

[Weingarten 1981]

$$\det\{D^{\dagger}D\} \sim \int \mathcal{D}[\phi, \phi^{\dagger}] \exp\left\{-\int d^{4}x \left|D^{-1}\phi\right|^{2}\right\}$$

and Wick's theorem applies to fermionic observables, e.g.

 $\left\langle [\bar{\psi}\gamma_5\psi](x)[\bar{\psi}\gamma_5\psi](0)\right\rangle_{U,\psi,\bar{\psi}} = \left\langle D^{-1}(0,x)\gamma_5D^{-1}(x,0)\gamma_5\right\rangle_U$

\Rightarrow locality is not manifest

- the fermion determinant det D is a non-local functional of the gauge field U
- fermion propagators D^{-1} are non-local functionals of the gauge field U

fermions in Monte Carlo simulations

in the non-singlet pseudoscalar meson sector ($P(x) = [\bar{\psi}\gamma_5\psi](x)$)

$$\sum_{\vec{x}} \langle P(x)P(0) \rangle \sim \mathrm{e}^{-M_{\pi} |x_0|} \qquad \text{for } x_0 \to \infty$$

while the variance behaves like a $\pi\pi$ state

$$\sigma_{PP}^2 = \sum_{\vec{x}, \vec{y}} \langle P(x)P(0)P(y)P(0) \rangle - \left[\sum_{\vec{x}} \langle P(x)P(0) \rangle \right]^2 \sim e^{-2M_{\pi} |x_0|}$$

 \Rightarrow special rôle of pions: no signal-to-noise ratio (*S*/*N*) problem compare e.g. correlators of gluon operators, or Wilson loops, that have constant variance with distance

⇒ the quark propagator decays with distance on every single gauge configuration [Parisi 1984]

$$\|D^{-1}\|(x,0) = [D^{\dagger - 1}D^{-1}]^{1/2}(x,0) \sim e^{-M_{\pi}/2|x|}$$

fermions in Monte Carlo simulations

still, S/N problem in other fermionic observables

[Parisi 1984; Lepage 1989]

- pseudoscalar mesons with non-zero momentum
- vector current correlator, e.g. g 2 hadronic vacuum polarization computation
- flavour-singlet mesons: the variance of disconnected contributions is not suppressed with distance
- nucleon propagator: $S/N \sim \exp\{-[M_N \frac{3}{2}M_\pi]|x_0|\}$ \Rightarrow worsening towards physical pion masses \Rightarrow connection to sign problem at positive baryon chemical potential
- heavy-light mesons

solution for bosonic theories: multi-level Monte Carlo integration

[Parisi, Petronzio, Rapuano 1983; Lüscher, Weisz 2001; Meyer 2003; Giusti, Della Morte 2008, 2010] with fermions, giving up manifest locality

 \Rightarrow multi-level method are not straightforward to apply

introduced for bosonic theories as the multihit algorithm [Parisi, Petronzio, Rapuano 1983] then generalized as the multi-level algorithm [Lüscher, Weisz 2001; Meyer 2003]

• domain decomposition of the lattice: thick time slices 0, 1, 2, ...

• factorization of the action $S_{a}[U] = S[U_0] + S[U_1] + S[U_2] + S[U_3] + \dots$

introduced for bosonic theories as the multihit algorithm [Parisi, Petronzio, Rapuano 1983] then generalized as the multi-level algorithm [Lüscher, Weisz 2001; Meyer 2003]

• domain decomposition of the lattice: thick time slices 0, 1, 2, ...

• factorization of the action $S_{\alpha}[U] = S[U_0] + S[U_1] + S[U_2] + S[U_3] + \dots$

• factorization of $W(\mathcal{C}) = \mathbb{L}[U_0]\mathbb{T}[U_1]\mathbb{T}[U_2]\mathbb{L}[U_3]$

 $\left\langle W(\mathcal{C})\right\rangle = \left\langle \ \mathbb{L} \quad \mathbb{T} \quad \mathbb{T} \quad \mathbb{L} \quad \right\rangle$

introduced for bosonic theories as the multihit algorithm [Parisi, Petronzio, Rapuano 1983] then generalized as the multi-level algorithm [Lüscher, Weisz 2001; Meyer 2003]

• domain decomposition of the lattice: thick time slices 0, 1, 2, ...

• factorization of the action $S_{\mathfrak{q}}[U] = S[U_0] + S[U_1] + S[U_2] + S[U_3] + \dots$

• factorization of $W(\mathcal{C}) = \mathbb{L}[U_0]\mathbb{T}[U_1]\mathbb{T}[U_2]\mathbb{L}[U_3]$

 $\left\langle W(\mathcal{C})\right\rangle = \left\langle [\mathbb{L}]_0[\mathbb{T}]_1[\mathbb{T}]_2[\mathbb{L}]_3\right\rangle$

n₁ level-1 Monte Carlo updates and average [·]_i in thick time slice i

- at level-0 the whole lattice is sampled \Rightarrow standard MC average
- level-1 average

$$[\mathbb{T}]_i \sim \exp\{-\sigma_1 L T_i\}, \quad \sigma_{\mathbb{T}}^2 = \mathcal{O}(1/n_1)$$

- the more the Wilson loop extends, the more independent thick time slices contribute to the averaging
- exponential noise reduction with larger Wilson loops
 - \Rightarrow with the right setup, the *S*/*N* problem is solved

however, locality of the action and of the observables is assumed but in the theory with fermions, locality is not manifest ⇒ no straightforward application

$$C_{\Gamma}(y_0, x_0) = x_0 \bigvee y_0$$

number of samples n_1

 $= n_1$

nι

6

number of samples $n_1 \cdot n_1 \cdot n_1 = n_1^3$

$$C_{\Gamma}(y_0, x_0) = x_0$$

number of samples $n_1 \cdot n_1 \cdot n_1 \cdot n_1 = n_1^4$ \Rightarrow the error is reduced with distance exponentially

$$\sigma_{C_{\Gamma}} \sim (n_1^{-1/2})^{\frac{|x_0-y_0|}{4}} e^{-M_{\pi}|x_0-y_0|} = e^{-(M_{\pi} + \frac{\ln n_1}{24})|x_0-y_0|}$$

• only up to the extent that there is a S/N problem

how? we need a factorization at the block level of

- det *D*, the quark determinant
- D^{-1} , the quark propagator

locality of the Dirac operator

using the LDU block-decomposition the (Wilson-)Dirac operator

$$D = \begin{pmatrix} D_0 & D_{01} \\ D_{10} & D_1 \end{pmatrix} = \begin{pmatrix} \mathbb{1} & \\ D_{10}D_0^{-1} & \mathbb{1} \end{pmatrix} \begin{pmatrix} D_0 & \\ & D/D_0 \end{pmatrix} \begin{pmatrix} \mathbb{1} & D_0^{-1}D_{01} \\ & \mathbb{1} \end{pmatrix}$$

- ultralocal operator \Rightarrow D_{01} , D_{10} are supported on the boundaries
- $D/D_0 = D_1 D_{10}D_0^{-1}D_{01}$ is the Schur complement of the block D_0 the inverse is block-decomposed in

$$D^{-1} = \begin{pmatrix} D_0^{-1} - D_0^{-1} D_{01} [D/D_0]^{-1} D_{10} D_0^{-1} & -D_0^{-1} D_{01} [D/D_0]^{-1} \\ -[D/D_0]^{-1} D_{10} D_0^{-1} & [D/D_0]^{-1} \end{pmatrix}$$

note: the inverse of D/D_0 is a block in the inverse of D

$$[D/D_0]^{-1} = P_1 D^{-1} P_1$$

$$\begin{array}{c}
x \longrightarrow y \\
0 & 1 \\
D^{-1} = \begin{pmatrix} D_0^{-1} - D_0^{-1} D_{01} D^{-1} D_{10} D_0^{-1} & -D_0^{-1} D_{01} D^{-1} P_1 \\
-P_1 D^{-1} D_{10} D_0^{-1} & P_1 D^{-1} P_1 \end{pmatrix}$$

two cases:

1. source x and sink y inside region $0 \Rightarrow$ disconnected contributions

 $\overline{D^{-1}(y,x)} = \overline{D_0^{-1}(y,x)} - \sum_{z,w \in \partial o} \left[\overline{D_0^{-1}} \overline{D_{01}} \right](y,z) \overline{D^{-1}(z,w)} \left[\overline{D_{10}} \overline{D_0^{-1}} \right](w,x)$

$$D^{-1} = \begin{pmatrix} D_0^{-1} - D_0^{-1} D_{01} D^{-1} D_{10} D_0^{-1} & -D_0^{-1} D_{01} D^{-1} P_1 \\ -P_1 D^{-1} D_{10} D_0^{-1} & P_1 D^{-1} P_1 \end{pmatrix}$$

two cases:

1. source x and sink y inside region $0 \Rightarrow$ disconnected contributions

$$D^{-1}(y,x) = D_0^{-1}(y,x) - \sum_{z,w \in \partial o} \left[D_0^{-1} D_{01} \right](y,z) D^{-1}(z,w) \left[D_{10} D_0^{-1} \right](w,x)$$

2. source x in region 0, sink y in region 1

$$D^{-1}(y,x) = -\sum_{z \in \partial o} D^{-1}(y,z) \left[D_{10} D_0^{-1} \right](z,x)$$

$$D^{-1}(y,x) = -\sum_{z \in \partial 1} D^{-1}(y,z) \left[D_{1b} D_{\bar{0}}^{-1} \right] (z,x)$$

or equivalently

$$D^{-1}(y,x) = -\sum_{z \in \partial 1} D_{\bar{1}}^{-1} \left[1 - w^{\dagger} \right]^{-1} (y,z) \left[D_{1b} D_{\bar{0}}^{-1} \right] (z,x)$$

• overlapping regions: $\overline{0} = 0 \cup b$, $\overline{1} = 1 \cup b$ • $w = D_{\overline{1}}^{-1} D_{b0} D_{\overline{0}}^{-1} D_{b1}$ is 'small', $\mathcal{O}(e^{-M_{\pi} ||b||})$ [Phys. Rev. D 95 (2017) 034503] \Rightarrow the Neumann series converges

$$D^{-1}(y,x) = -\sum_{z \in \partial 1} D^{-1}(y,z) \left[D_{1b} D_{\bar{0}}^{-1} \right] (z,x)$$

or equivalently

$$D^{-1}(y,x) = -\sum_{z \in \partial 1} D_{\bar{1}}^{-1} \left[\mathbb{1} - w^{\dagger} \right]^{-1} (y,z) \left[D_{1b} D_{\bar{0}}^{-1} \right] (z,x)$$

- overlapping regions: $\overline{0} = 0 \cup b$, $\overline{1} = 1 \cup b$
- $w = D_{\overline{1}}^{-1} D_{b0} D_{\overline{0}}^{-1} D_{b1}$ is 'small', $\mathcal{O}(e^{-M_{\pi} ||b||})$ [Phys. Rev. D 95 (2017) 034503] \Rightarrow the Neumann series converges
- the first term is completely factorized

$$D^{-1}(y,x) \approx -\sum_{z \in \partial o} D_{\bar{1}}^{-1}(y,z) \Big[D_{1b} D_{\bar{0}}^{-1} \Big](z,x)$$

the extension to multiple regions is straightforward

the extension to multiple regions is straightforward

the extension to multiple regions is straightforward

hadronic propagator factorization, implementation

$$C_{\Gamma}(y_0, x_0) \approx \operatorname{tr}\left\{\xi^{\dagger} D_{\overline{1}}^{-1}(\cdot, y_0) \gamma_5 \Gamma D_{\overline{1}}^{-1}(y_0, \cdot) \eta\right\}$$

 $\eta^{\dagger} D_{1b} D_{\bar{0}}^{-1}(\cdot, x_0) \Gamma \gamma_5 D_{\bar{0}}^{-1} D_{b1}(x_0, \cdot) \xi \bigg\}$

⇒ quark line 'cutting' successful factorization obtained with

[Phys. Rev. D 93 (2016) 094507]

- inverse iteration vectors of the Dirac operator in region b
- local deflation subspace (from openQCD)

bad volume scaling \Rightarrow possibly expensive, further studies needed **note:** the (small) bias introduced by any approximation is corrected at level 0

alternative strategy: A. Nada, Lattice 2018 talk

numerical tests

test the multi-level in the quenched theory

⇒ trivial factorization of the action, negligible generation cost with 64 × 24³, OBCs in time, $a \approx 0.093$ fm, $aM_{\pi} \approx 0.216$

[Phys. Rev. D 93 (2016) 094507]

 $n_0 = 50$ global updates and $n_1 = 30$ independent updates of two regions

region $0 = \{x : x_0 \in (0, 15)\}$ region $1 = \{x : x_0 \in (24, T)\}$

while gauge links in region $b = \{x : x_0 \in (16, 23)\}$ are frozen

pseudoscalar correlator with $p^2 = 2$

- $n_0 = 50, n_1 = 30$
- stochastic 3*d*-volume sources on time-slice x₀ = 8*a* ∈ region 0
- S/N decaying with $\sqrt{M_{\pi}^2 + p^2} - M_{\pi} \approx 0.213/a$
- single level average
 ⇒ standard reduction of variance
 ∝ 1/n₁

pseudoscalar correlator with $p^2 = 2$

- $n_0 = 50, n_1 = 30$
- stochastic 3*d*-volume sources on time-slice x₀ = 8*a* ∈ region 0
- S/N decaying with $\sqrt{M_{\pi}^2 + p^2} - M_{\pi} \approx 0.213/a$
- single level average
 ⇒ standard reduction of variance
 ∝ 1/n₁
- two levels average \Rightarrow improved variance reduction, $\propto 1/n_1^2$ for $y_0 \in$ region 1

vector correlator

- $n_0 = 50, n_1 = 30$
- stochastic 3*d*-volume sources on time-slice x₀ = 8*a* ∈ region 0
- S/N decaying with

 $M_{\rho} - M_{\pi} \approx 0.170/a$

single level average
 ⇒ standard reduction of variance
 ∝ 1/n₁

vector correlator

- $n_0 = 50, n_1 = 30$
- stochastic 3*d*-volume sources on time-slice x₀ = 8*a* ∈ region 0
- S/N decaying with

 $M_{
ho} - M_{\pi} \approx 0.170/a$

- single level average
 ⇒ standard reduction of variance
 ∝ 1/n₁
- two levels average \Rightarrow improved variance reduction, $\propto 1/n_1^2$ for $y_0 \in$ region 1

conclusions

using the locality of the Dirac operator and the fast decrease of its inverse

- hadronic propagator factorization, including disconnected contributions
- determinant factorization
 ⇒ multiboson domain-decomposed HMC algorithm
- gradient flow observables

[García Vera, Schaefer 2016]

- the theory is 'local enough' for multi-level methods to be applied
 - exponential increase in S/N w.r.t. standard techniques

having a local formulation has implications beyond S/N and multi-level methods

- factorization in space domains
- 'master field' simulations

[Lüscher 2017]

reduced communications on parallel computers

thanks for your attention!

questions?

backup

factorization of fermion determinant

locality at the level of a single gauge link is not needed it is enough to be able to update extended regions of the lattice independently

[Phys. Rev. D 95 (2017) 034503, EPJ Web Conf. 175 (2018) 11005]

given a decomposition in multiple thick time slices, using that $\|D^{-1}(x,0)\| \sim e^{-M_{\pi}|x|/2}$ on every gauge configuration

we can factorize the gauge-link dependence of the determinant of $Q = \gamma_5 D$

with a combination of two main ideas

- domain decomposition
- multiboson algorithm

[Lüscher 2003, 2004]

[Lüscher 1993; Boriçi, de Forcrand 1995; Jegerlehner 1995]

the original multiboson algorithm

lattice QCD realized as the limit of local bosonic theory

[Lüscher 1993]

define a polynomial approximation of 1/z in a suitable range

$$P_N(z) = \frac{1 - R_{N+1}(z)}{z} = c_N \prod_{k=1}^{N/2} (z - z_k)(z - z_k^*) \xrightarrow{N \to \infty} 1/z$$

• approximate $det\{1/Q^2\}$ with the polynomial

$$(z_k^{1/2} = \mu_k + \mathrm{i}\nu_k)$$

$$\det Q^2 \sim \prod_{k=1}^{N/2} \det \left\{ (Q^2 - z_k)(Q^2 - z_k^*) \right\}^{-1} = \prod_{k=1}^N \det \left\{ (Q - \mu_k)^2 + \nu_k^2 \right\}^{-1}$$

• represents it with N bosonic field $\phi = \{\phi_1, \dots, \phi_N\}$, i.e. multibosons

$$\det Q^2 \sim \int \mathcal{D}\left[\phi, \phi^{\dagger}\right] \exp\left\{-\sum_{k=1}^N \int \mathrm{d}^4 x \left|(Q-\mu_k)\phi_k\right|^2 + v_k^2 \left|\phi_k\right|^2\right\}$$

problem: N depends on the condition number of Q^2 , $\simeq (8/am)^2$ with lighter quarks and finer lattices, the number of multiboson fields grows \Rightarrow the system becomes stiff and autocorrelation grows $\propto N$ \Rightarrow not currently in use

Marco Cè – HIM, JGU, Mainz

domain decomposition of fermion determinant

to obtain a theory that is local at the block level

Phys. Rev. D 95 (2017) 034503, EPJ Web Conf. 175 (2018) 11005]

consider a decomposition in active (colored) and buffer (grey) thick time slices, the determinant of the hermitian Wilson–Dirac operator $Q = \gamma_5 D$

$$\det Q = \frac{\det\{1-w\}}{\prod_a \det\{P_a Q_{\bar{a}}^{-1} P_a\} \prod_b \det Q_b^{-1}}$$

where $Q_{\bar{a}}$ spans the two b regions next to a

domain decomposition of fermion determinant

to obtain a theory that is local at the block level

[Phys. Rev. D 95 (2017) 034503, EPJ Web Conf. 175 (2018) 11005]

consider a decomposition in active (colored) and buffer (grey) thick time slices, the determinant of the hermitian Wilson–Dirac operator $Q = \gamma_5 D$

$$\det Q = \frac{\det\{1-w\}}{\prod_a \det\{P_a Q_{\bar{a}}^{-1} P_a\} \prod_b \det Q_b^{-1}}$$

where $Q_{\bar{a}}$ spans the two *b* regions next to *a* and the operator *w* lives on the internal boundaries of the active regions

neglecting the small 1 - w,

we can already update different thick time slices independently

consider a decomposition in thick time slices

- active regions (colored, *a*)
- inactive buffers (grey, b)

LDU block-decompose the hermitian Dirac operator $Q = \gamma_5 D$

$$Q = \begin{pmatrix} Q_b & Q_{ba} \\ Q_{ab} & Q_a \end{pmatrix} = \begin{pmatrix} \mathbb{1} & \\ Q_{ab}Q_b^{-1} & \mathbb{1} \end{pmatrix} \begin{pmatrix} Q_b & \\ & S_a \end{pmatrix} \begin{pmatrix} \mathbb{1} & Q_b^{-1}Q_{ba} \\ & \mathbb{1} \end{pmatrix}$$

where $S_a = Q_a - Q_{ab}Q_b^{-1}Q_{ba}$ is the Schur complement of the block Q_b^{-1}

 $\det Q = \det S_a \cdot \det Q_b$

note: the inverse of S_a is in the block-inverse of Q, i.e. $S_a^{-1} = P_a Q^{-1} P_a$

$$Q^{-1} = \begin{pmatrix} Q_b^{-1} - Q_b^{-1} Q_{ba} S_a^{-1} Q_{ab} Q_b^{-1} & -Q_b^{-1} Q_{ba} S_a^{-1} \\ -S_a^{-1} Q_{ab} Q_b^{-1} & S_a^{-1} \end{pmatrix}$$

a b a b a b a a det
$$Q = \frac{1}{\det S_a^{-1} \cdot \det Q_b^{-1}}$$

what does S_a look like?

 $S_a = \overline{Q_a - Q_{ab}Q_b^{-1}Q_{ba}}$

$$e \quad b \quad o \quad b \quad e \quad b \quad o$$
$$\det Q = \frac{1}{\det S_a^{-1} \cdot \det Q_b^{-1}}$$
$$\det \text{ does } S_a \text{ look like?}$$
$$S_a = \left(\overbrace{Q_e - Q_{eb}Q_b^{-1}Q_{be}}^{S_e} \\ -Q_{ob}Q_b^{-1}Q_{be}}^{-Q_{ob}Q_b^{-1}Q_{be}} \\ \underbrace{Q_o - Q_{ob}Q_b^{-1}Q_{bo}}_{S_o} \\ \underbrace{Q_o - Q_{ob}Q_b^{-1}Q_{bo}}_{S_o} \right)$$

• partition active regions between even ones (e) and odd ones (o)

wha

$$e \quad b \quad o \quad b \quad e \quad b \quad o$$
$$\det Q = \frac{\det \tilde{W}}{\det S_e^{-1} \cdot \det S_o^{-1} \cdot \det Q_b^{-1}}$$

what does S_a look like?

$$S_{a} = \begin{pmatrix} S_{e}^{-1} & \\ & S_{o}^{-1} \end{pmatrix}^{-1} \underbrace{\begin{pmatrix} \mathbb{1} & -S_{e}^{-1}Q_{eb}Q_{b}^{-1}Q_{bo} \\ -S_{o}^{-1}Q_{ob}Q_{b}^{-1}Q_{bc} & \mathbb{1} \end{pmatrix}}_{\mathbf{W}}$$

• partition active regions between even ones (e) and odd ones (o)

• precondition with $ext{diag}ig\{S_e^{-1},S_o^{-1}ig\}$

$$e \qquad b \qquad o \qquad b \qquad e \qquad b \qquad o$$
$$\det Q = \frac{\det \widetilde{W}}{\det \{P_e Q_{\widetilde{e}}^{-1} P_e\} \cdot \det \{P_o Q_{\widetilde{o}}^{-1} P_o\} \cdot \det Q_b^{-1}\}}$$

what does S_a look like?

$$S_{a} = \begin{pmatrix} P_{e}Q_{\bar{e}}^{-1}P_{e} & \\ & P_{o}Q_{\bar{o}}^{-1}P_{o} \end{pmatrix}^{-1} \underbrace{\begin{pmatrix} \mathbb{1} & P_{e}Q_{\bar{e}}^{-1}Q_{bo} \\ & P_{o}Q_{\bar{o}}^{-1}Q_{be} & \mathbb{1} \end{pmatrix}}_{W}$$

- partition active regions between even ones (e) and odd ones (o)
- precondition with $\operatorname{diag}\left\{S_e^{-1}, S_o^{-1}\right\}$
- use the property of the Schur complement

$$\det Q = \frac{\det\{1 - w\}}{\det\{P_e Q_{\bar{e}}^{-1} P_e\} \cdot \det\{P_o Q_{\bar{o}}^{-1} P_o\} \cdot \det Q_b^{-1}}$$

what does S_a look like?

$$S_{a} = \begin{pmatrix} P_{e}Q_{\bar{e}}^{-1}P_{e} & \\ & P_{o}Q_{\bar{o}}^{-1}P_{o} \end{pmatrix}^{-1} \underbrace{\begin{pmatrix} \mathbb{1} & P_{e}Q_{\bar{e}}^{-1}Q_{bo} \\ & P_{o}Q_{\bar{o}}^{-1}Q_{be} & \mathbb{1} \end{pmatrix}}_{W}$$

- partition active regions between even ones (e) and odd ones (o)
- precondition with $ext{diag}ig\{S_e^{-1},S_o^{-1}ig\}$
- use the property of the Schur complement
- det $\tilde{W} = \det\left\{\mathbbm{1} \mathbbm{P}_{\partial e} Q_{\bar{e}}^{-1} Q_{bo} \mathbbm{P}_{\partial o} Q_{\bar{o}}^{-1} Q_{be}\right\} = \det\{\mathbbm{1} w\}$

 $\det Q = \frac{\det\{1-w\}}{\det\{P_e Q_{\bar{e}}^{-1} P_e\} \cdot \det\{P_o Q_{\bar{o}}^{-1} P_o\} \cdot \det Q_b^{-1}}$

٧

 $\det Q = \frac{\det\{1-w\}}{\det\{P_e Q_{\bar{e}}^{-1} P_e\} \cdot \det\{P_o Q_{\bar{o}}^{-1} P_o\} \cdot \det Q_b^{-1}}$

vi

$$\det Q = \frac{\det\{\mathbb{I} = \mathcal{U}\}}{\det\{P_e Q_{\bar{e}}^{-1} P_e\} \cdot \det\{P_o Q_{\bar{o}}^{-1} P_o\} \cdot \det Q_b^{-1}}$$

$$\det Q = \frac{\det\{\mathbb{I} - w\}}{\det\{P_e Q_{\bar{e}}^{-1} P_e\} \cdot \det\{P_o Q_{\bar{o}}^{-1} P_o\} \cdot \det Q_b^{-1}}$$

vi

note: if the contribution of $det\{1 - w\}$ is small enough to be neglected we could already update different active regions independently

domain decomposition, comparison

yet another equivalent rewriting

 $\det Q = \det S_e \det S_o \det Q_b \det \left\{ \mathbb{1} - P_{\partial e} Q_{\bar{e}}^{-1} Q_{bo} P_{\partial o} Q_{\bar{o}}^{-1} Q_{be} \right\}$

cf. the original domain decomposition, e.g. in the DD-HMC algorithm

[Lüscher 2003, 2004]

$$\det Q = \det Q_e \det Q_o \det \left\{ \mathbb{1} - P_{\partial e} Q_e^{-1} Q_{eo} P_{\partial o} Q_o^{-1} Q_{oe} \right\}$$

there is no inactive buffer region b

 \Rightarrow the last factor has no reason to be small

 $Q^{-1}(x, y)$ on every gauge configuration decays ~ $e^{-M_{\pi}|x-y|/2}$ \Rightarrow the operator *w* is "small"

 $w = P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1} P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0}$ (or $P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0} P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1}$)

 $Q^{-1}(x, y)$ on every gauge configuration decays $\sim e^{-M_{\pi}|x-y|/2}$ \Rightarrow the operator *w* is "small"

$$w = P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1} P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0}$$

(or $P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0} P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1}$)

spectrum of *w*, with *b*-region thickness $\Delta = 8a$ ($N_{\rm f} = 2, a = 0.0652(6)$ fm, $M_{\pi} = 0.1454(5)/a = 440(5)$ MeV)

 $Q^{-1}(x, y)$ on every gauge configuration decays $\sim e^{-M_{\pi}|x-y|/2}$ \Rightarrow the operator *w* is "small"

$$w = P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1} P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0}$$

(or $P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0} P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1}$)

spectrum of *w*, with *b*-region thickness $\Delta = 12a$ ($N_{\rm f} = 2, a = 0.0652(6)$ fm, $M_{\pi} = 0.1454(5)/a = 440(5)$ MeV)

 $Q^{-1}(x, y)$ on every gauge configuration decays $\sim e^{-M_{\pi}|x-y|/2}$ \Rightarrow the operator *w* is "small"

$$w = P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1} P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0}$$

(or $P_{\partial 1} Q_{\bar{1}}^{-1} Q_{b0} P_{\partial 0} Q_{\bar{0}}^{-1} Q_{b1}$)

spectrum of *w*, with *b*-region thickness $\Delta = 16a$ ($N_{\rm f} = 2, a = 0.0652(6)$ fm, $M_{\pi} = 0.1454(5)/a = 440(5)$ MeV)

polynomial approximation

the condition number of 1 - w is $\epsilon \sim (1 + e^{-M_{\pi}\Delta})/(1 - e^{-M_{\pi}\Delta})$ $\Rightarrow \mathcal{O}(1)$, can be made arbitrarily close to 1 increasing Δ

polynomial approximation

the condition number of 1 - w is $\epsilon \sim (1 + e^{-M_{\pi}\Delta})/(1 - e^{-M_{\pi}\Delta})$ $\Rightarrow \mathcal{O}(1)$, can be made arbitrarily close to 1 increasing Δ complex multiboson representation [Lüscher 1993; Boriçi, de Forcrand 1995]

$$\frac{\det\left\{\mathbbm{1}-R_{N+1}(\mathbbm{1}-w)\right\}}{\det\{\mathbbm{1}-w\}} = \det\left\{P_N(\mathbbm{1}-w)\right\} = c_N \prod_{k=1}^{N/2} \det\left\{W_{\sqrt{1-z_k}}^{\dagger} W_{\sqrt{1-z_k}}\right\}$$

where N is an even integer and $P_N(z)$ is a polynomial approximation of 1/z

$$P_N(z) = \frac{1 - R_{N+1}(z)}{z} = c_N \prod_{k=1}^N (z - z_k) \xrightarrow{N \to \infty} 1/z$$

and

(note: det $\tilde{W} = \det W_1$)

$$W_{y} = \begin{pmatrix} y\mathbb{1} & P_{\partial e}Q_{\bar{e}}^{-1}Q_{be} \\ P_{\partial o}Q_{\bar{o}}^{-1}Q_{be} & y\mathbb{1} \end{pmatrix}$$

multiboson representation
two active regions,
$$N_{i} = 2$$
 theory:

$$\frac{\det Q^{2}}{\det \{1 - R_{N+1}(1 - w)\}^{2}} \sim \underbrace{\prod_{k=1}^{N} \det \left\{W_{\sqrt{1-z_{k}}}^{\dagger} W_{\sqrt{1-z_{k}}}\right\}^{-1}}_{\substack{\det Q_{b}^{-2} \cdot \det \left\{P_{0}Q_{\bar{0}}^{-1}P_{0}\right\}^{2} \cdot \det \left\{P_{1}Q_{\bar{1}}^{-1}P_{1}\right\}^{2}}_{pseudofermion fields (at least one per active region)}}$$

$$\sim \int \mathcal{D}[\phi_{0}, \phi_{0}^{\dagger}] e^{-\left|P_{0}Q_{\bar{0}}^{-1}\phi_{0}\right|^{2}} \cdot \int \mathcal{D}[\phi_{1}, \phi_{1}^{\dagger}] e^{-\left|P_{1}Q_{\bar{1}}^{-1}\phi_{1}\right|^{2}}_{\int \mathcal{D}[\phi_{b}, \phi_{b}^{\dagger}] e^{-\left|Q_{b}^{-1}\phi_{b}\right|^{2}} \cdot \prod_{k=1}^{N} \int \mathcal{D}[\chi_{k}, \chi_{k}^{\dagger}] e^{-\left|W_{\sqrt{1-z_{k}}}\chi_{k}\right|^{2}}$$

multiboson representation
we active regions,
$$N_{\rm f} = 2$$
 theory:

$$\frac{\det Q^2}{\det\{1 - R_{N+1}(1 - w)\}^2} \sim \underbrace{\prod_{k=1}^N \det\{W_{\sqrt{1-z_k}}^\dagger W_{\sqrt{1-z_k}}\}^{-1}}_{\substack{\det Q_b^{-2} \cdot \det\{P_0 Q_0^{-1} P_0\}^2 \cdot \det\{P_1 Q_1^{-1} P_1\}^2}}_{\substack{\det Q_b^{-2} \cdot \det\{P_0 Q_0^{-1} P_0\}^2 \cdot \det\{P_1 Q_1^{-1} P_1\}^2}}$$

$$\sim \int D[\phi_0, \phi_0^\dagger] e^{-|P_0 Q_0^{-1} \phi_0|^2} \cdot \int D[\phi_1, \phi_1^\dagger] e^{-|P_1 Q_1^{-1} \phi_1|^2}}_{\substack{\int D[\phi_b, \phi_b^\dagger]}} e^{-|Q_b^{-1} \phi_b|^2} \cdot \prod_{k=1}^N \int D[\chi_k, \chi_k^\dagger] e^{-|W_{\sqrt{1-z_k}} \chi_k|^2}$$

computation of HMC forces:

- ullet $|P_0 Q_{ar 0}^{-1} \phi_0|$ and $|W_{\sqrt{1-z_k}} \chi_k|$ depend on gauge links in region 0 (and b)
- $|P_1 Q_1^{-1} \phi_1|$ and $|W_{\sqrt{1-z_k}} \chi_k|$ depend on gauge links in region 1 (and *b*)
- $|W_{\sqrt{1-z_k}}\chi_k|$ forces do not mix the gauge-link dependence of active regions \Rightarrow the two active regions can be updated independently

determinant factorization, conclusions

separate spacetime regions can be updated independently in full QCD

we tested the algorithm in a two active regions, $N_{\rm f} = 2$ setup

- a = 0.0652(6) fm, $M_{\pi} = 0.1454(5)/a = 440(5)$ MeV, OBC in time
- thickness of the buffer region: $\Delta = 12a \Rightarrow e^{-M_{\pi}\Delta} \approx 0.187$
- 5 pseudofermion forces with mass preconditioning
- 12 multiboson fields for N = 12
- negligible $R_{N+1}(1-w)$

 \Rightarrow very good approximation with a small number of multiboson fields

the algorithm presented here

- naturally represents a single quark flavour
- an arbitrary number of active thick time slice regions is possible

determinant factorization, outlook

smaller number of multiboson fields, thinner frozen region
 ⇒ correct with a reweighting factor

$$\langle O \rangle = \frac{\langle O \mathcal{W}_N \rangle_N}{\langle \mathcal{W}_N \rangle_N} \qquad \mathcal{W}_N = \det \{ \mathbb{1} - R_{N+1} (\mathbb{1} - w) \}^{N_{\rm f}}$$

study the multiboson forces, tune the integration steps

compute observables, study autocorrelations
 ⇒ experience from quenched study is valuable

other ideas can profit from the locality properties

multiboson algorithm for master fields simulation

[Lüscher 2017]

[Phys. Rev. D 95 (2017) 034503]

$$\frac{\det\{\mathbb{1} - R_{N+1}(\mathbb{1} - w)\}}{\det\{\mathbb{1} - w\}} = \det\{P_N(\mathbb{1} - w)\} = c_N \prod_{k=1}^N (\mathbb{1} - z_k - w)$$

the condition number of 1 - w is $\epsilon \sim (1 + e^{-M_{\pi}\Delta})/(1 - e^{-M_{\pi}\Delta})$ $\Rightarrow \mathcal{O}(1)$, can be made arbitrarily close to 1 increasing Δ

[Phys. Rev. D 95 (2017) 034503]

$$\frac{\det\{\mathbb{I} - R_{N+1}(\mathbb{I} - w)\}}{\det\{\mathbb{I} - w\}} = \det\{P_N(\mathbb{I} - w)\} = c_N \prod_{k=1}^{N/2} (\mathbb{I} - \bar{z}_k - w^{\dagger})(\mathbb{I} - z_k - w)$$

the condition number of 1 - w is $\epsilon \sim (1 + e^{-M_{\pi} \Delta})/(1 - e^{-M_{\pi} \Delta})$ $\Rightarrow \mathcal{O}(1)$, can be made arbitrarily close to 1 increasing Δ choosing N even, with a bit of algebra

[Phys. Rev. D 95 (2017) 034503]

$$\frac{\det\left\{\mathbb{I}-R_{N+1}(\mathbb{I}-w)\right\}}{\det\tilde{W}} = \det\left\{P_N(\mathbb{I}-w)\right\} = c_N \prod_{k=1}^{N/2} \det\left\{W_{\sqrt{1-z_k}}^{\dagger}W_{\sqrt{1-z_k}}\right\}$$

the condition number of 1 - w is $\epsilon \sim (1 + e^{-M_{\pi} \Delta})/(1 - e^{-M_{\pi} \Delta})$ $\Rightarrow \mathcal{O}(1)$, can be made arbitrarily close to 1 increasing Δ choosing N even, with a bit of algebra, and introducing

$$W_{y} = \begin{pmatrix} y\mathbb{1} & P_{\partial e}Q_{\bar{e}}^{-1}Q_{bo} \\ P_{\partial o}Q_{\bar{o}}^{-1}Q_{be} & y\mathbb{1} \end{pmatrix}$$

[Phys. Rev. D 95 (2017) 034503]

$$\frac{\det\left\{\mathbb{I}-R_{N+1}(\mathbb{I}-w)\right\}}{\det\tilde{W}} = \det\left\{P_N(\mathbb{I}-w)\right\} = c_N \prod_{k=1}^{N/2} \det\left\{W_{\sqrt{1-z_k}}^{\dagger}W_{\sqrt{1-z_k}}\right\}$$

the condition number of 1 - w is $\epsilon \sim (1 + e^{-M_{\pi} \Delta})/(1 - e^{-M_{\pi} \Delta})$ $\Rightarrow \mathcal{O}(1)$, can be made arbitrarily close to 1 increasing Δ choosing *N* even, with a bit of algebra, and introducing

$$W_{y} = \begin{pmatrix} y\mathbb{1} & P_{\partial e}Q_{\bar{e}}^{-1}Q_{bo} \\ P_{\partial o}Q_{\bar{o}}^{-1}Q_{be} & y\mathbb{1} \end{pmatrix}$$

approximation for a disk centred in z = 1: geometric series

$$P_{N}(z) = \sum_{p=1}^{N} (1-z)^{p} \quad \Rightarrow \quad \frac{R_{N+1}(z) = (1-z)^{N+1}}{z_{k} = 1 - e^{i\frac{2\pi k}{N+1}}}$$

multiboson HMC forces

the multiboson action is $(\chi_{i,k} = P_{\partial i}\chi_i)$

$$|W_{z}\chi_{k}|^{2} = \sum_{i \in a} \left| z\chi_{i,k} + P_{\partial i}Q_{\bar{i}}^{-1} [Q_{b,i-1}\chi_{i-1,k} + Q_{b,i+1}\chi_{i+1,k}] \right|^{2}$$

 \Rightarrow each term in the sum depends only on gauge links in region *i* (and *b*)

X٧

test the multi-level in the quenched theory with 64 × 24³, $a \approx 0.093$ fm, $aM_{\pi} \approx 0.216$ [Phys. Rev. D 93 (2016) 094507] $n_0 = 50$ global updates and $n_1 = 30$ independent updates of two regions

region $0 = \{x : x_0 \in (0, 15)\}$ region $1 = \{x : x_0 \in (24, T)\}$

while links in region $b = \{x : x_0 \in (16, 23)\}$ are frozen