Scattering and resonances in composite Higgs models

Tadeusz Janowski, in collaboration with SU(2): Vincent Drach, Claudio Pica, Sasa Prelovsek SU(4): Guido Cossu, Luigi del Debbio, Marco Panero, David Preti

MITP Scattering and Resonances workshop, August 2018

- Outline you are here
- SM Higgs
- Omposite Higgs
- SU(2) with 2 fundamental flavours
- SU(4) with multiple representations of fermions

Standard Model Higgs

Mass terms incompatible with electroweak symmetry

$$m(\psi_L^{\dagger}\psi_R + \psi_R^{\dagger}\psi_L)$$

not invariant under $SU(2)_L$. Electroweak symmetry breaking due to potential

$$\mathcal{L} \supset (D_\mu \Phi)^\dagger D^\mu \Phi - \mu^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2$$

If $\mu^2 < 0$, $\langle \Phi^a \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$, which breaks the EW symmetry $SU(2)_L \times U(1)_Y \to U(1)_{em}$ This gives masses to W^{\pm} and Z bosons. Fermion masses generated by Yukawa interactions

$$\mathcal{L} \supset Y^d_{ij} \Psi^{\dagger}_{Li} H \Psi_{Rj} + Y^u_{ij} \Psi^{\dagger}_{Li} (i\sigma^2) H^* \Psi_{Rj} + h.c.$$

Problems with SM Higgs

SM Higgs mass quadratically sensitive to the cutoff (i.e. new physics scale) of the theory.

Let Λ be the scale up to which SM is valid.

$$m_H^2 = m_R^2(\Lambda) - \Sigma(\Lambda)$$

with

$$\delta m_H^2 \propto \Lambda^2$$
.

But $m_H^2 = 126 \text{GeV} \rightarrow \text{large cancellation between UV} (m_R^2)$ and IR (Σ) contributions?

Why is the Higgs so light?

- Could be a composite particle either a bound state (technicolor) or a pseudo-Goldstone boson ("composite Higgs")
- Standard model Higgs doublet transforms as (2,2) under $SU(2)_L \times SU(2)_R \sim SO(4)$ global custodial symmetry
- Symmetry breaking at Λ_{TC} creates Goldstone bosons which form a Higgs doublet.
- After EW symmetry breaking, Higgs doublet becomes the Higgs boson + 3 longitudal polarisations of W and Z bosons

周 ト イ ヨ ト イ ヨ ト

Possible symmetry breaking patterns

- Minimal composite Higgs model SO(5) → SO(4), but no known UV completion with fermions
- Next-to-minimal composite Higgs $SO(6) \rightarrow SO(5)$. This creates 5 Goldstone bosons in (2,2) and (1,1) representations of SO(4).
- SO(6) → SO(4) 9 Goldstone bosons all in (3,3) rep of SO(4). Not a viable composite Higgs model, but can be a viable technicolor model (Minimal Walking Technicolor)
- SU(5)
 ightarrow SO(5) 14 Goldstone bosons
- For other, less minimal patterns see Mrazek et. al. 1105.5403, table 1

・ 同 ト ・ ヨ ト ・ ヨ ト

Symmetry breaking patterns

On a fundamental level, all quark multiplets will exhibit $SU(N_f)$ symmetry. Formation of the condensate breaks the symmetry depending on the representation:

• Real -
$$q
ightarrow gq$$
, $g = g^*$

 $\psi^{T} = (q_{L} \quad Cq_{R}^{*})$ $SU(2N_{f}) \rightarrow SO(2N_{f})$

• Pseudo-real -
$$q
ightarrow gq$$
, $g^* = S^{-1}gS$

$$\psi^{T} = (q_L \quad CSq_R^*)$$

 $SU(2N_f) \rightarrow Sp(2N_f)$

• Complex - $q \rightarrow gq$, g and g^* independent Separate left and right-handed multiplets

$$SU(N_f) \times SU(N_f) \rightarrow SU(N_f)$$

Using $SO(4) \sim SU(2) \times SU(2)$, $SO(5) \sim Sp(4)$, $SO(6) \sim SU(4)$

- $SO(6) \rightarrow SO(5) \sim SU(4) \rightarrow Sp(4)$ 2 flavours in pseudo-real representation
- $SO(6) \rightarrow SO(4) \sim SU(4) \rightarrow SO(4)$ 2 flavours in real representation
- $SU(5) \rightarrow SO(5)$ 5 Weyl fermions (2.5 Dirac) in real representation

イロト イポト イラト イラト 一戸

Vacuum alignment

In $G \rightarrow H$ symmetry breaking, some generators of $G \in SU(2)$ electroweak group. These are gauged, so that

$$g = exp(T^a heta^a(x) + X^a \phi^a) \in G$$

where $T \in su(2)$ and $X \notin su(2)$ But also

$$g = \exp(T_G^a \alpha^a(x) + T_H^b \beta^b(x))$$

where $T_H \in h$ and $T_G \notin h$.

- if $\{T^a\} \subset \{T^a_H\}$ $G \to H$ does not break EW symmetry (composite Goldstone Higgs limit)
- if {*T^a*} ⊂ {*T^a_G*} *G* → *H* breaks EW symmetry completely (technicolor limit)
- In general $T^a = \sin \theta T^a_G + \cos \theta T^a_H$ where θ is a vacuum (mis)alignment angle.

	heta=0	$ heta=\pi/2$
EW symmetry	unbroken	broken
model	composite Higgs	Technicolor
pions	W^{\pm} , Z, H + others	W^{\pm} , Z $+$ others
Higgs	pion	scalar resonance

In general, Higgs is a superposition of a Goldstone boson and a $\sigma\text{-like}$ resonance.

Connection to electroweak physics:

$$f_{PS}\sin\theta = v = 246 \text{GeV}$$

$$\Lambda_{TC} \sim f_{PS} = \frac{246 \text{GeV}}{\sin \theta}$$

In isolation θ can be an arbitrary angle. SM interactions will tend to push θ towards Technicolor limit.

Phenomenological constraints - S and T parameters

An important phenomenological constraint comes from Peskin-Takeuchi parameters. They are defined using W and Z vacuum polarisation functions:

$$S \equiv \frac{4c^2s^2}{\alpha} \left(\frac{\prod_{ZZ}^{new}(m_Z^2) - \prod_{ZZ}^{new}(0)}{m_Z^2} - \frac{c^2 - s^2}{cs} \frac{\prod_{Z\gamma}^{new}(m_Z^2)}{m_Z^2} - \frac{\prod_{\gamma\gamma}^{new}(m_Z^2)}{m_Z^2} \right)$$
$$T \equiv \frac{1}{\alpha} \left(\frac{\prod_{WW}^{new}(0)}{m_W^2} - \frac{\prod_{ZZ}^{new}}{m_Z^2} \right)$$
$$U \equiv \frac{4s^2}{\alpha} \left(\frac{\prod_{WW}^{new}(m_W^2) - \prod_{WW}^{new}(0)}{m_W^2} - \frac{c}{s} \frac{\prod_{Z\gamma}^{new}(m_Z^2)}{m_Z^2} - \frac{\prod_{\gamma\gamma}^{new}(m_Z^2)}{m_Z^2} \right) - S$$

T. Janowski

Scattering and resonances in composite Higgs models 11/37

Peskin-Takeuchi parameters - phenomenological values

$$S = 0.05 \pm 0.11$$

 $T = 0.09 \pm 0.13$
 $U = 0.01 \pm 0.11$

T. Janowski Scattering and resonances in composite Higgs models 12/37

Constraints from EW precision observables

- U does not give strong constraints on BSM physics
- T can be set to 0 by imposing global $SU(2)_L \times SU(2)_R \sim SO(4)$ symmetry ("custodial symmetry")
- S provides the strongest constraints on new physics. We can see that at 1-loop the contribution of new particles goes as

$$S \propto N_f d(R)$$

where N_f is the number of new quark flavours and d(R) is the dimension of the representation of the gauge group they are in.

• In composite Higgs models $S \propto \sin \theta$.

Fermion masses generated via a 4-quark operator

$$\frac{c}{\Lambda_{UV}^2}\bar{\psi}_L\psi_R\bar{Q}Q$$

where ψ are SM fermions and Q are the technifermions. The fermion masses are generated dynamically when technifermions condense $\langle \bar{Q}Q \rangle \sim \Lambda_{TC}^3$ The same processes that generate these 4-quark operators at Λ_{UV} also generate FCNC operators, e.g. $\bar{s}d\bar{s}d$, which are constrained by neutral meson mixing

$$\Delta M_K \sim rac{g_{UV}^2 f_K^2 m_K}{\Lambda_{UV}^2}$$

gives $\Lambda_{UV}\approx 10^3 {\rm TeV}.$ Problem with making quark masses large enough.

Partial compositeness

Generation of fermion masses in composite models:

Higgs-like

$$\mathcal{L} \supset \frac{c}{\Lambda_{UV}^{d-1}} \bar{\psi} O \psi \to \frac{c}{\Lambda_{UV}^{d-1}} \bar{\psi} \langle O \rangle \psi + \dots$$

what we discussed so far with $O = \overline{Q}Q$. Difficult to produce the top quark mass.

Partial compositeness

$$\frac{\lambda_L}{\Lambda_{UV}^{d-5/2}}\bar{Q}_L O_R + \frac{\lambda_R}{\Lambda_{UV}^{d-5/2}}\bar{t}_R O_L$$

like W and Z bosons in SM

'physical' quark (mass eigenstate) becomes a superposition of fundamental field q and composite operator O.

Scattering in composite Higgs models

- We can predict the resonance spectrum in vector boson scattering
- This follows from Goldstone boson equivalence theorem: at large energies, external vector boson states equivalent to Goldstone boson states
- e.g. $\rho \to \pi^+\pi^-$ corresponds to vector resonance in W^+W^- scattering

Effective Lagrangian:

$$\mathcal{L}_{eff} = g_{\rho\pi\pi} \rho^{\mu}_{[ij]} \partial_{\mu} \pi_{i} \pi_{j}$$

 $\label{eq:linear} \mbox{In QCD } \rho^{\mu}_{[ab]} = f_{abc} \rho^{\mu}_{c}.$

Example: Minimal walking technicolor.

T. Janowski Scattering and resonances in composite Higgs models 17/37

SU(2)

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

SU(2) with 2 fundamental flavours

SU(2) model, 2 Dirac fermions in fundamental representantion [1402.0233]. $SU(2) = Sp(2) \sim SO(3)$ smallest non-abelian Lie group.

$$\mathcal{L}=-rac{1}{4}\mathsf{F}^{a\mu
u}\mathsf{F}^{a}_{\mu
u}+iar{U}\gamma^{\mu}D_{\mu}U+iar{D}\gamma^{\mu}D_{\mu}D$$

Fundamental representation of SU(2) is pseudo-real \rightarrow we can construct a flavour multiplet

$$Q = \begin{pmatrix} u_L \\ d_L \\ -i\sigma^2 C \bar{u}_R^T \\ -i\sigma^2 C \bar{d}_R^T \end{pmatrix}$$

 \mathcal{L} is symmetric under SU(4) flavour group (locally isomorphic to SO(6)).

SU(4) symmetry is broken spontaneously by a fermion condensate $\Sigma^{ab} = \langle Q^a(i\sigma_c^2)CQ^b \rangle$ [1109.3513] to the subgroup which leaves it invariant:

$$U^{\mathsf{T}}\Sigma U = \Sigma \quad U \in Sp(4) \sim SO(5).$$

This produces 5 Goldstone bosons ("pions").

In full theory (+SM), interactions with SM particles give the vacuum a preferred direction.

On the lattice we add an explicit mass term:

$$-m(\bar{u}u + \bar{d}d) = \frac{m}{2}Q^{T}(-i\sigma^{2})CEQ + h.c.$$
$$E = \begin{pmatrix} 0 & 1_{2} \\ -1_{2} & 0 \end{pmatrix}$$

- top quark interaction will tend to align the vacuum with TC vacuum $\theta = \pi/2$ [1402.0233]
- In TC limit Goldstone bosons can combine to produce a DM candidate [1511.04370]
- No DM candidate outside of TC limit η decays to gauge bosons via anomaly.
- Consistent with LHC measurements even in TC limit [1502.04718]
- No partial compositeness in this model :(

Wilson clover + Symanzik gauge generated using HiRep

L	т	Ь	10.0	xtat	therm	acc	P	proha
16	32	1.25	-0.6000	6300	1000	1.00	0.496	1.00
16	32	1.30	-0.6000	6300	1000	1.00	0.520	1.00
16	32	1.35	-0.6000	6300	1000	1.00	0.546	1.00
16	32	1.35	-0.7000	1666	1000	0.50	0.562	1.05
16	32	1.40	-0.6000	1500	-450	1.00	0.572	1.00
16	32	1.40	-0.6100	1392	-450	1.00	0.574	1.00
16	32	1.40	-0.6200	1215	-450	0.99	0.576	1.00
16	32	1.40	-0.6300	1621	1000	0.97	0.577	0.99
16	32	1.40	-0.6400	1795	1000	0.92	0.579	0.97
16	32	1.40	-0.6500	1585	1000	0.76	0.581	0.89
16	32	1.40	-0.6570	2779	1000	0.83	0.583	0.87
16	32	1.45	-0.5500	2000	1000	1.00	0.591	1.00
24	-45	1.45	-0.5500	1525	1000	0.97	0.591	1.00
16	32	1.45	-0.5700	4156	1000	0.92	0.594	1.00
24	-45	1.45	-0.5700	1684	1000	0.93	0.594	1.00
16	32	1.45	-0.5800	1791	1000	0.93	0.525	1.03
24	-45	1.45	-0.5500	1485	-450	0.92	0.525	1.02
16	32	1.45	-0.5900	1602	1000	0.79	0.597	0.91
24	-45	1.45	-0.5900	1020	-450	0.83	0.597	0.95
16	32	1.45	-0.6000	1766	1000	0.74	0.529	0.55
16	32	1.45	-0.6050	2371	1000	0.96	0.600	0.97
16	32	1.45	-0.6100	3424	1000	0.88	0.601	0.90
16	32	1.50	-0.5000	1500	-450	1.00	0.605	1.00
16	32	1.50	-0.5100	1500	450	0.99	0.610	1.00
16	32	1.50	-0.5200	1513	1000	0.99	0.611	1.00
24	-45	1.50	-0.5200	1225	-450	0.59	0.610	1.02
16	32	1.50	-0.5300	1500	450	0.92	0.612	1.02
16	32	1.50	-0.5400	1325	-450	0.79	0.613	0.99
16	32	1.50	-0.5500	1750	1000	0.81	0.614	0.94
16	32	1.50	-0.5525	2214	1000	0.78	0.614	0.91
16	32	1.50	-0.5550	4117	1000	0.86	0.615	0.92
24	- 60	1.50	-0.5360	1012	1000	0.56	0.615	0.91
16	32	1.60	-0.4000	1500	450	1.00	0.637	1.00
10	32	1.60	-0.4300	1810	1000	0.50	0.640	1.01
- 24	-45	1.60	-0.4500	2653	1000	0.98	0.640	1.00
- 10	32	1.60	-0.4700	2432	1000	0.82	0.641	0.90
- 24	- 22	1.60	-0.4700	1991	1000	0.95	0.641	1.00
- 10	32	1.60	-0.4500	2106	1000	0.56	0.642	0.92
	- 22	1.00	-0.4800	11.00	1000	0.01	0.0%4	0.94
10	32	1.60	-0.4900	2566	1000	1.00	0.642	1.00
	-12	1.00	-0.200	- 200		a.00	0.001	1.00
10	32	1.80	-0.3000	300	430	1.00	0.683	1.00
16	32	1.50	-0.350	1917	1000	1.00	0.055	1.00
		3.00	0.3000	200	470	1.00	0.717	1.00
16	322	2.00	-0.2500	500	450	1.00	0.717	1.00
16	32	2.00	-0.3000	500	450	0.95	0.715	1.07
		2.00			.//	0.00		1.97

1.40	-0.6000	16	- 32	20	1500	0.0584	0.0006	0.686	0.003	0.124	0.0022	0.862	0.02
1.40	-0.6300	16	32	20	1392	0.0546	0.0005	0.632	0.005	0.115	0.0032	0.505	0.03
1.40	-0.6200	16	32	10	1215	0.0656	0.0009	0.567	0.005	0.109	0.0034	0.745	0.03
1.40	-0.6300	16	32	20	1621	0.0552	0.0007	0.563	0.005	0.102	0.0024	0.713	0.04
1.49	-0.6400	16	32	20	1795	0.0413	0.0007	0.433	0.005	0.023	0.0025	0.705	0.03
1.40	-0.6500	16	32	10	1585	0.0250	0.0010	0.343	0.010	0.051	0.0040	0.591	0.01
1.49	-0.6570	16	32	20	2779	0.0137	0.0005	0.252	0.010	0.067	0.0035	0.529	0.00
1.45	-0.5500	16	32	10	2000	0.0858	0.0005	0.629	0.003	0.105	0.0016	0.769	0.01
1.45	-0.5700	16	32	20	4156	0.0631	0.0005	0.530	0.003	0.093	0.0013	0.673	0.01
1.45	-0.5500	16	32	10	1791	0.0493	0.0007	0.445	0.005	0.055	0.0019	0.616	0.02
1.45	-0.5500	16	32	20	1602	0.0346	0.0009	0.375	0.007	0.077	0.0027	0.557	0.03
1.45	-0.6000	16	32	10	1766	0.0297	0.0010	0.2%	0.010	0.064	0.0033	0.517	0.03
1.45	-0.6650	16	32	20	2371	0.0110	0.0011	0.235	0.013	0.051	0.0049	0.520	0.05
1.45	-0.6300	16	32	20	3424			0.195	0.015			0.541	0.01
1.50	-0.5000	16	32	20	1500	0.0560	0.0006	0.575	0.004	0.091	0.0019	0.703	0.01
1.50	-0.5100	16	32	10	1500	0.0731	0.0007	0.522	0.005	0.054	0.0019	0.650	0.01
1.50	-0.5200	16	32	20	1513	0.0600	0.0007	0.468	0.005	0.078	0.0015	0.611	0.01
1.50	-0.5300	16	32	10	1500	0.0459	0.0005	0.407	0.005	0.072	0.0019	0.557	0.02
1.50	-0.5400	16	32	20	1325	0.0330	0.0010	0.354	0.009	0.062	0.0025	0.545	0.03
1.50	-0.5500	16	32	10	1750	0.0290	0.0010	0.272	0.013	0.050	0.0025	0.453	0.04
1.50	-0.5525	16	32	20	2214	0.0141	0.0010	0.256	0.012	0.041	0.0025	0.555	0.11
1.50	-0.5550	16	32	20	4117	0.0120	0.0011	0.238	0.017	0.035	0.0035	0.455	0.00
1.60	-0.4000	16	32	20	1500	0.0993	0.0005	0.545	0.004	0.071	0.0012	0.617	0.00
1.60	-0.4500	16	32	10	1510	0.0407	0.0007	0.357	0.007	0.045	0.0013	0.450	0.01
1.60	-0.4700	16	32	20	2432	0.0362	0.0011	0.320	0.015	0.022	0.0015	0.502	0.02
1.60	-0.4500	16	32	10	2106	0.0015	0.0016	0.304	0.027	0.002	0.0020	0.501	0.04
1.60	-0.4900	16	32	20	2566	-0.0362	0.0006	0.290	0.012	-0.033	0.0020	0.322	0.02
1.80	-0.2500	16	32	5	500	0.1393	0.0004	0.565	0.004	0.053	0.0009	0.602	0.00
1.80	-0.3000	16	32	5	500	0.0853	0.0004	0.500	0.005	0.045	0.0010	0.545	0.00
1.80	-0.3500	16	32	10	2500	0.0332	0.0003	0.451	0.005	0.019	0.0003	0.454	0.00
1.80	-0.3550	16	32	20	1917	-0.0062	0.0005	0.429	0.007	-0.004	0.00035	0.451	0.00
2.00	-0.2000	16	32	5	500	0.1266	0.0002	0.533	0.004	0.045	0.0009	0.578	0.00
2.00	-0.2500	16	32	5	500	0.0757	0.0003	0.335	0.005	0.035	0.0011	0.355	0.00
2.00	-0.3000	16	32	5	500	0.0250	0.0006	0.234	0.013	0.034	0.0014	0.314	0.02
1.45	-0.5500	24	-48	10	1525	0.0859	0.0003	0.622	0.002	0.105	0.0016	0.751	0.02
1.45	-0.5700	24	-48	20	1684	0.0625	0.0004	0.509	0.002	0.093	0.0015	0.097	0.03
1.45	-0.5800	24	-48	10	1485	0.0487	0.0004	0.444	0.003	0.085	0.0023	0.627	0.01
1.45	-0.5500	24	-48	20	1020	0.0340	0.0009	0.309	0.007	0.078	0.0044	0.643	0.01
1.50	-0.5200	24	-48	10	1225	0.0603	0.0005	0.465	0.004	0.079	0.0023	0.599	0.04
1.50	-0.5560	24	-48	20	1622	0.0200	0.0007	0.155	0.009	0.045	0.0029	0.425	0.05
1.60	-0.4500	24	-48	10	2653	0.0404	0.0002	0.329	0.002	0.051	0.0005	0.414	0.01
1.60	-0.4700	24	-48	10	1991	0.0151	0.0005	0.195	0.007	0.036	0.0012	0.331	0.04
1.60	-0.4500	24	48	10	1754			0.134	0.012			0.367	0.04

1.23 -0.0000 10 24 100 000 0.201 0.000 1.341 0.002 0.201 0.002 1.400 0.001 1.400 0.001 1.400 0.001 1.400 0.001 1.400 0.001 1.400 0.001 1.400 0.001 1.400 0.001 1.340 0.000 1.35 0.000 0.001 1.32 1.00 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.0000

Table 1: Summary runs: Large volume. prob
a $\rtimes^{-\Delta S};$ P : Plaquette; acc: acceptance

2

Table 2: Summary mesons: Large volume

< ロ > < 同 > < 三 > < 三 >

Phase space diagram

< E

< E

æ

Getting unstable ρ

We follow the PACS-CS procedure in 1106.5365. The correlation functions are given by

$$C_{ij}(t) \equiv \langle 0 \mid O_i^{\dagger}(t) O_j(0) \mid 0 \rangle = \sum_{n,m} \langle 0 \mid O_i^{\dagger} \mid n \rangle (e^{-E_n t} \delta_{mn}) \langle m \mid O_j \mid 0 \rangle$$

 ${\sf U}$ and ${\sf V}$ are square matrices assuming higher-energy states don't contribute.

Then

$$C_{ij}^{-1}(t_0)C_{jk}(t) = V_{in}^{-1} diag \left(e^{-E_n(t-t_0)}\right)_{nm} V_{mj}$$

The spectrum can be extracted from the eigenvalues of $C^{-1}(t_0)C(t)$.

We use singlet representations - A_2^- in MF1 and B_1^- in MF2. We use the following two interpolating operators

$$O_{1}(t) = \sum_{x,y} \bar{\psi}(x)\gamma^{5}\psi(x)\bar{\psi}(y)\gamma^{5}\psi(y)e^{i\mathbf{p}\cdot\mathbf{x}}$$
$$O_{2}(t) = \sum_{x} \bar{\psi}(x)(\gamma \cdot \hat{p})\psi(x)e^{i\mathbf{p}\cdot\mathbf{x}}$$

- p = (0, 0, 1) in MF1 and p = (1, 1, 0) in MF2
- $O_1(t)$ is by itself not in an irreducible representation, projection is done by choosing the contractions the same way as for $\pi_i(p)\pi_j(0) - \pi_j(p)\pi_i(0)$.

Contractions

T. Janowski Scattering and resonances in composite Higgs models 27 / 37

Phase shift formula depends on the frame and the representation:					
frame	representation	$ an \delta_1$			
СОМ	T_1^-	$rac{\pi^{3/2} q}{Z_{00}(1;q^2)}$			
MF1	A_2^-	$\frac{\pi^{3/2}q}{Z_{00}(1;q^2)+\frac{2}{\sqrt{5}q^2}Z_{20}}$			
MF2	B_1^-	$\left \frac{\pi^{3/2} q}{Z_{00}(1;q^2) - \frac{1}{\sqrt{5}q^2} Z_{20} + i \frac{\sqrt{3}}{\sqrt{10}q^2} \left(Z_{22}(1;q^2) - Z_{2(-2)}(1;q^2) \right)} \right.$			
$Z_{lm}(s,q^2) = \sum_{n \in \mathbb{Z}^3} rac{Y_{lm}(n)}{(q^2 - n^2)^s}$					

$$an \delta_1 = rac{g_{
ho\pi\pi}^2}{6\pi} rac{p^3}{E_{CM}(m_
ho^2 - E_{CM}^2)}, \ p = \sqrt{E_{CM}^2/4 - m_\pi^2}$$

T. Janow<u>ski</u> Scattering and resonances in composite Higgs models 28 / 37

æ

-- ∢ ⊒ → Wilson clover fermions + Symanzik improved gauge action

eta	1.45	
m_0	-0.6050	
C _{SW}	1.0	
am_{π}	0.2114(8)	
${\it am}_{ ho}^{\it naive}$	0.444(9)	
am_{pcac}^{0}	0.01110(7)	
af_{π}	0.0564(3)	
# trajectories	1600	
# analysed	140	

Effective mass plots **PRELIMINARY**

Eigenvalue
$$\lambda_i(t) = A \exp(-E_i(t - t_0)), t_0 = 4.$$

Effective mass $E_i(t) = \ln \lambda_i(t)/\lambda_i(t + 1)$

 $E_1 = 0.50(2) E_2 = 0.57(2) \quad \Delta E_1 = -0.048(26) \Delta E_2 = 0.019(23)$

T. Janowski Scattering and resonances in composite Higgs models 30 / 37

Fitting central values only (for now) PRELIMINARY:

$$g_{
ho\pi\pi} = 5.84$$

 $aM_{
ho} = 0.437$ $m_{
ho}^{
m naive} = 0.444(9)$

SU(4)

T. Janowski Scattering and resonances in composite Higgs models 32 / 37

・ロト ・四ト ・ヨト ・ヨト

æ

Ferretti's model

 $\begin{array}{lll} \mbox{Gauge group} & \mbox{SU(4)} \\ \mbox{Fermions} & \mbox{3 Dirac in fundamental representation} \\ & \mbox{5 Weyl 2AS} \\ \mbox{Symmetry breaking} & \mbox{F condensate: } SU(3) \times SU(3)' \rightarrow SU(3) \\ & \mbox{2AS condensate } SU(5) \rightarrow SO(5) \\ & \mbox{full: } SU(5) \times SU(3) \times SU(3)' \times U(1)_X \times U(1)' \\ & \mbox{} \rightarrow SO(5) \times SU(3)_c \times U(1)_X \\ \end{array}$ Described by G. Ferretti [1404.7137]

Features:

- Asymptotic freedom
- Anomaly free
- Goldstone bosons contain Higgs doublet
- Top (and bottom) partners (partial compositeness)
- No coloured triplet and sextet states
- Only SU(N) model with the above properties

Toy model

- 2.5 Dirac fermions requires rooting
- Can be achieved using RHMC algorithm (expensive)
- Instead we use SU(4) with 3 fundamental and ${f 2}$ 2AS fermions
- Symmetry breaking containing electroweak group $SU(4) \rightarrow SO(4)$
- Not a composite Higgs model pGBs all in (3,3) irrep of custodial group toy model only
- First studied by Ayyar et. al. in "Spectroscopy of SU(4) composite Higgs theory with two distinct fermion representations", 1710.00806
- Phase space analysis has not yet been studied underway
- Since pNGBs transform as (1,1) of $SO(4) \sim SU(2) imes SU(2)$

$$(1,1)\otimes(1,1)= \bigoplus_{j_1,j_2=0}^2 (j_1,j_2)$$

with (1,1), (1,0), (0,1) and (0,0) containing resonances

https://github.com/paboyle/Grid

Features:

- Modular easy to extend
- Works with arbitrary number of colours
- Multiple representations of fermions implemented
- Low mode deflation
- (In the near future) distillation

SU(4) phase diagram

Pointss with * have $am_{\pi}^{(4)} < 0.5$, $am_{\pi}^{(6)} < 1$, $am_{pcac}^{(4)} < 0.1$ and $am_{pcac}^{(6)} < 0.5$

T. Janowski Scattering and resonances in composite Higgs models 36 / 37

- Composite Higgs models, which address the naturalness problem can be studied using lattice gauge theory techniques
- $\pi\pi$ scattering = W and Z scattering at high energies
- Techniques from lattice QCD can be applied directly, only flavour structure different
- Main difficulty generating ensembles in the correct phase space region with $m_
 ho > 2m_\pi$
- First result for the phase shift in the SU(2) model with 2 fundamental flavours
- Still exploring the phase space of the SU(4) model
- In both cases: more work needs to be done stay tuned!

(四) (日) (日)