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● Motivation

● Three-body dynamics in infinite volume

● Finite-volume problems (application: 2-body)

● Three-body dynamics in finite volume

Outline
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● Important channel in GlueX @ JLab

● Finite volume spectrum from lattice QCD: 
Lang, Leskovec, Mohler, Prelovsek (2014)
Woss, Thomas et al. [HadronSpectrum] (2018)

● Roper resonance is debated for ~50 years 

in experiment. Can only be seen in PWA.

● 1st calculation w. meson-baryon operators 

on the lattice:  Lang et al. (2017)
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3-body dynamics for mesons and baryons
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● Understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX) → 

theory of 3-body scattering problem needed

● Available tools:

● Faddeev equations (F.E.)        Faddeev(1959)

● F.E. in fixed-center approximation            Brueckner(1953)

→ usefull for πd, Kd … systems               Baru et al(2011), Mai et al. (2015) 

● F.E. in isobar formulation                    Omnes(1964), Aaron(1967)

→ re-parametrization of two-body amplitude                  Bedaque(1999)

...

Isobar formulation
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T12 T31

T23

...

Isobar formulation

Re-ordering of 3-body amplitude in 2-body sub-amplitudes & spectator 
→ Not an approximation up to cut in space of allowed quantum numbers

(+ 3-body force)

● Understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX) → 

theory of 3-body scattering problem needed

● Available tools:

● Faddeev equations (F.E.)        Faddeev(1959)

● F.E. in fixed-center approximation            Brueckner(1953)

→ usefull for πd, Kd … systems               Baru et al(2011) Mai et al. (2015) 

● F.E. in isobar formulation                     Omnes(1964) Aaron(1967)

→ re-parametrization of two-body amplitude                  Bedaque(1999)
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FADDEEV EQUATIONS WITH ISOBARS

Mai, Hu, M. D., Pilloni, Szczepaniak

Eur. Phys. J. A53 (2017) 177
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Original study by Amado/Aaron/Young          AAY(1968)
● 3-dimensional integral equation from unitarity constraint & BSE ansatz
● valid below break-up energies (E < 3m) & analyticity constraints unclear

One has to begin with asymptotic states

● v a general function without cuts in the phys. region
● two-body interaction is parametrized by an “isobar”

● S and T are yet unknown functions

FE in isobar parametrization

= has definite QN and correct r.h.-singularities w.r.t invariant mass
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3-body Unitarity

delta function sets all intermediate
particles on-shell
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3-body Unitarity

General Ansatz for the isobar-spectator interaction
→ B & τ are new unknown functions



10  

General Ansatz for the isobar-spectator interaction
→ B & τ are new unknown functions

3-body Unitarity
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†

3-body Unitarity
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†

3-body Unitarity
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†

3-body Unitarity
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†

8 top.

3-body Unitarity
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3-body Unitarity
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Scattering amplitude

3 → 3 scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of B, S are fixed by unitarity/matching   

– For simplicity v=λ   (full relations available)   
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3 → 3 scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of B, S are fixed by unitarity/matching   

– For simplicity v=λ   (full relations available)   

 

● twice subtracted dispersion relation in invariant mass:  σ(k)

● in the rest-frame of isobar (Lorentz invariance!)

Scattering amplitude
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3 → 3 scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of B, S are fixed by unitarity/matching   

– For simplicity v=λ   (full relations available)   

 

● un-subtracted dispersion relation

● one-π exchange in TOPT →  RESULT, NOT INPUT !

● One can map to field theory, but does not have to. Result is a-priori dispersive.

Scattering amplitude
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Real three-body force

External on-shell
2-body interaction

Exchange force

On-shell 2→ 2 interaction
(even within integral, but
without left-hand cuts)

Recasting in on-shell
2→2 amplitudes +
real 3-body forces 

Scattering amplitude – analytic expression
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From two to three particles in finite volume
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Finite-volume & chiral extrapolations
QCD calculations in finite volume

● unphysical pion mass
● (periodic) boundary conditions 

→ discrete momenta & discrete spectrum

Recipe for 2 → 2 scattering (e.g. I=J=0 ππ scattering) 

 Briceño et al.(2016) Doring, Mai, Hu (2016)

CHIRAL EXTRAPOLATIONS

● Mπ dependence from NLO ChPT (IAM) 

Gasser, Leutwyler(1981)

Dobado, Pelaez (1997)

● Extrapolation in flavor

        B. Hu, MD, R. Molina M. Mai et al. (2016)  

LÜSCHER(1986)
● 1 eigenenergy ↔ 1 phase-shift in infinite volume             
● also with coupled channels                     He et al. (2005) 

Doring,  Prelovsek, HSC 

step 1 step 2

HSC(2016) (This step can be skipped)
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GWU lattice group: the isoscalar sector

● nHYP-smeared clover fermions with 
mass-degenerate quark flavors (N

f
 = 2)

● M
π
=227 MeV and 315 MeV

● 3 elongated boxes
● Large variational basis including

several meson-meson operators
● Moving frames
● Conformal mapping for σ pole extraction
● Unitarized Chiral Perturbation Theory

fits for chiral extrapolation:
chm1: 
chm2:   

[Guo, Alexandru, Molina, M.D., M. Mai, PRD (2018) ]

Chiral extrapolation and exp. data
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Chiral extrapolation of σ pole

[Consistent with conformal-mapping amplitude parametrization (model-independent, not shown)]
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→ σ becomes a (virtual) bound state @ M
π 

= (345) 415 MeV 

Pole trajectory
First prediction: Hanhart, Pealez, Rios, PRL (2008)
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THREE-BODY 
AMPLITUDE 
IN A BOX

M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]
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Lüscher-like formalism in 3 → 3 case is under investigation

Polejaeva/Rusetsky (2012) 

Briceño/Hansen/Sharpe (2014, 2015, 2016, 2017)

Non-relativistic approaches based on dimer picture & effective field theory

Kreuzer, Griesshammer(2012), Hammer et al. (2016, 2x)

F. Romero, Rusetsky, Urbach et. al. (2018)

Requirements

● 3-body systems involve (resonant) two-body sub-amplitudes: Construct such that 2-

body information can be included

● Need extrapolations between different energies (problem of underdetermination)

● Allow for systematic improvement by allowing more and more quantum numbers as 

lattice data improve (problem of underdetermination)

● At least, all possible intermediate on-shell configurations must be identified and 

included to ensure all power-law finite-volume effects are taken account of.

● Formulation that lattice practice can connect to → isobars

 ⟹ This work:      Quantization condition from 3-body unitarity in isobar formulation

 

Overview
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Two-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Infinite 

→ Fin. Vol

Lüscher

.

How to derive the 
2-body quanti-
zation condition
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Two-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Infinite 

→ Fin. Vol

Lüscher

.

How to derive the 
2-body quanti-
zation condition

Three-body?

Analogously!
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Two-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Infinite 

→ Fin. Vol

Lüscher

.

                  

Three-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Quantization Condition

.
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Projection to irreps
[M.D.,Hammer,Mai,Pang,Rusetsky,Wu(2018)]

● Lüscher formalism relies on regular 2→ 2 potentials

● Now: manifestly singular interactions

● Find generalization that projects also the interactions 

to the irreps of cubic symmetry, not only propagation

● Separation of variables

● shells = sets of points related by O
h 

● Analogous to radial coordinate in infinite volume

● Find the orthonormal basis for arbitrary functions 

defined on each point of a given shell.

● J (inf. volume) → irreps (finite volume ):

● Partial wave projection (inf. Volume)         Irrep.  projection  (fin.)

(a is index u in quantization condition; Quantization condition has 
projection in incoming AND outgoing basis states with indices u, u’)
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Fix to 2→2 data:

T22 = v τ v

Fix to 3→3 data 

W – total energy

s/s’ - shell index

u/u’ - basis index

ϑ – multiplicity

L – lattice volume

E
s
 – spect. energy

Quantization Condition

Determinant of (s,u) x (s’,u’) matrix
at fixed W, Γ, L 

● Not a Lüscher-like equation (“left”: infinite volume, “right”: finite volume)
● Instead: Fix parameters to lattice eigenvalues
● With parameters fixed, evaluate infinite-volume amplitude
● Same workflow as in many 2-body coupled-channel fits (see, e.g., 

M.D., Meißner, Oset, Rusetsky, EPJA (2012))
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● Numerical demonstration of three-body finite volume formalism

● 3 particles in finite volume: m=138 MeV, L=3 fm

● one S-wave isobar → two unknowns:

– vertex(Isobar→2 stable particles)

– subtraction constant (~mass)

● Project to Γ = A1+

→ prediction of 3body energy-eigenlevels (C=0) 

T
22 

= v τ v       

unphysical lvls cancel out (exact proof available)

Numerical demonstration
[M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]]
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A physical system:

Mai, M.D., arXiv:1807.04746 
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I. 2-body subchannel:
➢ one-channel problem: ππ-system in S-wave, I=2
➢ 2-body amplitude consistent with 3-body one

Truong(1988)

1)  Fix λ, M0 to exp. data

      ☹ incoorrect mπ behavior!

2)  Chiral NLO & K-matrix

      ☹ works badly for high energies

3)  Inverse Amplitude

      ☺ correct σ & mπ behavior
       ☺ parameters known

Gasser/Leutwyler(1984)

ChPT @ NLO

K-mat @ LO

IAM

Isobar: λ=const.

Isobar: IAM
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● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel → Q: does the “isobar” picture hold?

➢ L=2.5 fm, mπ=291/352/491/591 MeV → BonusQ: chiral extrapolation in 3body system? 

Detmold et al.(2008)

Three positive pions
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I. 2-body subchannel:
➢ one-channel problem: ππ-system in S-wave, I=2
➢ 2-body amplitude consistent with 3-body one

ChPT @ NLO

K-mat @ LO

IAM

Isobar: λ=const.

Isobar: IAM
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discretize (Lüscher) → predicted fin-vol. spectrum

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel → Q: does the “isobar” picture hold?
➢ L=2.5 fm, mπ=291/352/491/591 MeV → BonusQ: chiral extrapolation in 3body system? 

Detmold et al.(2008)

Three positive pions
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II. 3-body spectrum

Remaining unknown: C
➢ genuine (momenta-dependent) 3-body “force” 
➢ simplest case:

Detmold et al.(2008)

QUANTIZATION CONDITION

C

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel → Q: does the “isobar” picture hold?
➢ L=2.5 fm, mπ=291/352/491/591 MeV → BonusQ: chiral extrapolation in 3body system? 
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II. 3-body spectrum

Remaining unknown: C
➢ genuine (momenta-dependent) 3-body “force” 
➢ simplest case:

Detmold et al.(2008)

QUANTIZATION CONDITION

C

Fit C to NPLQCD ground state level
→ C=(0.2 ± 1.5)·10−10

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel → Q: does the “isobar” picture hold?
➢ L=2.5 fm, mπ=291/352/491/591 MeV → BonusQ: chiral extrapolation in 3body system? 
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II. 3-body spectrum

Remaining unknown: C
➢ genuine (momenta-dependent) 3-body “force” 
➢ simplest case:

Detmold et al.(2008)

QUANTIZATION CONDITION

C

Predict excited spectrum:

→ novel pattern

1/1 of interacting/non-interacting lvls

→ all QC-poles are simple

→ chiral extrapolation to phys point 

     (under assumptions)

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel → Q: does the “isobar” picture hold?
➢ L=2.5 fm, mπ=291/352/491/591 MeV → BonusQ: chiral extrapolation in 3body system? 

First prediction of excited levels for physical system
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3-body amplitude in infinite volume

● 3-body unitarity dictates on-shell condition 

(driving term & isobar propagator)

● Result: 3-dim. relativistic integral equations,

explicit proof of 3B unitarity above threshold

● Equivalent to Khuri-Treiman equations*

Finite volume investigation:

● On-shell condition dictates leading, 

power-law finite-volume effects

● Quantization condition

● Bare-bone, stripped-down infinite-

volume extrapolation tool (in spirit of 

Lüscher equation)

● First numerical application to 

physical system 

OUTLOOK 

→ include spin isobars & multiple isobars

→ unequal masses

→ practical studies: a
1
(1260), Roper... 

Summary

* Ian Aitchison, private communication
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SPARES
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The Power of Unitarity

    Question: Does provide full imaginary part of all possible 
3→ 3 transitions?
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The Power of Unitarity

    Question: Does provide full imaginary part of all possible 
3→ 3 transitions?

on-shell

?

unitary 
2→2

Riddle 1 Riddle 2 Riddle 3

Riddle 4

Riddle 5
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The Power of Unitarity

    Question: Does provide full imaginary part of all possible 
3→ 3 transitions?

on-shell

?

unitary 
2→2

Riddle 1 Riddle 2 Riddle 3

Riddle 4

Riddle 5

Answer: Yes.                    and  

are the only on-shell configurations in physical region. Three-
body unitarity avoids many artificial complications of diagram-
matic expansions.
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The Power of Unitarity

How general is the amplitude? 
Are there other interactions/topologies not contained? 

Let’s try to “disprove” the scheme

Doomed to fail because one
cannot cheat unitarity (?) 

Diagrammatic “riddles”

Completely general 3 → 3
amplitude up to practical
approximations

Finite number of partial waves

Increase # according to availability of data;
natural ordering scheme from centrifugal barrier
and or input from PDG

Energy/momentum dependence from 3-body
interactions unknown → model polynomial dependence

“Blindfolded” PWA through model selection 
techniques          (Landay, M.D. et al., 2017)   

Constraints from known centrifugal barriers (Ceci, M.D., Hanhart et al., 2011)    
and/or low-energy chiral dynamics (e.g., Siemens et al., 2014)

A
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s 
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Residues

345 (GWU 415 (GWU

Hanhart, Pelaez, Rios, PRL (2008)

HadSpec, PRL (2017)

Pelaez, Rios, PRD (2010)
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Interesting application: a1(1420)
– observed in COMPASS
– in f

0
(980)π final state

ONE EXPLANATION:
Log-like behavior of the “triangle-diagram”

– Q: Does such a feature exist in full 3b-unitary FSI?

Mikhasenko/Ketzer/Sarantsev(2015)

Aceti/Dai/Oset(2016)

Connection to triangle diagrams

a1(1260)
K*0

K-

K+

f0(980)

π-
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Interesting application: a1(1420)
– observed in COMPASS
– in f

0
(980)π final state

ONE EXPLANATION:
Log-like behavior of the “triangle-diagram”

– Q: Does such a feature exist in full 3b-unitary FSI?

Sadasivan, M. Mai, M.D. in progress...

a1(1260)
K*0

K-

K+

f0(980)

π-

f0(980)

π-

...

Mikhasenko/Ketzer/Sarantsev(2015)

Aceti/Dai/Oset(2016)

Connection to triangle diagrams

Coupled-channel problem

It can be shown that this is equivalent
To Khuri Treiman equations

I. Aitchison, private communication
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Two-body scattering on lattice

Input for 3-body
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The cubic lattice
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Two body scattering
In the infinite volume
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Discretization
Discretized momenta in the finite volume with periodic boundary conditions
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Finite → infinite volume: the Lüscher equation
Warning: rather crude re-derivation
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L

Data: HadronSpectrum (Dudek, PRD 2013,Briceño PRL 2016); 
Analysis: M.D., B. Hu, M. Mai, PLB (2018)
See also: Bolton, Briceno, Wilson, Phys.Lett. B757 (2016) 50

Chiral extrapolation

E

Lüscher
(Nucl. Phys. B, 1991)

Roper

Channels: 

Genuine three-body dynamics

E

E

Three-body methods:
● Briceño, Hansen, Sharpe PRD96 (2017)
● Hammer, Pang, Rusetsky JHEP (2017)
● ...

Data: [Lang et al., Phys.Rev. D95 (2017), 014510]

Two-body vs. Three-body
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Large # of d.o.f. require efficient parametrizations

including 3-body dynamics [Julich-Bonn; ANL-Osaka]. 

Example: The coupled-channel 2→2, 2→3, 3→3 meson-baryon system 
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&

– when isobar-momenta are discretized in the 3-body cms momenta

→ fin. vol. normalization of δ-distribution!

Cancellations

Also: all 2nd order singularities in determinant cancel → All consequence of 
Manifest three-body unitarity
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Effective method for multi-particle states

The Optical potential        [D. Agadjanov, M.D., M. Mai, U.-G. Meißner, A. Rusetsky, JHEP (2016)]
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Optical potential in finite volume
● Finite-volume corrections for complex hadronic systems.
● Example: The optical potential on the lattice                                              

     

● It is not always necessary to explicitly parameterize complicated 
intermediate states → Absorb all “uninteresting” dynamics in a complex-
valued optical potential 

e.g.: 4-particle state
complex
potential
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n-particle states
m coupled channel

2-particle state
1 channel
BUT
complex potential
with full dynamics 

W

Optical potential: The formal rewriting
of a complicated scattering problem 

Lattice: measure eigenvalues,
map to the optical potential

E

• Measured finite-volume optical potential
• Poles/functional form contain full multi-channel/

multi-particle dynamics
• How to efficiently measure this function → later

How to reconstruct true OP (complex)
from finite volume OP (real)?

Smoothing = effectively taking
infinite volume limit
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The reconstructed infinite-volume limit [LASSO + Cross Validation]

True

Reconstructed

● Penalize oscillations (LASSO)
● Cross-validate to find optimum 

over-penalized

under-panalized

Minimize:

Correct Choice of penalization parameter     through cross validation:

Fit at finite    , validate at different      (                     ).
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Numerical simulation
Data & fits

Reconstructed
potential

LASSO

Smearing
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Unitarity & Matching
● 3-body Unitarity (normalization condition ↔ phase space integral)

Originally considered by 
AAY
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