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Outline
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• Numerical experiments in the isotropic approximation
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Motivation

�3

• Calculating weak decay amplitudes involving 3 or more 
particles, e.g. K→3π, D→2π, 4π, …

�3

• Determining NNN interactions

• Studying resonances with three particle decay channels

•                                                         (no resonant subchannels)

•   

•    

•    

ω(782, IGJPC = 0−1−−) → 3π

a2(1320, IGJPC = 1−2++) → ρπ → 3π

N(1440) → Δπ → Nππ

X(3872) → J/Ψππ
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Methodology & Status
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Quantization conditions

2 & 3 particle
spectrum from LQCD

Integral equations in
infinite volume

Intermediate 
scattering quantities

det [F−1
2 + 𝒦2]

det [F−1
3 + 𝒦df,3]

Scattering amplitudes
ℳ2 , ℳ3 , ℳ23 , …

L

L

L
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Methodology & Status
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Integral equations in
infinite volume

Quantization conditions

det [F−1
2 + 𝒦2]

det [F−1
3 + 𝒦df,3]

• Three approaches  

• Relativistic [Briceño, Hansen, SRS]   
• NREFT [Hammer, Pang, Rusetsky]

• Finite-volume Khuri-Treiman [Döring, Mai]

• Each have pros and cons
• Intermediate scattering quantities differ

• All require partial-wave truncation

• Similar challenges for numerical implementation

Intermediate 
scattering quantities
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Our approach (1)

�6�6

• Generic relativistic EFT, working to all orders

• Do not need a power-counting scheme

• To simplify analysis: impose a global Z2 symmetry (G parity) & consider identical scalars

• Obtain spectrum from poles in finite-volume correlator

• Consider ECM < 5m so on-shell states involve only 3 particles

Momentum 
sums rather 
than integrals

Infinite-volume 
Bethe-Salpeter 

kernels

Arbitrary 
operator 
creating 3 
particles

(1)

[Hansen & SRS, 
arXiv:1408.5933]
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Our approach (2)
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Momentum 
sums rather 
than integrals

Infinite-volume 
Bethe-Salpeter 

kernels

Arbitrary 
operator 
creating 3 
particles

• Replace sums with integrals plus sum-integral differences to extent possible

• If summand has pole or cusp then difference ~1/Ln and must keep (Lüscher zeta function)

• If summand is smooth then difference ~ exp(-mL) and drop

• Avoid cusps by using PV prescription—leads to generalized 3-particle K matrix

• Subtract above-threshold divergences of 3-particle K matrix—leads to Kdf,3

(2)
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Our approach (3)
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• Reorganize, resum, … to separate infinite-volume on-shell relativistically-invariant 
non-singular scattering quantities (K2, Kdf,3) from known finite-volume functions 
(F [Lüscher zeta function] & G [“switch function”])

(3)

det [F−1
3 + 𝒦df,3]

K2;k0;l0;m0;k;l;m ≡ δk0;kK2;l0;m0;l;mð~kÞ for ~k ∈ ð2π=LÞZ3;

ð15Þ

Kdf;3;k0;l0;m0;k;l;m≡Kdf;3;l0;m0;l;mð~k
0; ~kÞ for ~k0; ~k∈ ð2π=LÞZ3:

ð16Þ

The left-hand sides of these equations are to be viewed as
matrices in an extended space with indices7

½finite volume momentum ~k ∈ ð2π=LÞZ3$
× ½two particle angular momentum$: ð17Þ

All other quantities entering our final result will also be
matrices acting on this space.
The finite-volume spectrum is determined by

det½1þ F3Kdf;3$ ¼ 0; ð18Þ

where the determinant is over the direct product space just
introduced. The matrix F3 is

F3 ≡ F
2ωL3

!
−
2

3
þ 1

1þ ½1þK2G$−1K2F

"
; ð19Þ

where

!
1

2ωL3

"

k0;l0;m0;k;l;m
≡ δk0;kδl0;lδm0;m

1

2ωkL3
; ð20Þ

Gp;l0;m0;k;l;m ≡
#
k'

q'p

$
l0 4πYl0;m0ðk̂'ÞHð~pÞHð~kÞY'

l;mðp̂'Þ
2ωkpðE − ωk − ωp − ωkpÞ

×
#
p'

q'k

$
l 1

2ωkL3
; ð21Þ

Fk0;l0;m0;k;l;m ≡ δk0;kFl0;m0;l;mð~kÞ; ð22Þ

Fl0;m0;l;mð~kÞ ¼ Fiϵ
l0;m0;l;mð~kÞ þ ρl0;m0;l;mð~kÞ; ð23Þ

Fiϵ
l0;m0;l;mð~kÞ ¼

1

2

!
1

L3

X

~a

−
Z

~a

"

×
4πYl0;m0ðâ'ÞY'

l;mðâ'ÞHð~kÞHð~aÞHð~bkaÞ
2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

×
#
a'

q'k

$
lþl0

; ð24Þ

with
R
~a ≡

R
d3a=ð2πÞ3 and where the sum over ~a in Fiϵ

runs over all finite-volume momenta. Here ρ is a phase-
space factor defined by

ρl0;m0;l;mð~kÞ≡ δl0;lδm0;mHð~kÞ~ρðP2Þ; ð25Þ

~ρðP2Þ≡ 1

16π
ffiffiffiffiffiffi
P2
2

p

8
<

:
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2=4 −m2

p
ð2mÞ2 < P2

2;

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2=4 −m2

p
j 0 < P2

2 ≤ ð2mÞ2;

ð26Þ

where we recall that P2 is the four momentum of the
nonspectator pair, so that P2

2 ¼ E'2
2;k. Finally, H is a smooth

cutoff function to be defined shortly.
The quantization condition Eq. (18) is our main result,

and will be derived in Sec. IV. Here we work our way
through the definitions, explaining the origin and meaning
of each contribution. As noted above, Kdf;3 is closely
related to the divergence-free part of the full three-to-three
scattering amplitude. The singular parts of this amplitude
end up in the quantity F3, where they lead to chains of the
form …K2GK2GK2… which are obtained by expanding
out ½1þK2G$−1K2. These chains arise from subtraction
terms like those in Fig. 2, with the filled circles now
representing on shell K-matrices K2 (rather than M2). The
singular cuts between K-matrices give rise to the kinemati-
cal factors G.

FIG. 2. Diagrammatic definition of the divergence-free three-to-three amplitude,Mdf;3. In the subtracted term, filled circles represent
on shell two-to-two scattering amplitudes M2. Dashed cuts stand for simple kinematic factors that appear between adjacent M2.
These factors have the requisite poles so that the subtracted terms cancel the singularities in M3. The S outside the square brackets
indicates that the subtracted terms are symmetrized.

7Our notation for the momentum indices, k and k0, is somewhat
imprecise. These each are stand-ins for three-dimensional integer
vectors labeling the allowed finite-volume momenta. In other
words, whenever a spectator momentum occurs as an index, it
indicates implicitly that the corresponding three-vector momen-
tum is one of those allowed in finite volume.

RELATIVISTIC, MODEL-INDEPENDENT, THREE- … PHYSICAL REVIEW D 90, 116003 (2014)

116003-5

�F = G =

• All quantities are infinite-dimensional matrices with indices describing 3 on-shell particles

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

[finite volume “spectator” momentum: k=2πn/L] x [2-particle CM angular momentum: l,m]

• For large spectator-momentum k, the other two particles are below threshold; we must 
include such configurations by analytic continuation up to a cut-off at k~m [provided by H(k)]
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Our approach (4)
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• Relate Kdf,3 to M3 by taking infinite-volume limit of finite-volume scattering amplitude

• Results in infinite-volume integral equations involving M2 & cut-off function H

• Can formally invert equations to show that Kdf,3 (while unphysical) is relativistically 
invariant and has same properties under discrete symmetries (P, T) as M3

(4)

[Hansen & SRS, arXiv:1504.04248]
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Status of relativistic approach
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det [F−1
3 + 𝒦df,3]

• Original work applied to scalars with G-parity & no subchannel 
resonances [Hansen, SRS: 1408.5933 & 1504.04248]

E0(L)

E1(L)

E2(L)

Kdf,3 M3
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Status of relativistic approach
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• Second major step: removing G-parity constraint, allowing 2↔3 
processes [Briceño, Hansen, SRS: 1701.07465]

det (F2 0
0 F3)

−1

+ (
𝒦22 𝒦23

𝒦32 𝒦df,33) = 0

F2 appears
in 2-particle
quantization
condition

E0(L)

E1(L)

E2(L)
M22 M23

M32 M33

Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33
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Completing the formalism (1)
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• Final major step: allowing subchannel resonance (i.e. pole in K2) 
[Briceño, Hansen, SRS: 1808.XXXXX]

det (F2̃2̃ F2̃3
F32̃ F33)

−1

+ (
𝒦df,2̃2̃ 𝒦df,2̃3

𝒦df,32̃ 𝒦df,33) = 0

resonance + 
particle channel 
(not physical)

Determined by K2 & 
Lüscher finite-volume 

zeta functions 

E0(L)

E1(L)

E2(L)
Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33

M3
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Completing the formalism (2)
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• Forced into extra unphysical “ρπ” channel to account for FV effects of poles in K2 at 
intermediate stages of derivation

• Positive feature: should allow smooth transition between formalism for resonant and 
stable ρ as mu,d increased

det (F2̃2̃ F2̃3
F32̃ F33)

−1

+ (
𝒦df,2̃2̃ 𝒦df,2̃3

𝒦df,32̃ 𝒦df,33) = 0
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Completing the formalism (3)

�14�14

• To-do list

• Multiple poles in K2

• Nondegenerate particles with spin

• Connecting formalism for resonances to that for stable particles

• All appear straightforward



S. Sharpe, “Progress on three-particle quantization condition” 8/31/18 @ MITP /35

Outline
• Motivation

• Methodology & status

• Completing the formalism: including resonant subchannels

• Numerical experiments in the isotropic approximation

• Including higher partial waves

• Outlook & open issues
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Isotropic low-energy approximation

�16�16

• Scalar particles with G parity so no 2⟷3 transitions and no subchannel 
resonances (e.g. 3 π+)

• 2-particle interactions are purely s-wave, and determined by the scattering length 
alone (which can be arbitrarily negative, a→−∞)

• Point-like three-particle interaction Kdf,3 independent of momenta, although can 
depend on s=(Ecm)2

• Reduces problem to 1-d quantization condition, although intermediate matrices 
involve finite-volume momenta up to cutoff |k|~m

• Analog in our formalism of the approximations used in other approaches: 
[Hammer, Pang, Rusetsky, 1706.07700; Mai & Döring, 1709.08222; Döring et al., 
1802.03362; Mai & Döring, 1807.04746]

[Briceño, Hansen & SRS, 1803.04169]
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Isotropic low-energy approximation

�17�17

[Briceño, Hansen & SRS, 1803.04169]

1/Kiso
df,3(E

⇤) = �F iso
3 [E, ~P ,L,Ms

2]

M3(E
⇤,⌦0

3,⌦3) = S
"
D + L 1

1/Kiso
df,3 + F iso

3,1
R
#

• Relation of Kdf,3 to M3 (matrix equation that becomes integral equation when L→∞)

det [F−1
3 + 𝒦df,3]

L→∞ limit of 
F3iso depends on 
M2 & kinematical 

factors

symmetrization
D, L & R depend 

on M2 & 
kinematical factors

M3
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Solutions with Kdf,3=0
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iM2

iM2

iM2

iM2

iM2
+ + · · ·iM3 = S

 �

• Useful benchmark: deviations measure impact of 3-particle interaction

• Caveat: scheme-dependent since Kdf,3 depends on cut-off function H

• Meaning of limit for M3:
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Solutions with Kdf,3=0
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4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

(2,2,0)

(2,1,1)

These two states are 
degenerate in the NR theory

•Non-interacting states
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Solutions with Kdf,3=0

�20�20

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2
•Weakly attractive two-particle interaction

1/L expansion

m
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Solutions with Kdf,3=0

�21�21

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2
• Strongly attractive two-particle interaction

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �10m
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Impact of Kdf,3 

�22�22

11

4.0 4.5 5.0
mL

2.50

2.55

2.60

2.65

2.70

2.75

2.80

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
mL

2.5

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

10.0
9.0
8.0
7.0

6.0
5.0
4.0
3.0
2.0
1.0

0.0
1.0
13.0

�10�4m2
K

iso

df,3 = �10�4m2
K

iso

df,3 =

FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
iso

df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

ma = −10 (strongly attractive interaction)

Local 3-particle interaction has significant effect 
on energies, especially in region of simulations 

(mL<5), and thus can be determined
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Volume-dependence of 3-body bound state

�23�23

am=−104 & m2Kdf,3iso=2500 (unitary regime)
13

60 65 70
mL

�4

�3

�2

�1

[ E
B
(L

)
�

E
B
] /

m
⇥

10
5

4 5 6 7 8 9 10
mL

2.6

2.8

3.0

E
B
(L

)/
m

(a) (b)

(c)

20 25 30 35 40
mL

2.96

2.97

2.98

2.99

3.00

E
B
(L

)/
m

EB(L) from q.c.
EB(1)

EB(L) from q.c.

EB(L) from q.c.
EB(1)

ENR(L)

ENR(L)ENR(L)

FIG. 6. Finite-volume energy dependence for the bound state that arises for m
2
K

iso

df,3 = 2500 and ma = �10
4
. In all three

figures the solutions to the quantization condition are marked in orange, as points in (a) and (b) and as the curved solid line

in (c). The curving (turquoise) line in panel (a) is a fit of Eq. (35) (neglecting the higher-order corrections) to the data in

this panel. The same fit line is shown in panel (b) for lower values of mL, along with a horizontal, solid (red) line showing

the infinite-volume energy of the bound state EB(1). The horizontal dashed (black) line shows the threshold energy E = 3m.

Panel (c) displays EB(L) for smaller mL, along with the same two horizontal lines as in (b) and the asymptotic prediction.

scattering states. Extrapolating the results for K
iso

df,3 to subthreshold energies, one can use the quantization condition
to predict the volume dependence of the bound state. We see from Fig. 6(c) that, in the regime of mL accessible
to simulations, the finite-volume energy shifts are large, and the asymptotic formula does not hold. Thus the full
quantization condition is needed to remove the finite-volume shift and determine the infinite-volume binding energy.
We also stress that, in this regime, the bound-state energy is pushed so far below threshold that relativistic momenta
are sampled. Thus a relativistic formalism is required to reliably describe even the near threshold state.

D. Volume-dependence of the threshold-state energy

In this section we investigate in detail the energy of the threshold state. We have already shown examples of this
energy for various values of a in Fig. 3, and our aim here is to provide a detailed comparison with the predicted
large-volume behavior. The analytic prediction is

E(L) � 3 =
c3

L3
+

c4

L4
+

c5

L5
+

c̃6

L6
�

M3,thr

48L6
+ O

✓
1

L7

◆
, (36)

Need quantization condition to determine 
finite-volume effects for realistic values of mL

Prediction of asymptotic 
volume-dependence from 

NRQM 
[Meißner, Rîos, Rusetsky]
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Bound state wave-function

�24�24

• Work in unitary regime (ma=−104) and tune Kdf,3 so 3-body bound 
state at EB=2.98858 m 

• Solve integral equations numerically to determine Mdf,3 from Kdf,3

• Determine wavefunction from residue at bound-state pole

• Compare to analytic prediction from NRQM in unitary limit [Hansen & 
SRS, 1609.04317]

19

event. As k increases the scattered pair lies increasingly far below threshold. For a bound state, L(k) is related to
the Bethe-Salpeter amplitude, as discussed in the following subsection.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

k/m

�1

0

1

2

L
(k

)

ma = 0.5
ma = 1.0

ma = �1.0
ma = �2.0

FIG. 13. L(k) versus k/m for choices of ma shown in the legend. Results using either choice of finite-volume quantity,

Eq. (A14) or (A15), and using any choice of mL � 50, lie on a common curve. Here we show the results using Eq. (A15) and

mL = 70. Note that, if a = 0, L(k) = 1/3 independent of k. For su�ciently large k, L(k) = 1/3 for all a, since the cuto↵

functions vanish and remove the correction term.

The results for F1
3

and L(k) can be combined to determine results for Mdf,3, using Eq. (45). We choose not to quote
results here since the symmetrization that is needed is complicated, and the results produced are not transparent.
We will, however, quote the corresponding results below when working at threshold.

B. Determining the wavefunction of the bound state

A specific application of the subthreshold relation between K
iso

df,3 and Mdf,3 is provided by the bound state studied

in Sec. III C. For the fixed values of K
iso

df,3 = 2500 and a = �104, one can calculate F1
3

and identify the infinite-volume
bound state pole in Mdf,3, as described in the previous subsection. Since this is equivalent to solving the quantization
condition K

iso

df,3 = �1/F iso

3
for asymptotically large volumes, one finds the same result for the infinite-volume bound-

state energy as from the fit in Sec. III C, namely EB = 2.98858 (corresponding to  = 0.106844).
The residues of the pole in Mdf,3 contain information about the Bethe-Salpeter amplitudes of the bound state.

Specifically, as discussed in Ref. [29], the unsymmetrized version of Mdf,3 takes the following factorized form near the
bound state

M
(u,u)

df,3 (k, p) ⇠ �
�(u)(k)�(u)(p)⇤

E2 � E2

B

. (46)

This assumes that pairwise scattering occurs only in the s-wave, as is the case in the isotropic approximation. The
quantity �(u)(k) is related to the Bethe-Salpeter amplitude by amputating and going on shell, as explained in detail
in Appendix B of Ref. [29]. We call �(u)(k) the residue function. Combining this expression with Eq. (45) we find
that �(u)(k) is proportional to L(k),

|�(u)(k)|2 = lim
E!EB

(E2

B � E2)
L(k)2

1/Kiso

df,3(E) + F1
3

(E)
. (47)

In our approach both F1
3

(E) and L(k) are determined by taking infinite-volume limits of appropriate finite-volume
quantities. For the purposes of extracting |�(u)(k)|2 it turns out to be convenient to define a finite-volume version as

|�(u)(k)|2(L) = lim
E!EB(L)

(E2

B(L) � E2)
LL(E, k, L)2

1/Kiso

df,3(E) + F iso

3
(E, L)

, (48)
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k

Known constant

Known constant

Determined by fit to
volume-dependence of

bound-state energy
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Bound state wave-function
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Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K
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df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.
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is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
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with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
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we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
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= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K
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df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.
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. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k

mL→∞ gives infinite-volume result

0-parameter prediction

Works over many orders of magnitude 
to expected accuracy



S. Sharpe, “Progress on three-particle quantization condition” 8/31/18 @ MITP /35

Unphysical solutions
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FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
iso

df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

ma = −10 (strongly attractive interaction)

???
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Unphysical solutions
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�10�4m2Kiso
df,3 = 19.0

• 2 extra solutions appear as L is varied, due to non-monotonicity in F3iso

• Unphysical because leads to poles in correlator with wrong sign

• Occur for larger magnitudes of Kdf,3iso and smaller mL 

• Possible sources: unphysical parameter choices or enhanced exp(-mL) effects

1/Kiso
df,3(E

⇤) = �F iso
3 [E, ~P ,L,Ms

2]
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Outline
• Motivation

• Methodology & status

• Completing the formalism: including resonant subchannels

• Numerical experiments in the isotropic approximation

• Including higher partial waves

• Outlook & open issues

�28
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Beyond the isotropic approximation

�29�29

• In 2-particle case, assume s-wave dominance at low energies, then 
systematically add in higher waves (suppressed by q2l)

• We are implementing the same general approach for Kdf,3, making use 
of the facts that it is relativistically invariant and completely symmetric 
under initial- & final-state permutations, and expanding about threshold

• We work in the G-parity invariant theory with 3 identical scalars, so the 
first channel beyond s-wave has l=2 (d-wave)

[Tyler Blanton, Fernando Romero-Lopez & SRS, in progress]

𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3
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Beyond the isotropic approximation
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𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3

𝒦df,3 = 𝒦iso
df,3(E)+cA𝒦3A+cB𝒦3B+𝒪(Δ3)

Δ = s − 9m2

tij = (pi − p′�j)2

Δ1 = (p2 + p3)2 − 4m2 etc .
Δ′�1 = (p′�2 + p′ �3)2 − 4m2 etc .

𝒦iso
df,3 = c0 + c1Δ + c2Δ2 c0 is the leading term—

only term kept in isotropic approx

c1 is coefficient of the only linear term𝒦3A =
3

∑
i=1

(Δ2
i + Δ′�2

i )

𝒦3B =
3

∑
i,j=1

t2
ij

Only three coefficients needed at quadratic order:
c2 , cA & cB 

Many fewer than the 7 angular variables + s dependence
 present at arbitrary energy!
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Decomposing into spectator/dimer basis

�31�31

𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3

Implemented quantization condition through quadratic order, 
for P=0, including projection onto overall cubic group irreps

spectator momentum

} Decompose into harmonics 
in dimer CM frame: l,m

spectator momentum

{ l’,m’

⇒   l’=0,2 & l=0,2𝒦3A , 𝒦3B

For consistency, need K2(0) ~1+q2 +q4 & K2(2) ~q4

1
𝒦(0)

2
=

1
16πE2 [ 1

a0
+ r0

q2

2
+ P0r3

0q4]
1

𝒦(2)
2

=
1

16πE2

1
q4

1
a5

2
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First results including l=2
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𝒦df,3 = 0 , a0 = − 10 , r0 = 0.5 , P0 = 0.5 , − 1.5 ≤ a2 ≤ 0.1
11
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FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
iso

df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

What happens to
this level as

a2 is turned on?
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First results including l=2
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𝒦df,3 = 0 , a0 = − 10 , r0 = 0.5 , P0 = 0.5 , − 1.5 ≤ a2 ≤ 0.1
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First results including l=2
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More in progress!

𝒦df,3 = 0 , a0 = − 10 , r0 = 0.5 , P0 = 0.5 , − 1.5 ≤ a2 ≤ 0.1
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First results including l=2

�33�33

More in progress!

𝒦df,3 = 0 , a0 = − 10 , r0 = 0.5 , P0 = 0.5 , − 1.5 ≤ a2 ≤ 0.1

Energy in isotropic
approximation

(a2=0)
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Spectrum for mL=5

Energy lowered by
attractive l=2 interaction

-1.5 -1.0 -0.5 a2

3.2

3.4

3.6

3.8
E

a2



S. Sharpe, “Progress on three-particle quantization condition” 8/31/18 @ MITP /35

Outline
• Motivation

• Methodology & status

• Completing the formalism: including resonant subchannels

• Numerical results in the isotropic approximation

• Including higher partial waves

• Outlook & open issues
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Outlook & open issues

�35�35

• Complete formalism to-do list: nondegenerate particles of arbitrary spins

• Understand relation between different approaches

• Extend numerical experiments to include K-matrix poles (ma > 1 in 
isotropic approximation)

• Understand unphysical solutions 

• Determine generalization of Lellouch-Lüscher factor to allow study of 
three-particle decays such as K→3π

• Use formalism to analyze results from simulations: simplest case is 3 pions

• Need more understanding of appropriate parametrizations of Kdf,3

• …
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Evidence for exponentially 
suppressed finite-volume effects

�37�37

second-to-last residual, as these terms are of similar numeri-
cal magnitude.We stress that we must solve the quantization
condition with a numerical accuracy of better than 1 part in
108 in order to pick out the maximally subtracted result. This
turns out to be straightforward.
The maximally subtracted residual shows oscillatory

behavior. To investigate this, we have repeated the calcu-
lation replacing the sum-integral difference regulated using
H-functions, F̃s

HS, with that regulated following Ref. [30],
F̃s
KSS. The residues are indistinguishable for all but the

lowest curve, in which we find that the results obtained
using F̃s

KSS do not oscillate. Since the difference between
the two choices of F̃s is exponentially suppressed, we
conclude that the oscillations represent a class of neglected
exponentially suppressed finite-volume effects. They are
visible here presumably because we are investigating tiny
contributions to the energy. Other examples of such effects
will be seen below.
As noted above, we can determine M3;thr from the

maximally subtracted results. To do so, we scale up the
residual by L6 and define

R6ðLÞ≡ −L6

!
EðLÞ − 3 −

c3
L3

−
c4
L4

−
c5
L5

−
c̃6
L6

"

¼ M3;thr

48
þOð1=LÞ: ð43Þ

This quantity is shown in Fig. 8 as a function of 1=L for
L≳ 20. Here we again show the results using the two
regulators for F̃s. The oscillations with F̃s

HS are more
pronounced with the new scale, and it is easier to use
the F̃s

KSS results to extrapolate to the infinite-volume limit.
Averaging quadratic and cubic fits in 1=L to the latter yields
M3;thr=48 ¼ 60.0% 0.8, with the uncertainty determined
by half the difference between the two fits.

We close this subsection by considering one additional
infinite-volume quantity that can be extracted from the
threshold energy. With little additional effort we can
determine the dependence of the extracted M3;thr on Kiso

df;3,
using21

L6 ∂EðLÞ
∂ð1=Kiso

df;3Þ

####
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:
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We determine the derivative numerically by varying Kiso
df;3

close to 10.22 The extrapolation to L ¼ ∞ is done either
linearly or quadratically in 1=L. An example is shown in
Fig. 9. Comparing to the results for R6ðLÞ, we see that the
derivative removes much of the oscillatory volume depend-
ence, in addition to the first three orders in 1=L. We show
the resulting Kiso

df;3 dependence of the extrapolated deriva-
tive in Fig. 10. We take the average of linear and quadratic
extrapolations as the central value and half the difference as
the uncertainty. The solid line shows the infinite-volume
prediction found by solving the integral equation
relating M3;thr to Kdf;3, discussed in Sec. IV C below.
We stress that this is not a fit to the data, but rather the result
of an independent calculation. The agreement between the
two results provides a strong check of our numerical
implementation of the quantization condition, as well as
of the analytic derivation of the threshold expansion
in Ref. [26].

FIG. 8. Plot of R6ðLÞ [defined in Eq. (43)] versus 1=ðmLÞ for
ma ¼ 0.41315 and m2Kiso

df;3 ¼ 10. The oscillating (blue) points
use F̃s

HS, while the smooth (red) points use F̃s
KSS. The solid curves

show quadratic and cubic fits in 1=ðmLÞ to the F̃s
KSS data up to

1=ðmLÞ ¼ 0.05. We take the average of these curves at
1=ðmLÞ ¼ 0 as the central value for the infinite-volume limit,
and half the difference as the uncertainty.

FIG. 9. Extrapolation in 1=ðmLÞ of the left-hand side of
Eq. (44) evaluated at 1=ðm2Kiso

df;3Þ ¼ 0.1 and ma ¼ 0.41315.
Linear and quadratic fits are done to the region of points
indicated by the curves. We stress that this data was generated
using F̃s

HS, but in this case there are only weak oscillations, unlike
in Fig. 8.

21We take the derivative with respect to 1=Kiso
df;3 because this,

rather than Kiso
df;3 itself, is the more natural quantity entering the

quantization condition in the form we use.
22Given the weak dependence of E on M3;thr we need to vary

E over a very small range. For example, for L ¼ 20, the range
E ¼ 3.002067695–3.002067697 leads to a variation in Kiso

df;3
from ≈6–13 when a ¼ 0.41315.
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Use threshold expansion to determine 3-particle interaction at threshold

Result depends on choice of regularization of Lüscher zeta function,
an exponentially suppressed effect


