Charmonium spectroscopy from CLS ensembles

M. Padmanath

with G. Bali, S. Collins, D. Mohler, S. Piemonte, S. Prelovsek, A. Schäfer and S. Weishäupl (RQCD)

Regensburg, Germany

Mainz 30th August, 2018

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (1 of 27)

(4月) (日) (日)

Experimental charmonium spectrum

Esposito, Pilloni, Polosa Phys.Rept. 668

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (2 of 27)

э

X(3915) Vs X(3860) and $\chi_{c0}(2P)$

 $c \ \overline{c} \ \text{MESONS}$ (including possibly non- $q \ \overline{q} \ \text{states}$) $X(3915) \qquad I^G(J^{PC}) = 0^+(0or2^{++})$ was $\chi_{c}(\delta^{3915})$

Candidate for $\chi_{c0}(2P)$, but

- expected open-charm decay mode not observed (X(3915) $\rightarrow \overline{D}D$).
- Spin splitting $m_{\chi_{c2}(2P)} \chi_{c0}(2P)$ too small.
- observed in OZI suppressed mode $J/\psi\omega.$

Guo and Meissner arXiv:1208.1134; Olsen arXiv:1410.6534

c \bar{c} MESONS (including possibly non- $q \bar{q}$ states) $\chi_{c0}(3860)$ / $^{G}(J^{PC}) = 0^{+}(0^{++})$

Observation by Belle!

Chilikin *et al*, arXiv:1704.01872

Charmonium spectroscopy from CLS ensembles

Previous investigation : $(I)J^{PC} = (0)1^{--}$

 $\psi(2S)$ and $\psi(3770)$ from $D\bar{D}$ elastic scattering in P-wave.

First resonance determination of a charmonium state.

Ensemble 1 :

•
$$N_f=2$$
, $m_\pi\sim 266$ MeV, $L\sim 2$ fm

- Wilson clover fermions
- Full distillation.

Ensemble 2 :

• $N_f=2+1,\;m_\pi\sim 196$ MeV, $L\sim 2.9$ fm

・ 同 ト ・ ヨ ト ・ ヨ ト

- Wilson clover fermions
- Stochastic distillation.

Previous investigation : $(I)J^{PC} = (0)0^{++}$

 $\chi_{c0}(2P)$ from $D\bar{D}$ elastic scattering in S-wave.

No solid conclusions. Call for more systematic studies.

Ensemble 1 :

- $N_f=2$, $m_\pi\sim 266$ MeV, $L\sim 2$ fm
- Wilson clover fermions
- Full distillation.

Ensemble 2 :

• $N_f=2+1,\ m_\pi\sim 196$ MeV, $L\sim 2.9$ fm

・ロト ・同ト ・ヨト ・ヨト

- Wilson clover fermions
- Stochastic distillation.

What we intend

- Resonances around open charm threshold can be studied using lattice QCD.
- Focus on scalar and vector charmonium Study multiple inertial frames, coupled channel scenarios, different lattice volumes, ...
- Progressively increase the rigor in the investigation.
 - Multiple inertial frames within single hadron approximation
 - Elastic pseudoscalar-pseudoscalar scattering
 - Coupled channel studies
 - ...
- Assumptions :
 - Effects from charm annihilation to be small
 - Three hadron scattering not to be important

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

How we do

- Ensemble : CLS
 - U101 $N_f = 2 + 1$, $L \sim 2$ fm
 - H105 $N_f=2+1,~L\sim 2.7~{
 m fm}$
 - $m_\pi \sim~$ 280 MeV, $m_K \sim~$ 467 MeV
 - Wilson clover fermions with full distillation ($N_{ev} = 90$)
- Multiple excited state extraction Correlation matrices using a large basis of interpolating operators $C_{ji}(t_f - t_i) = \langle 0 | O_j(t_f) \overline{O}_i(t_i) | 0 \rangle = \sum_n \frac{Z_n^{i*} Z_n^j}{2E_n} e^{-E_n(t_f - t_i)}$ Operator state overlap factors : $Z_n^j = \langle 0 | O_i | n \rangle$.
- A good analysis procedure for extraction of energy of physical states. Variational fitting method or GEVP.
- Utilize "TwoHadronsInBox" toolbox to obtain K-matrix parametrization for our lattice energy levels.

Morningstar et al. Nucl. Phys. B924, 477-507 (2017) <ロト (アン・モート (アン・モート (アン・モート)) (2017)

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Interpolators and contractions

- Interpolators create states with correct quantum numbers. $\mathcal{O} \sim \bar{c} \Gamma c, \ \bar{c} \stackrel{\longrightarrow}{D}_i \Gamma c, \ \bar{c} \stackrel{\longrightarrow}{D}_j \Gamma c, \ \dots$
- All physical states with given J^{PC} can appear in the lattice spectrum. Single meson states, two-meson states, etc.
- In practical calculations, *c̄c* couple very weakly to two meson states.
- Necessitates the inclusion of multi-hadron operators $\mathcal{O} = \bar{Q}\Gamma Q$, $(\bar{Q}\Gamma_1 q)_{1_c}(\bar{q}\Gamma_2 Q)_{1_c}$, $(\bar{Q}\Gamma_1 Q)_{1_c}(\bar{q}\Gamma_2 q)_{1_c}$.
- Wick contractions

Effective masses : quality of fits

 E^- irrep spectrum in inertial frame with momentum $\mathbf{P} = (0, 0, 1)$.

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (9 of 27)

Rest frame interpolators : Single hadron approximation

In the infinite volume continuum

$$O^{J,M,P}(\mathbf{0}) = \sum_{m_i} C_{CG}(m_1, m_2, m_3, M) \times \sum_{\mathbf{x}} \bar{c}(\mathbf{x}) \Gamma_{m_1} \overleftrightarrow{D}_{m_2} \overleftrightarrow{D}_{m_3} c(\mathbf{x})$$

Projection on to lattice irreducible representations

$$O^{[J,P]}_{\Lambda,\mu}(\mathbf{p}=\mathbf{0}) = \sum_{M} S^{J,M}_{\Lambda,\mu} \ O^{J,M,P}(\mathbf{p}=\mathbf{0})$$

Dudek et al, PRD 82 034508 (2010)

• Parity and charge conjugation remains good also on the lattice

$\mathbf{p}=0, \ O_h,$	$P, C = \pm$:	
Λ (dim)	J		
$A_1(0)$	0,		
T_1 (3)	1, 3,		
T_2 (3)	2, 3,		
E (2)	2,		
$A_2(1)$	3,		э

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (10 of 27)

Charmonium spectrum rest frame, C = +

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (11 of 27)

Charmonium spectrum rest frame, C = -

Spin 0, 1, 2, 3. +(-) parity with solid (dashed) boundaries. States with ambiguous identities in orange color.

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (12 of 27)

Spin assignment using operator state overlaps

$$\tilde{Z}_n^i = Z_n^i / max(Z_m^i)$$

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (13 of 27)

□→ < □→</p>

Moving frame interpolators : Single hadron approximation

- In the infinite volume continuum, J^P no more good quantum no.s! Irreps labelled by the helicity, λ (and η̃ = P(−1)^J for λ = 0.)
- Infinite volume continuum interpolators with good helicity.

$$O^{J,P,\lambda}(\mathbf{p}) = \sum_{M} \mathcal{D}^{(J)*}_{M,\lambda}(R) O^{J,M,P}(\mathbf{p})$$

Projection on to lattice irreducible representations

$$O^{[J,P,|\lambda|]}_{\Lambda,\mu}(\mathbf{p}) = \sum_{\hat{\lambda}=\pm|\lambda|} S^{ ilde{\eta},\hat{\lambda}}_{\Lambda,\mu} \; O^{J,P,\lambda}(\mathbf{p})$$

Thomas et al, PRD 85 014507 (2012)

Charge conjugation remains good also on the lattice.

Moving frames : continuum to lattice

		${f p}=(0,0,1), \ Dic_4$	
	Λ (dim)	$ \lambda ^{ ilde\eta}$	J ^P (at rest)
	A_1 (1)	0+	$0^+, 1^-, 2^+, 3^-$
	A_2 (1)	0-	$0^-, 1^+, 2^-, 3^+$
	E (2)	1	$1^{\pm}, 2^{\pm}, 3^{\pm}$
		3	3^{\pm}
	B_1 (1)	2	$2^{\pm}, 3^{\pm}$
	$B_2(1)$	2	$2^{\pm},\ 3^{\pm}$
		p = (1, 1, 0), Dic ₂
	Λ (dim)	$ \lambda ^{ ilde\eta}$	J ^P (at rest)
	A_1 (1)	0+	$0^+, 1^-, 2^+, 3^-$
		2	$2^\pm,\ 3^\pm$
	A_2 (1)	0-	$0^-, 1^+, 2^-, 3^+$
		2	$2^\pm,\ 3^\pm$
	B_1 (1)	1	$1^{\pm}, 2^{\pm}, 3^{\pm}$
		3	3^{\pm}
	B_2 (1)	1	$1^{\pm}, 2^{\pm}, 3^{\pm}$
		3	<3≠≻ < ∂ ≻ < ≣ ≻
Charmonium spectro	scopy from CLS ensembles	M. Padmanat	h Universität Regensburg (15 of 3

Operator state overlaps and spin assignments!

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (16 of 27)

$|\lambda|$ identified spectrum in moving frame ${f P}=(0,0,1)$

Magnitude of helicity 0, 1, 2, 3.

Universität Regensburg (17 of 27)

$|\lambda|$ identified spectrum in moving frame ${f P}=(1,1,0)$

Magnitude of helicity 0, 1, 2, 3.

Charmonium spectroscopy from CLS ensembles

Universität Regensburg (18 of 27)

Spin-parity assignments

- Inputs from the rest frame spectrum. Dispersion relations.
- Possible quantum numbers based on observed patterns.

States with spin 1, 2 and 3 in this band. Possible P = -

• Overlap factors to determine the states dominantly coupled to an interpolator.

Universität Regensburg (19 of 27)

J^P identified spectrum in moving frame $\mathbf{P} = (0,0,1)$

Spin 0, 1, 2, 3. +(-) parity with solid (dashed) boundaries. States with ambiguous identities in orange color.

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (20 of 27)

J^P identified spectrum in moving frame ${f P}=(1,1,0)$

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (21 of 27)

Resonance treatment : 1^{--} charmonia

- 1^{--} channel in $\overline{D}D$ scattering in *p*-wave.
- Neglecting the effects of a spin 3 state.
- Example parametrization for elastic $D\bar{D}$ scattering.

$$p^3 \cot \delta / \sqrt{s} = c_0 + c_1 s + c_2 s^2$$

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (22 of 27)

Resonance treatment : 1^{--} charmonia

• Including a bound state in the fit $(\psi(2S))$.

- Data from CMF, T_1^{--} from $p^2 = 0$, A_1^- from $p^2 = 1$ and 2. Ensemble H105.
- Non negligible differences between two ensembles (U101 and H105). Exponentially suppressed volume effects?

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (23 of 27)

< 🗇 🕨 < 🖻 🕨

Resonance treatment : 0^{++} and $\chi_{c0}(2P)$

- Include *c̄* and meson-meson interpolators of type *DD̄*, *D_sD_s*, *D^{*}D̄^{*}* and *J/ψω*.
- Do not consider $\eta_c \eta$.
- Currently neglecting presence of states with different quantum numbers.
- Preliminary results : Joint fit to U101 and H105 ensemble data. Not yet including all energy levels, frames.
- Example parameterization :

$$\tilde{K}^{-1} = \begin{bmatrix} c_{11}s + b_{11} & b_{12} \\ b_{12} & b_{22} \end{bmatrix}$$

Universität Regensburg (24 of 27)

$J^{PC} = 0^{++}$: Determinant residual method

• Minimize a residual built from

$$r_k = \Omega(\mu, A) = rac{det A}{det[(\mu^2 + AA^{\dagger})^{1/2}]}; \ \ A = \tilde{K}^{-1}(E^{obs}_{cm,k}) - B(E^{obs}_{cm,k}).$$

• $\Omega(\mu, A)$ crosses zero at our energy levels for fitted parameters: $\langle z \rangle \langle z \rangle \langle z \rangle$ Charmonium spectroscopy from CLS ensembles M. Padmanath Universität Regensburg (25 of 27)

$J^{PC} = 0^{++}$: Riemann sheets

- Sheets on top : ++, -+; Sheets in the bottom : +-, -.
- Rich pole structure.
- Strong parameter dependence in some features.

M. Padmanath

- **→** → **→**

< ₹ ► >

э

Summary and outlook

- We investigate charmonium bound state and resonances with $J^{PC} = 0^{++}$ and 1^{--} .
- Gradually relaxing the simplifying assumptions.
 - Multiple inertial frames within single hadron approximation
 - Elastic pseudoscalar-pseudoscalar scattering
 - Coupled channel studies
- Future directions :
 - Parameterization dependence.
 - The complex plane structures for various parametrizations.
 - Include effects from other quantum channels in the analysis
 - Light and charm quark mass dependence
 - Discretization effects

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you...

Charmonium spectroscopy from CLS ensembles

M. Padmanath

Universität Regensburg (27 of 27)

ヘロン 人間 とくほと 人ほとう

æ