The I=1 pion-pion scattering amplitude and timelike form factor: finite volume and cutoff effects

John Bulava

University of Southern Denmark CP3-Origins

SDU

Cosmology & Particle Physics

Based on arXiv:1808.05007 with Christian Andersen (SDU), Ben Hörz (Mainz), Colin Morningstar (CMU)

Scattering Amplitudes and Resonance Properties from Lattice QCD MITP, U. of Mainz Aug. 28th, 2018

Isovector pion-pion scattering

• Needed to understand electromagnetic processes for e.g. HVP, HlBl:

$$\gamma^* \to \pi \pi \qquad \gamma^{(*)} \gamma^{(*)} \to \pi \pi \qquad \pi \gamma \to \pi \pi, \dots$$

Briceno et al. `16;
Alexandrou et al. '18

Needed for weak form factors with rho in final state. See also K^{*}.

$$B \to \rho \ell \bar{\ell} \qquad \qquad B_{\rm s} \to K^* \ell \bar{\ell}$$

Horgan et al. `14

 Statistically precise, experimentally well-understood playground to study lattice spacing, finite volume effects.

• HVP from time-momentum rep.:

$$a_{\mu}^{\rm HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dx_0 \,\tilde{K}(x_0) G(x_0),$$

Jegerlehner and Nyffeler '09; Bernecker and Meyer `11; Mainz group `17

$$G(x_0) = -a^3 \sum_{\mathbf{x}} \langle \hat{V}_j(x) \, \hat{V}_j(0) \rangle = G^{\rho \rho}(x_0) + G^{I=0}(x_0)$$

• Isovector (dominant) part:

$$G^{\rho\rho}(x_0) = \frac{1}{48\pi^2} \int_{2m_{\pi}}^{\infty} d\omega \,\omega^2 \,\left(1 - \frac{4m_{\pi}^2}{\omega}\right)^{3/2} |F_{\pi}(\omega)|^2 \,\mathrm{e}^{-\omega|x_0|}$$

Scattering amplitudes in lattice QCD

• In Euclidean time, asymptotic limit of $\langle 0|T\left\{\hat{\mathcal{O}}'(x')\dots\hat{\mathcal{O}}^{\dagger}(x)\right\}|0\rangle$ contains no info about on-shell amplitudes.

L. Maiani, M. Testa, Phys. Lett. B245 (1990) 585

• Finite volume method: below $n \ge 3$ hadron thresholds:

$$\det[K^{-1}(E_{\rm cm}) - B(L\mathbf{q}_{\rm cm})] + O(e^{-ML}) = 0$$
$$S = (1 - iK)^{-1}(1 + iK)$$

M. Lüscher, Nucl. Phys. B354 (1991) 531

- Determinant over total angular momentum, channel, and total spin
- Block-diagonal in finite-volume irreps.

Scattering amplitudes in lattice QCD (II)

To calculate $|F_{\pi}(E_{\rm cm})|$:

Lellouch and Luscher `01 Meyer `11 Feng, Aoki, Hashimoto, Kaneko `15

- Ignore partial waves $\ell \geq 3$. (Small effect in the amplitude.)
- Determine finite volume matrix element
- Calculate and parametrize $\delta_1(E_{\rm cm})$
- Combine matrix element and LLM factor:

$$|F_{\pi}(E_{\rm cm})|^2 = \frac{2\pi E_{\rm cm}}{2L^3 p^5} g(\gamma) \left(q\phi'(q) + p \frac{\partial \delta_1}{\partial p} \right) |\langle 0|\hat{j}_{\rm em}|\pi(\vec{p}_1)\pi(\vec{p}_2)\rangle|^2$$

Systematic errors in lattice QCD

In order to provide QCD results, systematics must be assessed:

• Lattice Spacing:

$$F^{\text{lat}} = F^{\text{QCD}} + \mathcal{O}(a^2)$$
$$(+\mathcal{O}(g_0^n a))$$

• (Residual) Finite volume effects

M. Bruno, T. Korzec, S. Schaefer, Phys. Rev. D95 074504 (2017)

- Unphysical quark masses (dependence on $m_{
 m u,d},\,m_{
 m s}\,$ also interesting)
- Determination from asymptotic-time limit in temporal correlators

CLS ensembles

M. Bruno, D. Djukanovic, G. Engel, A. Francis, G. Herdoiza, H. Horch, P. Korcyl, T. Korzec, M. Papinutto, S. Schaefer, E. Scholz, J. Simeth, H. Simma, W. Söldner, JHEP **1502** (2015) 043

- 4 lattice spacings $a \ge 0.05 \text{fm}$, pion masses $m_{\pi} \gtrsim 200 \text{MeV}$
- $N_{\rm f} = 2 + 1$ chiral limit: $\operatorname{Tr} M = 2m_{\rm u,d} + m_{\rm s} = const.$
- Finite volume check: $m_{\pi}L = 4.6, 6.1$

Analysis and data

- All total momenta $\, {oldsymbol d}^2 \leq 4 \,$ => 711 correlators.
- Result: 133 energies and 68 O(a)-improved matrix elements

$$(V_{\rm R})_{\mu} = \mathbf{Z}_{\rm V} (1 + a\mathbf{b}_{\rm V}m_{\rm l} + a\bar{\mathbf{b}}_{\rm V}\operatorname{tr} M_{\rm q})(V_{\rm I})_{\mu}$$
$$(V_{\rm I})_{\mu} = V_{\mu} + a\mathbf{c}_{\rm V}\tilde{\partial}_{\nu}T_{\mu\nu}$$

Renormalization and improvement coeffs. from A. Gerardin, T. Harris, H. Meyer (in prep.)

- How to get the data:
 - Tables in paper
 - Python analysis suite (jupan) on github, hdf5 data files on zenodo
- Not going to talk about:
 - Efficient alg. for correlators
 - Excited state energies and matrix elements
 - Finite-T effects w/ open b.c.'s
 - Cuts chosen so systematic error smaller than statistical

Analysis notebook (jupan)

Search or jump to	Pull requests Issues Marketplace Explore		
	⊑ ebatz / jupan	Press F11 to exit full screen	\bigcirc Watch →
	1) Code	III Draigata 💿 📨 Wilki 🛛 L. Ingishta	

Jupyter Analysis Notebook for Lattice QCD Spectroscopy

6 commits	₽ 1 branch	♡ 0 releases	es 😫 0 contributors		contributors
Branch: master New pull request		Create new file	Upload files	Find file	Clone or download 🔻
Ben Horz Format bibtex entry.			I	_atest comm	nit 67c6328 11 days ago
🖿 срр	Initial commit.				21 days ago
README.md	Format bibtex entry.				11 days ago
ackend_ana.py	Initial commit.				21 days ago
🖹 cls21_ana.ipynb	Initial commit.				21 days ago
i util_stat.py	Initial commit.				21 days ago
i widget_ana.py	Initial commit.				21 days ago

E README.md

Jupyter Analysis Notebook for Lattice QCD Spectroscopy

Introduction

This package contains utilities and a frontend for the determination of spectra and scattering amplitudes from Lattice QCD correlation functions. A Jupyter notebook is used to illustrate the analysis choices leading to the spectrum.

Setup

Prerequisites

The following analysis libraries need to be accessible for all features of this code to work properly:

- Eigen3
- Minuit2
- Pybind11

Data (zenodo)

ZENOOO Search	Press F11 to ex	iunities it full screen	≜ bu	lava@cp3.sdu.dk
August 7, 2018		Dataset Open Access	C Edit	
Correlator data for dete	ermination of th	e =1	New version	
pion-pion scattering an pion form factor from N	nplitude and tim Nf=2+1 lattice C	nelike)CD	39	39
(o Andersen, Christian; (o Bulava, John; (o Hörz, Ben; (o Mo	orningstar, Colin		views See more detail	downloads
form factor described in "The I =1 pion-pion scattering amp QCD". Additionally, an analysis file is provided for each ense work. These data are intended for use with the Jupyter not provides an interface. This notebook performs the entire an Files (1.5 GB)	litude and timelike pion form factor from mble which stored the analysis choices ebook located in https://github.com/eb lalysis chain discussed in the above pap	m N f = 2 + 1 lattice s made in that atz/jupan, which per.	Indexed in	
Name	Size		Openr	
cls21_c101.hdf5	114.4 MB	Lownload		
md5:4434e0d5b0a56561a393d0f4e9fe01c0 🕜				
cls21_c101_analysis.hdf5	69.5 kB	▲ Download	Publication date: August 7, 2018	
md5:92474ed92bc8d5a0c098eb379bc2c841 🕑			DOI:	
cls21_d101.hdf5	526.1 MB	🕹 Download	Keyword(s):	
md5:c72670cb5361a8a447eb523c37df27cf @			License (for files):	timelike pion form facto
cls21_d101_analysis.hdf5	123.4 kB	▲ Download	Creative Commons Attribution	on 4.0
md5:a27a86e6a284ce3907e00d6d86003e3a 🚱				
cls21_d200.hdf5	231.8 MB	▲ Download	Versions	
md5:3704bccffe6663e5421f146f92ef8bef 🚱			Version 1.0.1-beta	Aug 7.
cls21_d200_analysis.hdf5	363.2 kB	🛓 Download	10.5281/zenodo.1341269	2018
md5:deef1d2950f393087b132900f0e6e7ac 🕑			Version 1.0.0-beta 10.5281/zenodo.1341046	Aug 7, 2018
cls21_j303.hdf5	256.5 MB	▲ Download		
md5:f2e1cb70a93106adbadcfc45bd89e915 @			Cite all versions? You can cite all versi 10.5281/zenodo.1341045. This DOI rep	ions by using the DOI presents all versions,
cls21_j303_analysis.hdf5	381.6 kB	🛓 Download	and will always resolve to the latest on	e. Read more.

md5:6959efe4f4b21d836261f24ae033897d 🕑

Higher partial waves

	Λ	l
(0, 0, 0)	T_{1u}^+	$1, 3, 5^2, \ldots$
(0,0,n)	$\begin{array}{c} A_1^+ \\ E^+ \end{array}$	$1, 3, 5^2, \dots \\ 1, 3^2, 5^3, \dots$
(0,n,n)	$A_1^+ \\ B_1^+ \\ B_2^+$	$\begin{array}{c} 1, \ 3^2, \ 5^3, \ \dots \\ 1, \ 3^2, \ 5^3 \ \dots \\ 1, \ 3^2, \ 5^3, \ \dots \end{array}$
(n, n, n)	$\begin{array}{c} A_1^+ \\ E^+ \end{array}$	$\begin{array}{c} 1, \ 3^2, \ 5^2, \ \dots \\ 1, \ 3^2, \ 5^4, \ \dots \end{array}$

- Determinant block-diagonal in finite-volume irreps.
- Each block infinite-dimensional. Elements depend on:

$$R_{\ell m} = (\gamma \pi^{3/2} u^{\ell+1})^{-1} \operatorname{Re} \mathcal{Z}_{\ell m}(\boldsymbol{s}, \gamma, u^2)$$

• Ok to truncate to leading partial wave in each block?

Higher partial waves

• Automated determination of B-matrix elements

C. Morningstar, JB, B. Singh, R. Brett, J. Fallica, A. Hanlon, B. Hörz, Nucl. Phys. **B924** (2017) 477

- For all partial waves $\ell \le 6$, all total spin $s \le 7/2$, all irreps, (non-)identical particles.
- Publicly available C++ code for evaluation. (github)
- Example box matrix element:

$$B^{A_{1},0a}(\ell_{1} = \ell_{2} = 6, n_{1} = n_{2} = 1) = R_{00} - \frac{2\sqrt{5}}{55}R_{20} - \frac{96}{187}R_{40} - \frac{80\sqrt{13}}{3553}R_{60} + \frac{445\sqrt{17}}{3553}R_{80} + \frac{15\sqrt{24310}}{3553}R_{88} - \frac{498\sqrt{21}}{7429}R_{10,0} + \frac{6\sqrt{510510}}{7429}R_{10,8} + \frac{2178}{37145}R_{12,0} + \frac{66\sqrt{277134}}{37145}R_{12,8}$$

Higher partial waves

• **P-wave:** $(\tilde{K}^{-1})_{11} = \left(\frac{m_{\rho}^2}{m_{\pi}^2} - \frac{E_{\rm cm}^2}{m_{\pi}^2}\right) \frac{6\pi}{g_{\rho\pi\pi}^2} \frac{E_{\rm cm}}{m_{\pi}}$

• *F-wave:* $(\tilde{K}^{-1})_{33} = -m_{\pi}^7 a_3$

	$\ell = 1$ fits		$\ell = 1, 3 ext{ fits}$		
ID	$m_{ ho}/m_{\pi}$	$g_{ ho\pi\pi}$	$m_ ho/m_\pi$	$g_{ ho\pi\pi}$	$m_\pi^7 a_3 imes 10^3$
D101	3.366(15)	6.19(10)	3.370(15)	6.23(10)	-0.56(30)
C101	3.395(26)	5.67(17)	3.399(30)	5.72(19)	-0.18(26)
N401	2.717(16)	5.84(12)	2.721(16)	5.88(13)	-2.7(3.0)
N200	2.733(16)	5.94(10)	2.733(16)	5.94(10)	0.0(2.9)
D200	3.877(34)	6.16(19)	3.883(36)	6.15(20)	-0.61(94)
J303	3.089(25)	6.30(17)	3.096(25)	6.32(17)	-4.2(3.6)

Results - Highlights (I)

D101: $m_{\pi} = 220 \,\text{MeV}, \quad L = 5.5 \,\text{fm}, \quad (N_{\text{ev}} = 928)$

Results - Highlights (II)

D200: $m_{\pi} = 200 \,\text{MeV}, \quad m_{\pi}L = 4.2, \quad a = 0.065 \,\text{fm}$

Results – finite volume check

C101/D101: $m_{\pi} = 220 \,\mathrm{MeV}, \quad a = 0.086 \,\mathrm{fm}$

Results - lattice spacing check

N401/N200: $m_{\pi} = 280 \,\text{MeV}, \quad L^3 \times T = 48^3 \times 128$

- Chiral behavior of mass somewhat flat
- Chiral/continuum extrapolation should be done properly

B. Hu, R. Molina, M. Döring, M. Mai, A. Alexandru, `17; D. Bolton, R. Briceno, D. Wilson, `16;

Fits to Form Factor (I)

• Gonaris-Sakurai parametrization (not a fit):

$$\begin{split} F_{\pi}^{\rm GS}(\sqrt{s}) &= \frac{f_0}{q_{\rm cm}^2 h(\sqrt{s}) - q_{\rho}^2 h(m_{\rho}) + b(q_{\rm cm}^2 - q_{\rho}^2) - \frac{q_{\rm cm}^3}{\sqrt{s}}i},\\ b &= -h(m_{\rho}) - \frac{24\pi}{g_{\rho\pi\pi}^2} - \frac{2q_{\rho}^2}{m_{\rho}}h'(m_{\rho}), \qquad f_0 &= -\frac{m_{\pi}^2}{\pi} - q_{\rho}^2 h(m_{\rho}) - b\frac{m_{\rho}^2}{4},\\ h(\sqrt{s}) &= \frac{2}{\pi}\frac{q_{\rm cm}}{\sqrt{s}}\ln\left(\frac{\sqrt{s} + 2q_{\rm cm}}{2m_{\pi}}\right), \end{split}$$

• 'Commonly' used:

Feng et al. `15; Giusti et al. `18; Meyer and Wittig '18; ...

Fits to Form Factor (II)

• nth-subtracted dispersion relation:

$$F_{\pi}(s) = \sum_{k=0}^{n-1} \frac{s^k}{k!} \frac{d^k}{ds^k} F_{\pi}(0) + \frac{s^n}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{dz}{z^n} \frac{\tan \delta_1(z) \operatorname{Re} F_{\pi}(z)}{z - s - i\epsilon}$$

• Omnès-Muskhelishvili solution:

$$F_{\pi}(s) = Q_n(s) \exp\left\{\frac{s^n}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{dz}{z^n} \frac{\delta_1(z)}{z - s - i\epsilon}\right\}$$
$$= Q_n(s) \Omega_n[\delta_1](s), \qquad \ln Q_n(s) = \sum_{k=1}^n p_k s^k,$$

• n = 2 has one parameter, n = 3 has two parameters.

GS vs. 3-subtracted disp. rel.

J3O3 (left): $m_{\pi} = 260 \text{ MeV}, \quad a = 0.050 \text{ fm}, \ L = 3.2 \text{ fm}$ D2OO (right): $m_{\pi} = 200 \text{ MeV}, \quad a = 0.065 \text{ fm}, \ L = 4.2 \text{ fm}$

Look ahead: application to HVP

Vector-vector correlator in finite volume (D200):

$$\lim_{x_0 \to \infty} G(x_0, L) = \sum_{j=1}^n \left| \langle 0 | \hat{V} | \pi \pi, j \rangle \right|^2 \, \mathrm{e}^{-E_j x_0}$$

Look ahead: K*(892)

- First test on anisotropic Nf = 2+1 lattice: $a_s/a_t = 3.5$ $32^3 \times 256, m_{\pi} = 240 \text{MeV}, a_s = 0.12 \text{fm}, L = 3.8 \text{fm}$
- R. Brett, JB, J. Fallica, A. Hanlon, B. Hörz, C. Morningstar, Nucl. Phys. B932 (2018) 29-51
- Non-identical particles: even-odd partial wave mixing

 Both s- and p-wave are fit simultaneously

mom.	irrep	ℓ
0	A_{1g}	$0, 4, \ldots$
	T_{1u}	$1,3,\ldots$
1	A_1	$0, 1, 2, \ldots$
	E	$1, 2, 3, \ldots$
2	A_1	$0, 1, 2, \ldots$
	B_1	$1, 2, 3, \ldots$
	B_2	$1, 2, 3, \ldots$
3	A_1	$0, 1, 2, \ldots$
	E	$1, 2, 3, \ldots$
4	A_1	$0, 1, 2, \ldots$

Look ahead: K*(892)

Conclusions

- Completed lattice calculation of $\delta_1(E_{\rm cm})$ and $|F_{\pi}(E_{\rm cm})|$ testing finite volume and cutoff effects.
- At $m_{\pi} = 280 \text{ MeV}$, consistency between a = 0.075 fm and a = 0.065 fm (ff. also)
- At $m_{\pi} = 220 \,\mathrm{MeV}$, consistency between $m_{\pi}L = 4.6, \ 6.1$
- Chiral behavior of m_{ρ} a bit flatter than $m_{\rm s} = {\rm const.}$
- (Publicly available) data can be used with EFT's to perform chiral (and continuum) limit.
- Timelike pion form factor data can be used to extend vector-vector correlator, improving HVP determination in TMR.
- Challenges:
 - Disconnected e.m. current insertions
 - Other scattering channels and matrix elements (progress on K*(892), D(1232))
 C. Andersen, J. Bulava, B. Hörz, C. Morningstar, Phys. Rev. D97 (2018) 014506

Finite-T effects (open b.c.'s)

$$\lim_{\substack{T \to \infty \\ t_0, (T-t_f) \to \infty}} C_T(t_0, t_f) = C(t_f - t_0) \times \left\{ 1 + O(e^{-E_0 t_{bnd}}) \right\},$$
$$R_{t_0, t'_0}(t) = \frac{C_T(t_0, t + t_0)}{C_T(t'_0, t + t'_0)}$$

Delta(1232) setup

- Choose I=3/2 irreps where $\ell(J^P)=1(3/2^+)$ is the lowest partial wave

• Neglecting d-wave Delta(1700), relying on orbital angular momentum threshold suppression of d-wave.

