Masses and decay constants of the $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$ close to the physical point

Sara Collins University of Regensburg

RQCD G. Bali, A. Cox, A. Schäfer

"Scattering Amplitudes and Resonance Properties from Lattice QCD", MITP Mainz, 27th August 2018

Outline

★ Introduction

- Motivate interest in the $J^P = 0^+ D^*_{s0}(2317)$ and $J^P = 1^+ D_{s1}(2460)$.
- Lie close to strong decay thresholds and expected to have an interesting internal structure.
- Can lattice say anything about the internal structure?
- \star Results for lower lying D_s mass spectrum.
- ★ Decay constants of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$.
 - ▶ Compare with decay constants of conventional mesons, 0⁻ and 1⁻.

More details in [Bali,1706.01247].

Lower lying D_s spectrum: mesons with $C = S = \pm 1$

Experimentally observed meson spectra:

▶ Widths: $D_{s0}^* < 3.8$ MeV, $D_{s1}(2460) < 3.5$ MeV, $D_{s1}(2536) = 0.92$ MeV, $D_{s2}^* = 17(4)$ MeV, $D_s^* < 1.9$ MeV, $D_s \sim 10^{-3}$ eV.

- ► Additional states: $D_{s1}^*(2700)^{\pm}$, $D_{sJ}(2860)$, $D_{sJ}(3040)^{\pm}$.
- Radiative + weak decays also observed/possible.

What is the nature of these states?

Quark Model: cs

Minimum quark content to satisfy the flavour quantum numbers S = 1, C = 1. HQET: $Q\bar{\ell}$ meson, hydrogen-like system, Q acts as a colour source.

Limit
$$m_Q \to \infty$$

QNs: $j_{\ell} = l + s_{\ell} = \frac{1}{2}, \frac{3}{2}, ...,$
Finite m_Q
QNs: $J = l + S = 0, 1, 2, ...,$
 $S = s_{\ell} + s_Q$
 $P = -(-1)^l$
 $\ell = 0$
 $j_{\ell}^P = \frac{1}{2}, \frac{3}{2}, ...,$
 $j_{\ell}^P = \frac{1$

Other possibilities: $c\bar{q}q\bar{s}$ Molecule: weakly bound $(c\bar{q})$ and $(q\bar{s})$. Tetraquark: $(c\bar{q}q\bar{s})$ and more.

 $j_{\ell}^{P} = \frac{3}{2}^{+}$ $J = 2^{+}$ D_{s2}^{*} $J = 1^{+}$ D_{s1}^{*}

 $j_{\ell}^{P} = \frac{1}{2}^{+}, J = 1^{+}, D_{s1}$ $J = 0^{+}, D_{s0}^{*}$

 D_s^* D_s

Lattice studies: standard approach

Early theoretical studies and lattice simulations predicted D^{*}_{s0}(2317) and D_{s1}(2460) to be broad states above threshold.

More recently: [ETMC,1603.06467], $N_f = 2 + 1 + 1$, m_{π}^{phys} and continuum extrapolation.

What can the lattice provide?

D_s spectrum:

- Postdiction of states well established experimentally.
 - Demonstration of lattice techniques.
- Investigating internal structure of non-standard candidates.
 - Determine the light quark mass dependence of the spectrum.
 - Calculate the decay constants and compare with those of conventional mesons.

Isospin limit, electrically neutral

• D_{s0}^* is stable. D_{s1} can decay to $D_s \pi \pi$.

• Ignore $D_s\pi\pi$ and $D_s\eta$ (0⁺), $D_s^*\eta$ (1⁺).

Only consider (s-wave) DK and D^*K thresholds.

Finite volume mass spectrum

Interested in states close to D + K and $D^* + K$ thresholds.

Infinite volume: $E = m_{D^{(*)}} + m_K$ Finite volume: $E = m_{D^{(*)}} + m_K + \Delta E$ $\Delta E > 0$ scattering/resonance $\Delta E < 0$ bound state

Center of momentum frame: $\vec{p}_{D^{(*)}} = -\vec{p}_{K}$ Elastic scattering: $|\vec{p}'_{D^{(*)}}| = |\vec{p}_{D^{(*)}}| = p$ $E = \sqrt{m^2_{D^{(*)}} + p^2} + \sqrt{m^2_K + p^2}$ Lüscher's relation (*s*-wave): $p \cot \delta(p) = \frac{1}{\pi L} \sqrt{4\pi} Z_{00} \left(1; \frac{L^2}{4\pi^2} p^2\right)$

Finite volume mass spectrum

Lüscher's relation: $p \cot \delta(p) = \frac{1}{\pi L} \sqrt{4\pi} Z_{00} \left(1; \frac{L^2}{4\pi^2} p^2\right)$ $T(s) = -8\pi \sqrt{s}/(p \cot \delta(p) - ip), E = \sqrt{s}$ ∞ volume bound state pole condition: $p \cot \delta(p) = ip$

Effective range approximation: $p \cot \delta(p) \approx a_0^{-1} + \frac{1}{2}r_0p^2$

Can map out the phase shift by varying the volume, moving frames..

First study: $D_{s0}^{*}(2317)$, $D_{s1}(2460)$, $D_{s1}(2536)$, $D_{s2}^{*}(2573)$

Lang, Leskovec, Mohler, Prelovsek, Woloshyn: 1308.3175, 1403.8103

Ensemble 1: $N_f = 2$, $m_{\pi} = 280$ MeV, a = 0.12 fm, and L = 2.0 fm ($Lm_{\pi} = 2.7$) Ensemble 2: $N_f = 2 + 1$, $m_{\pi} = 156$ MeV, a = 0.09 fm and L = 2.9 fm ($Lm_{\pi} = 2.3$) Earlier: [Liu,1208.4535], $D\bar{K}$ channel (instead of DK) and SU(3) flavour symmetry.

Lattice details

RQCD+QCDSF: $N_f = 2$, assume valence strange makes the dominant contribution.

Gauge+quark action: $O(\Lambda^2 a^2)$, $O(m_q^2 a^2)$ discretisation effects. $am_c \sim 0.5$.

Near physical pion mass important to reproduce the physical threshold. Volume varies 1.7-4.5 fm ($m_{\pi} = 150$ MeV) and 3.4-4.5 fm ($m_{\pi} = 290$ MeV). High statistics: 800-2000 configurations.

Extracting the mass spectrum on the lattice

Construct matrix of correlators from operators with relevant QNs.

$$\sum_{\vec{x}} \langle O_j(t,\vec{x}) O_i^{\dagger}(0,\vec{0}) \rangle = \sum_n \langle 0|O_j|n\rangle \langle n|O_i^{\dagger}|0\rangle e^{-E_m t} \sim A e^{-E_1 t} (1 + B e^{-(E_2 - E_1)t} + \ldots)$$

Operators respect lattice cubic symmetry, for bosons:

 $\blacktriangleright \ \textbf{A}_1 \rightarrow \textbf{J} = \textbf{0}, 4, \dots, \ \textbf{T}_1 \rightarrow \textbf{J} = \textbf{1}, 3, 4, \dots$

Irreducible representations: continuum O(3) symmetry has J = 0, 1, 2, ..., lattice cubic symmetry A_1, A_2, E, T_1, T_2 .

Expect: A_1 channel, g.s. + DK level $+ \dots$ T_1 channel, g.s. $+ D^*K$ level + third level $+ \dots$

Extracting the mass spectrum on the lattice

For $J^P = 0^+$ use operators: $c\bar{s}: O_{c\bar{s}} = c\bar{s}, O'_{c\bar{s}} = c\gamma_4 \bar{s}, \qquad D(\vec{0})K(\vec{0}): O_{c\bar{\ell}\ell\bar{s}} = c\gamma_5 \bar{\ell}(\vec{0})\ell\gamma_5 \bar{s}(\vec{0})$

Construct a matrix of correlators, C(t), and solve for the eigenvalues:

$$\begin{bmatrix} C_{c\bar{s}\to c\bar{s}}(t) & C_{c\bar{s}\to c\bar{s}'}(t) & C_{c\bar{s}\to c\bar{\ell}\ell\bar{s}}(t) \\ C_{c\bar{s}'\to c\bar{s}}(t) & C_{c\bar{s}'\to c\bar{s}'}(t) & C_{c\bar{s}'\to c\bar{\ell}\ell\bar{s}}(t) \\ C_{c\bar{\ell}\ell\bar{s}\to c\bar{s}}(t) & C_{c\bar{\ell}\ell\bar{s}\to c\bar{s}'}(t) & C_{c\bar{\ell}\ell\bar{s}\to c\bar{\ell}\ell\bar{s}}(t) \end{bmatrix}, \quad \lambda_n \sim De^{-E_nt}(1+O(e^{-\Delta E_mt}))$$

For stability actually solve generalised eigenvalue problem: $t > t_0$

$$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0) \qquad \lambda_n(t, t_0) = e^{-E_n(t-t_0)} \left(1 + \mathcal{O}\left(e^{-\Delta E_m t}\right)\right)$$

Actual matrix larger: 6×6 , three of type $O_{c\bar{s}}$, two of type $O'_{c\bar{s}}$ and $O_{c\bar{\ell}\ell\bar{s}}$.

Quark line diagrams that need to be computed:

Use stochastic estimation: one-end trick + sequential propagators following [CP-PACS,0708.3705] ($\rho \rightarrow \pi\pi$) and [RQCD,1512.08678] ($\rho \rightarrow \pi\pi$).

Computational cost restricts t in C(t) to range 5 - 19, ($N_T = 15$).

Main overhead compared to standard $c\bar{s}$ analysis: N_T + 3 light propagators per configuration.

Effective masses of eigenvalues: $J^P = 0^+$

$$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0), \qquad \lambda_n(t, t_0) = e^{-E_n(t-t_0)} + \dots$$

 $E_{n}\left(t+a/2,t_{0}
ight)=\log\left(\lambda_{n}\left(t,t_{0}
ight)/\lambda_{n}\left(t+a,t_{0}
ight)
ight)$, expect g.s. and DK level.

From 4 × 4 correlator matrix, three $O_{c\bar{s}}$ and one $O_{c\bar{\ell}\ell\bar{s}}$.

Fitting to eigenvalues: $J^P = 0^+$

Thermal states: possible contributions for (anti) periodic b.c. of the form

$$\langle D|O_i|K\rangle\langle K|O_j^{\dagger}|D\rangle e^{-(T-t)m_K}e^{-m_D t}$$

Estimate: keep $t_{max} < 19a$ (17a) for T/a = 64 (48) to avoid these contributions.

Finite volume spectrum: $J^P = 0^+$ and 1^+

Vary the operator basis for the correlator matrix.

 $c\bar{s}$ and $D^{(*)}K$ operators are needed to resolve g.s.+ DK level, depends on set up c.f. ETMC.

Axial-vector: need $O'_{c\bar{s}}$ in order to see third close lying level.

Extraction of the phase shift

$$E_{n} = \sqrt{m_{K}^{2} + p_{n}^{2}} + \sqrt{m_{D^{(*)}}^{2} + p_{n}^{2}} \quad \Rightarrow \quad p_{n} \cot \delta(p_{n}) = \frac{2}{L\sqrt{\pi}} \mathcal{Z}_{00}\left(1; \frac{L^{2}}{4\pi^{2}} p_{n}^{2}\right)$$

Dispersion relation: interested in p^2 up to 400^2 MeV.

Phase shift

Results for largest volumes close to infinite volume for g.s..

Effective range approximation: $p \cot \delta(p) = 1/a_0 + r_0 p^2/2 + O(p^4)$ Omit L = 24a for $m_{\pi} = 290$ MeV, p^2 may be too large or finite volume effects. $J^P = 1^+$: third level ($D_{s1}(2536)$) not considered.

a_0 , r_0 and g

In the vicinity of the pole $T(s) = g^2/(s - s_B)$ Errors: (stat.)(finite V)

finite V, drop smallest L.

	<i>a</i> ₀ [fm]	<i>r</i> ₀ [fm]	g [GeV]	
Scalar				
RQCD	-1.49(0.13)(-0.30)	0.20(0.09)(+0.31)	11.0(0.6)(+1.2)	
^a Lang et al.	-1.33(20)	0.27(17)	12.6(1.5)	
¹ HMChPT,LQCD	-1.3(5)(1)	-0.1(3)(1)	11.3	
² LQCD,HMChPT	-0.86(3)			
³ HMChPT,Expt			10.203	
⁴ HMChPT,Expt,LQCD	$-1.04^{+0.06}_{-0.03}$			
⁵ HMChPT,Expt,LQCD	$-0.89^{+0.06}_{-0.10}$			
⁶ HMChPT,Expt	$-0.95\substack{+0.15+0.08\\-0.15-0.13}$			
Axialvector				
RQCD	-1.24(0.09)(-0.12)	0.27(0.07)(+0.13)	13.8(0.7)(+1.1)	
^a Lang et al.	-1.11(11)	0.10(10)	12.6(7)	
¹ HMChPT,LQCD	-1.1(5)(2)	-0.2(3)(1)	14.2	

(a) [Lang,1403.8103] (1) [Torres,1412.1706], (2) [Liu,1208.4535],

(3) [Guo,hep-ph/0603072], (4) [Yao,1502.05981], (5) [Guo,1507.03123],

(6) [Albaladejo,1604.01193]

Splitting with the threshold: $E_n = m_D + m_K + \Delta E_n$

Spectrum: $m_{\pi}=150$ MeV

 D_s , D_s^* , $D_{s1}(2536)$ from L = 64a.

Deviation from expt.

Likely discretisation effects: $O(a^2)$, $O((ma)^2)$, $am_c \sim 0.5$.

HQET: fine structure splittings \rightarrow momentum scales close to $m_c \ll a^{-1}$.

Spin-average splittings $\rightarrow O(\Lambda) \ll a^{-1} = 2.8 \text{ GeV}.$

Spectrum: splittings

Separate out the light quark dependence.

Short (crude) extrapolation: $m_+ - m_- = 356(3)$ MeV, c.f. 349 MeV from expt.. m_{π} dependence of splittings significant: due to mass shifts for D_{s0}^* , D_{s1} . D_s and D_s^* masses only shift by 3 - 7 MeV.

Decay constants

Leptonic decay: pseudoscalar D_s meson, $J^P = 0^-$,

Decay constant: $\langle 0|\bar{s}\gamma_{\mu}(1-\gamma_{5})c|D_{s}(\boldsymbol{p})\rangle \longrightarrow \langle 0|\bar{s}\gamma_{\mu}\gamma_{5}c|D_{s}(\boldsymbol{p})\rangle = f_{A}p_{\mu}$ Decay width:

$$\Gamma = \frac{G_F^2}{8\pi} f_{D_s}^2 m_I^2 M_{D_s} \left(1 - \frac{m_I^2}{M_{D_s}^2} \right)^2 |V_{cs}|^2$$

Lattice: FLAG review [Aoki,1607.00299]:

$$\begin{aligned} N_f &= 2 \qquad f_{D_s} &= 250(7) \text{ MeV} \qquad N_f &= 2+1 \qquad f_{D_s} &= 249.8(2.3) \text{ MeV} \\ N_f &= 2+1+1 \qquad f_{D_s} &= 248.83(1.27) \text{ MeV} \end{aligned}$$

Decay constants

Vector meson,
$$D^st_s$$
, $J^P=1^-$

[Becirevic,1201.4039], $N_f = 2$ twisted mass fermions, $f_{D_s^*}/f_{D_s} = 1.26(3)$, [ETMC,1610.09671] $N_f = 2 + 1 + 1$ twisted mass fermions $f_{D_s^*}/f_{D_s} = 1.09(2)$. [HPQCD,1312.5264] $N_f = 2 + 1 + 1$ HISQ fermions $f_{D_s^*}/f_{D_s} = 1.10(2)$,

Higher positive parity states: D_{s0}^* and D_{s1}

 $J^{P} = 0^{+} \qquad \text{Vector} \qquad \langle 0 | \overline{s} \gamma_{\mu} c | D_{s0}^{*} (\boldsymbol{p}) \rangle = \mathbf{f}_{\mathbf{V}}^{0^{+}} p_{\mu}$ $J^{P} = 1^{+} \qquad \text{Axial-vector} \qquad \langle 0 | \overline{s} \gamma_{\nu} \gamma_{5} c | D_{s1} (\boldsymbol{p}, \boldsymbol{\epsilon}) \rangle = \mathbf{f}_{\mathbf{A}}^{1^{+}} m_{D_{s1}} \epsilon_{\nu}$

Compare the magnitude of $f_V^{0^+}$ and $f_A^{1^+}$ with those of conventional D_s and D_s^* .

In addition:

For D_{s0}^* , scalar and vector decay constants are related:

Conserved vector current relation $f_V = f_S(m_c - m_s)/m_{D_{e0}^*}$

Non-leptonic $B \rightarrow D^{(*)}D^{(*)}_{sJ}$ decays

Decay constants not yet directly determined in expt..

Instead: non-leptonic $B \rightarrow D^{(*)}D^{(*)}_{sJ}$ decays

In low energy limit (effective Hamilitonian) and factorisation (heavy quark limit). Amplitude approx $\propto \langle D_{s0}^* | \bar{s} \gamma_{\mu} (1 - \gamma^5) c | 0 \rangle \langle D | \bar{c} \gamma^{\mu} (1 - \gamma^5) b | B \rangle$

$$\begin{split} \mathbf{R}_{\mathsf{D}0} &= \frac{\mathcal{B}(B \to DD_{\mathsf{s}0}^*(2317))}{\mathcal{B}(B \to DD_{\mathsf{s}})} \approx \mathbf{R}_{\mathsf{D}^*0} = \frac{\mathcal{B}(B \to D^*D_{\mathsf{s}0}^*(2317))}{\mathcal{B}(B \to D^*D_{\mathsf{s}})} \approx \left|\frac{\mathbf{f}_{\mathsf{D}_{\mathsf{s}0}^*}}{\mathbf{f}_{\mathsf{D}_{\mathsf{s}}}}\right|^2 \\ \mathbf{R}_{\mathsf{D}1} &= \frac{\mathcal{B}(B \to DD_{\mathsf{s}1}(2460))}{\mathcal{B}(B \to D^*D_{\mathsf{s}}^*)} \approx \mathbf{R}_{\mathsf{D}^*1} = \frac{\mathcal{B}(B \to D^*D_{\mathsf{s}1}(2460))}{\mathcal{B}(B \to D^*D_{\mathsf{s}}^*)} \approx \left|\frac{\mathbf{f}_{\mathsf{D}_{\mathsf{s}1}}}{\mathbf{f}_{\mathsf{D}_{\mathsf{s}}^*}}\right|^2 \end{split}$$

Expt: [Belle,1102.0935]

$$\begin{split} R_{D0} &= 0.10(3), \quad R_{D^*0} = 0.15(6) \quad \text{are similar as are} \\ R_{D1} &= 0.44(11), \quad R_{D^*0} = 0.58(12) \end{split}$$

Decay constants: results

 $C_{LS}^{X}(t) = \langle 0|J_{X}(t) O^{\dagger}(0)|0 \rangle \approx \sqrt{\frac{mL^{3}}{2}} e^{mt_{0}} \mathbf{f}_{X}^{\text{latt}} e^{-mt} \qquad \mathbf{f}_{X}^{\text{ren}} = Z_{X} (1 + a\overline{m}b_{X}) f_{X}^{\text{latt}}$ $X \in \{S, V, A, T\} \text{ and } m \in \{m_{0^{+}}, m_{1^{+}}\}$ $\overset{0^{+} \text{ decay constants}}{\int_{T_{S}}^{T_{S}} m_{\pi} = 150 \text{ MeV}} \overset{1^{+} \text{ decay constants}}{\int_{T_{A}}^{T_{S}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\overset{1^{+} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\overset{1^{+} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay constants}}{\overset{1^{-} \text{ decay constants}}{\int_{T_{A}}^{T_{A}} m_{\pi} = 150 \text{ MeV}}} \overset{1^{-} \text{ decay consta$

 D_{s1} is a narrow resonance (p wave decay to $D_s\pi\pi$): [Briceño and Hansen,1502.04314] 0 \rightarrow 2 but no 0 \rightarrow 3.

Decay constants: results $m_{\pi}=150$ MeV

Errors: (stat.)(renorm.)(finite V)(disc.)

Finite V from extrap. with $f + ge^{-Lm_{\pi}}/(Lm_{\pi})^{3/2}$ from LO ChPT for $m_{\pi} = 290$ MeV. Also: $f_T^{1^+} = 135(2)(2)(+3)(10)$ MeV.

MeV	$f_S^{0^+}$	$f_V^{0^+}$	$f_A^{1^+}$	
RQCD	241(4)(2)(+12)(10)	114(2)(0)(+5)(10)	194(3)(4)(+5)(10)	
¹ Herdoiza et al.	340(110)	200(50)		
² <i>B</i> -decays,HQS		74(11)	166(20)	
³ <i>B</i> -decays,HQS		67(13)		
⁴ <i>B</i> -decays,HQS		58-86	130-200	
⁵QM		440	410	
⁶ QM		122-154		
⁷ LF QM		71	117	
⁸ LC QCDSR	225(25)		225(25)	
⁹ DK-molecule		67.1(4.5)	144.5(11.1)	
¹⁰ LF QM		$74.4_{-10.6}^{+10.4}$	159_{+32}^{-36}	
¹¹ QM		119	165	
¹² QCDSR	333(20)		245(17)	
(1) [Herdoiza,hep-lat/0604001] (2) [Hwang,hep-ph/0410301] (3) [Cheng,hep-ph/0305038]				
(4) [Cheng,hep-ph/0605073] (5) [LeYaounac,hep-ph/0107047] (6) [Hsieh,hep-ph/0312232]				
(7) [Cheng,hep-ph/0310359] (8) [Colangelo,hep-ph/0505195] (9) [Fässler,0705.0892](10)				
[Verma,1103.2973] (11) [Segovia,1203.4362] (12) [Wang,1506.01993]				

Decay constants: results $m_{\pi} = 150$ MeV

Unfortunately, f_{D_s} and $f_{D_s^*}$ not computed.

Scalar: use[ALPHA,1312.7693] results with same action and $N_f = 2$:

 $f_{D_s}\sim 257$ MeV at $m_\pi=190$ MeV, a=0.065 fm, $f_{D_s}=247$ MeV at m_π^{phys} , a=0.257

Gives:

$$f_{D_{s0}^*}/f_{D_s} \approx 0.45, ~~|f_{D_{s0}^*}/f_{D_s}|^2 \approx 0.20$$

Vector: use m_{π}^{phys} , a = 0 results

[Becirevic,1201.4039], $N_f = 2$ twisted mass fermions, $f_{D_s^*}/f_{D_s} = 1.26(3)$, [HPQCD,1312.5264] HISQ fermions $f_{D_s^*}/f_{D_s} = 1.10(2)$, [ETMC,1610.09671] $N_f = 2 + 1 + 1$ twisted mass fermions $f_{D_s^*}/f_{D_s} = 1.09(2)$.

Gives: $f_{D_{s1}}/f_{D_s^*} \approx 0.6 - 0.7$, $|f_{D_{s1}}/f_{D_s^*}|^2 \approx 0.36 - 0.49$

Expt: [Belle,1102.0935]

$$\mathsf{R}_{D0} = 0.10(3) \quad \mathsf{R}_{D^*0} = 0.15(6) \quad \mathsf{R}_{D1} = 0.44(11) \quad \mathsf{R}_{D^*0} = 0.58(12)$$

Decay constants

Heavy quark $m_Q \to \infty$ limit: (D_s, D_s^*) , (D_{s0}^*, D_{s1}) form degenerate pairs.

$$m_c$$
 $f_{D_s^*}/f_{D_s} = 1.10 - 1.26$, $f_{D_{s1}}/f_{D_{s0}^*} \sim 1.7$,

Nature of states: P = + decay constants suppressed relative to P = -.

$$f_{D_{s0}^*}/f_{D_s} \approx 0.45, \qquad f_{D_{s1}}/f_{D_s^*} \approx 0.6 - 0.7$$

The states more spatially extended (in a non-relativistic $\bar{q}q$ picture $f \propto |\psi(0)|^2$). Conventional mesons: charmonium sector

So far lattice results for decay constants of η_c (0⁻), J/ψ (1⁻) and h_c (1⁺⁻). [Becirevic,1312.2858]: $f_{h_c}/f_{J/\psi} = 0.56$.

However, roughly: $\Gamma(\bar{c}c o \gamma\gamma) \propto f_{\bar{c}c}^2/m_{\bar{c}c}$

From the expt. results

$$f_{\chi_0}/f_{\eta_c} = f_{0^{++}}/f_{0^{-+}} \sim 0.7$$

D_s: summary and outlook

 \star High statistics study with $m_{\pi} = 290$ MeV and 150 MeV and L = 1.7 - 4.5 fm.

 \star DK and D^*K thresholds reproduced to within 14 MeV.

 $\star D^{(*)}K$ operators essential for reliably extracting the g.s. and DK state.

★ Phase shift, $p \cot \delta(p)$ linear with p^2 for $|p^2| \le 300 \text{ GeV}^2$ consistent with the effective range approximation.

 \bigstar Discrepancies seen with experimental mass spectrum. Likely due to discretisation effects.

 \star Spin-average masses and splittings reasonably consistent with expt.. Significant dependence on light quark mass observed.

 \star $f_V^{0^+}$ and $f_A^{1^+}$ roughly compatible with $B \to D^{(*)}D_{sJ}^{(*)}$ branching fractions.

 \star $f_S^{0^+}$ and $f_T^{1^+}$ can be compared to model predictions.