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B meson spectroscopy



Radial excitations: molecules or quark-antiquark bound states?

D∗ → Dπ: an ideal process to test analytical computations based on the soft pion theorem

〈D(p′)π(q)|D∗(p, ǫλ) = gD∗Dπq · ǫλ, gH∗Hπ ≡ 2
√
mHmH∗ ĝQ

fπ

0.2 0.4 0.6 0.8

^gQ

m
�

=
m

c
m

�
=

m
b

m
�

!
1

Ba�ar '��

latti�e

KRWY '99 (LCSR

latti�e

KRWY '99 (LCSR

latti�e

Claim: a negative radial excitation contribution to the hadronic side of LCSR might explain
the discrepancy between gexpD∗Dπ and gLCSR

D∗Dπ [D. Becirevic et al, ’03].

Check on the lattice that statement in the heavy quark limit



Transition amplitude under interest, with q = p′ − p, Aµ = d̄γµγ5u,

Tmnµ = 〈Bm(p)|Aµ|B∗
n(p

′, λ)〉 and ǫµ⊥(p
′, λ) = ǫ(p′, λ)µ − ǫ(p′,λ)·q

q2
qµ:

Tmnµ = 2mB∗
n
Amn

0 (q2)
ǫ(p′, λ) · q

q2
qµ + (mBm +mB∗

n
)Amn

1 (q2)ǫµ⊥(p
′, λ)

+ Amn
2 (q2)

ǫ(p′, λ) · q
mBm +mB∗

n

[
(p+ p′)µ +

m2
Bm

−m2
B∗

n

q2
qµ

]

With 〈Bm(p)|qµAµ|B∗
n(p

′, λ)〉 = 2mB∗
n
Amn

0 (q2) q · ǫ(p′, λ), PCAC relation, LSZ reduction

formula and
∑

λ ǫµ(k, λ) ǫ
∗
ν(k, λ) = −gµν +

kµkν

m2 :

gH∗
nHmπ =

2mH∗
n
Amn

0 (0)

fπ
, Amn

0 (q2) = −
∑

λ

〈Hm(p)|qµAµ|H∗
n(p

′, λ)〉
2mH∗

n
qi

ǫ∗i (p
′, λ)

Back to the x space: Amn
0 (q2 = 0) = − q0

qi

∫
d3r f

(mn)
γ0γ5

(~r) ei~q·~r +
∫
d3r f

(mn)
γiγ5

(~r) ei~q·~r

Axial density distributions fmn
γµγ5

(r) defined
in terms of 2-pt and 3-pt HQET correlation functions Q

q

~r



Density distributions

The concept is not new:
[C. Alexandrou, Ph. de Forcrand and A. Tsapalis, 03; J. Green and J. Negele, ’10]

Application to B(L = 0) states

Lattice set-up: O(a) improved Wilson-Clover (light quark), HYP2 (static quark)

lattice β L3 × T a[fm] mπ[MeV] Lmπ

A5 5.2 323 × 64 0.075 330 4
B6 483 × 96 280 5.2
D5 5.3 243 × 48 0.065 450 3.6
E5 323 × 64 440 4.7
F6 483 × 96 310 5
N6 5.5 483 × 96 0.048 340 4

Q1 6.2885 243 × 48 0.06 - -
Q2 6.2885 323 × 64 0.06 - -

Basis of interpolating fields (4× 4 matrix of correlators, Gaussian smearing) large enough
to well isolate the ground state and the first excited state via GEVP.



Spatial component of the axial density distributions: systematics from excited states,
finite-volume effects and cut-off effects taken into account
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f11
γiγ5

(r): positive everywhere; f12
γiγ5

(r): there is a node; f22
γiγ5

(r): almost positive, negative
part interpreted by relativistic effects

Techniques employed also for the charge density distribution fmn
γ0

(r)

Including ZV ,
∫
dr r2 f11

γ0
(r) compatible with 1.

∫
dr r2f12

γ0
(r) compatible with 0.



There are also time components of density distributions.

Matrix elements obtained at q after a Fourier transform of the distributions to get gB∗′Bπ

Mi(q
2
max − ~q 2) = 4π

∫ ∞

0

dr r2
sin(|~q|r)

|~q|r f (12)
γiγ5

(~r)

q0
qi

M0(q
2
max − ~q 2) = −q04iπ

∫ ∞

0

dr‖

∫ ∞

0

dr⊥ r⊥ f (12)
γ0γ5

(r‖, r⊥)
sin(|~q| r‖)

|~q|

A12
0 (q2) = − q0

qi
M0(q

2
max − ~q 2) +Mi(q

2
max − ~q 2)

Extrapolation of A12
0 (q2 = 0) to the physical point:

A12
0 (0,m2

π) = D0 +D1a
2 +D2m

2
π/(8πf

2
π)

Qualitative agreement between lattice and quark models: q0M0/qi dominates in A12
0 (q2)

and explains why A12
0 (q2 = 0) < 0.



Issue with multihadron states?

A possible unpleasant systematics of our results is an uncontrolled mixing between radial

excitations (B∗′ ) and multihadron states (B∗
1π in S wave) close to threshold.

Σ12 = mB∗′ −mB , δ = mB∗

1
−mB

lattice aΣ12 aδ + amπ

A5 0.253(7) 0.281(4)

B6 0.235(8) 0.248(4)

E5 0.225(10) 0.278(6)

F6 0.213(11) 0.233(3)

N6 0.166(9) 0.176(3)

Comparison with quenched data: behaviour of f11
γiγ5

and f12
γiγ5

similar



At Nf = 2, position of the node of f12
γiγ5

weakly dependent of mπ in the range we have
considered

lattice mπ [MeV] r12n [fm]

A5 330 0.369(13)

B6 280 0.374(12)

E5 440 0.369(11)

F6 310 0.379(20)

N6 340 0.365(12)

Change observed when q̄∇kh is included in addition to q̄γkh to couple to B∗′

q̄γkh only with q̄∇kh

A new state, not seen before, is present in the spectrum close to the first excited state.



A toy model with 5 states in the spectrum to understand this fact:

spectrum
0.3
0.6

0.63
0.8

0.95

Matrix of couplings


0.6 0.25 x× 0.4 0.1 0.5

0.61 0.27 x× 0.39 0.11 0.51

0.58 0.24 x× 0.42 0.12 0.52

0.57 0.25 x× 0.41 0.1 0.49

0.56 0.26 x× 0.36 0.08 0.48




x ≪ 1: GEVP isolates states 1, 2, 4 and 5; x → 1, GEVP isolates states 1, 2, 3 and 4

A GEVP can "miss" an intermediate state of the spectrum if, by accident, the coupling of
the interpolating fields to that state is suppressed.

Our claim: using interpolating fields q̄γkh, no chance to couple to multi-hadron states while
inserting an operator q̄∇kh may isolate the B∗

1π two-particle state.

Clues come from density distributions obtained with that interpolating field.



Conservation of vector charge: not verified in the case of second excited state if the basis
of interpolating fields incorporates q̄∇kh.

Including or not q̄∇kh does not change the profile of f11
γ0

nor f22
γ0

: it does in the case of f33
γ0

.



Question addressed in the framework of the workshop

Can density distributions provide any relevant information about the nature of exotic
charmonia or b̄bq̄q hadrons (bound states, molecules)?

Broad “diquark" density distributions within b̄bq̄q state: tetraquark bound state

Peaked “diquark" density distributions within b̄bq̄q state: molecular state



Decay of states near thresholds

Heavy Meson Chiral Perturbation Theory is often used to extrapolate lattice data in the
heavy-light sector.

Example on fB :

fB
√

mB

2
(y, a, δ) = A

[
1− 3

4
1+3ĝ2

2
(y ln y − yexp ln yexp)

]
+ C(y − yexp) +Dδa2

[F. Bernardoni et al, ’14]

LHMχPT =
f2
π

8
Tr(∂µΣ∂µΣ

†) + iTr(Hv · DH̄) + iTr(Sv · DS̄)

+ iĝTr(Hγµγ5AµH̄) + ig̃Tr(Sγµγ5AµS̄) + ihTr(Sγµγ5AµH̄)

H : jP = 1
2

− heavy-light meson doublet S : jP = 1
2

+ heavy-light meson doublet



B

B∗
0

π

Γ(B∗0
0 → B+π−) = 1

8π
g2B∗

0
Bπ

|~qπ |

m2

B∗

0

|~qπ| =
√

[m2

B∗

0

−(mB+mπ)2][m2

B∗

0

−(mB−mπ)2]

2mB∗

0

HMχ PT: Γ(B∗
0 → B+π−) = h2

8πf2
π

mB

m3

B∗

0

(
m2

B∗

0
−m2

B

)2

|~qπ|

gB∗

0
Bπ =

√
mB

mB∗

0

(
m2

B∗

0
−m2

B

)
h
fπ

r

P S

0 t2

A�(t1; �)

C
�3�
���(t1; t2)

Extract h from the density distribution [D. Becirevic et al, ’12]

A+(δ
2 − q2π) = 4π

∫∞

0
r2dr sin(qπr)

qπr
fPAS(r)

δ = mB∗

0
−mB fPAS(r) = 〈B|[q̄γ0γ5q](r)|B∗

0 〉
~qπ = (0, 0, δ)

We have followed another strategy, valid near thresholds [C. McNeile et al, ’01; ’03; ’04]

We consider the ratio C
(2)
B∗

0
Bπ(t)/

√
C

(2)
B∗

0
B∗

0

(t)C
(2)
BπBπ(t)

〈π+(qπ)B
−(p)|B∗0

0 (p′)〉 = gB∗

0
Bπ =

√
mBmB∗

0

m2
B∗

0
−m2

B

m2
B∗

0

h

fπ

Fermi golden rule: Γ(B∗
0 → B−π+) = 2π |〈π+(qπ)B

−(p)|B∗0
0 (p′)〉|2 ρ

ρ(Eπ) =
L3

(2π)3
4π~q 2

π
dqπ
dEπ

= L3

2π2 |~qπ|Eπ

Γ(B∗

0→B−π+)

qπ
= 1

π

(
L
a

)3
(aEπ) |a〈π+(qπ)B

−(p)|B∗0
0 (p′)〉|2



C
(2)
B∗

0
Bπ(t) =

∑

t1

〈0|OB∗

0 |B∗
0 〉x〈Bπ|OBπ|0〉e−mB∗

0
t1
e−EBπ(t−t1) +O(x3) + excited states

Assumption: small overlaps 〈0|OB∗

0 |Bπ〉 and 〈0|OBπ|B∗
0 〉

x = |a〈π+(qπ)B
−(p)|B∗0

0 (p′)〉| 〈n|m〉 = δmn

Close to the threshold mB∗

0
≈ EBπ:

C
(2)
B∗

0
Bπ(t) = 〈0|OB∗

0 |B∗
0 〉x〈Bπ|OBπ|0〉 × te

−mB∗

0
t
+O(x3) + excited states

R(t) =
C

(2)
B∗

0
Bπ(t)

(
C

(2)
B∗

0
B∗

0

(t)C
(2)
BπBπ(t)

)1/2
≈ A+ xt

Further away from the threshold, R(t) goes in t −→ 2
∆
sinh

(
∆
2
t
)
= t+ ∆2t3

24
+O(∆4),

∆ = mB∗

0
− EBπ

Excited states are suppressed by solving a GEVP:



β a[fm] L/a mπ[MeV]
5.2 0.075 48 280

5.3 0.065 32 440

48 310

5.5 0.048 48 340

[a = 0.065 fm, mπ = 440 MeV]

Several chiral extrapolations to get h, using mB∗

0
−mB = 399(17)(28) MeV



formula result
h = Cste 0.84(3)
h = h0 + αm2

π 0.86(4)

h = h0

[
1− 3

4

3ĝ2
0
+3g̃2

0
+2ĝ0g̃0

(4πfπ)2
m2

π lnm2
π

]
+ Chm

2
π 0.84(3)

h = h0

[
1− 3

4

3ĝ2
0
+3g̃2

0
+2ĝ0g̃0

(4πfπ)2
m2

π ln(m2
π)− h2

0

(4πfπ)2
m2

π

2δ2
m2

π ln(m2
π)
]
+ C ′

hm
2
π 0.85(3)

h = 0.84(3)(2)

Check of the analysis using the correlator CBπ Bπ, with Cconn(t) = − 3
2
Cbox(t) +

1
2
Ccross(t):

R̃(t) =
(vBπ(t), Cconn(t)vBπ(t))

(vBπ(t), CBπBπ(t)vBπ(t))
= A′ +

1

2
x2t2 +O(t)

[a = 0.065 fm, mπ = 440 MeV]

|ax| = 0.0237(8) in perfect agreement
with |ax|R(t) = 0.0238(9)



Collection of results

0.55 0.85
h

D. Mohler et al ’13

B. Blossier et al ’14

D. Becirevic et al ’12

D. Becirevic et al ’12

PDG ’12

P. Colangelo et al ’95

T. Aliev et al, ’96

Different ways to get h: Γ(D∗
0), phase shift in Dπ scattering state (small 1/mc corrections),

QCD sum rules, density distribution, transition at the threshold mB∗

0
≈ EBπ

Adler-Weisberger sum rule:
∑

δ |XBδ|2 = 1 Γ(I → Fπ) = 1
1πf2

π

|~q|3

2jI+1
|XI→F |2

With ĝ ∼ 0.5, it is almost saturated by B∗ and B∗
0 .

h is pretty large, some care is required in the application of HMχPT for pion masses close
to mB∗

0
−mB ∼ 400 MeV: B meson orbital excitations degrees of freedom can not be

neglected in chiral loops.



Question addressed in the framework of the workshop

Does it make sense to study broad resonant states by “imposing" kinematical
configurations very near thresholds?

Example of K∗, K∗ → Kπ

K∗(sū′) → K(sū)π′(uū′) where the quark u′ is quenched

The threshold condition EKπ′ ∼ EK∗ is set by imposing twisted BC on the u field in OKπ′ .
s and u′ quenched =⇒ no issue with isospin breaking effects
[C. Sachrajda and G. Villadoro, ’04]

Numerical advantage of twisted BC compared to moving frames: more efficient scan along
the “Breit-Wigner"

Theoretical issue: is the extrapolation mu′ → mu smooth? (cusp, large finite volume effects
because of “shadow" isospin breaking)
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