Properties of radial and orbital excitations of the heavy-light meson

Benoît Blossier

CNRS/Laboratoire de Physique Théorique d'Orsay

RESQCD 2018, Mainz, 27 – 31 August 2018

- Radial excitations: molecules or quark-antiquark bound states?
- Decay of states near thresholds

[B. B., J. Bulava, M. Donnellan and A. Gérardin, PRD87, 9, 094518 (2013)]
[B. Blossier, N. Garron and A. Gérardin, EPJC 75, 103 (2015)]
[B. B. and A. Gérardin, PRD94, 7, 074504 (2016)]

B meson spectroscopy

Radial excitations: molecules or quark-antiquark bound states?

 $D^* \rightarrow D\pi$: an ideal process to test analytical computations based on the soft pion theorem

Claim: a negative radial excitation contribution to the hadronic side of LCSR might explain the discrepancy between $g_{D^*D\pi}^{exp}$ and $g_{D^*D\pi}^{LCSR}$ [D. Becirevic *et al*, '03].

Check on the lattice that statement in the heavy quark limit

Transition amplitude under interest, with q = p' - p, $\mathcal{A}^{\mu} = \bar{d}\gamma^{\mu}\gamma_5 u$, $T^{mn\,\mu} = \langle B_m(p) | \mathcal{A}^{\mu} | B_n^*(p',\lambda) \rangle$ and $\epsilon^{\mu}_{\perp}(p',\lambda) = \epsilon(p',\lambda)^{\mu} - \frac{\epsilon(p',\lambda) \cdot q}{q^2} q^{\mu}$:

$$T^{mn\mu} = 2m_{B_n^*} A_0^{mn}(q^2) \frac{\epsilon(p',\lambda) \cdot q}{q^2} q^{\mu} + (m_{B_m} + m_{B_n^*}) A_1^{mn}(q^2) \epsilon_{\perp}^{\mu}(p',\lambda) + A_2^{mn}(q^2) \frac{\epsilon(p',\lambda) \cdot q}{m_{B_m} + m_{B_n^*}} \left[(p+p')^{\mu} + \frac{m_{B_m}^2 - m_{B_n^*}^2}{q^2} q^{\mu} \right]$$

With $\langle B_m(p)|q_\mu \mathcal{A}^\mu|B_n^*(p',\lambda)\rangle = 2 m_{B_n^*} A_0^{mn}(q^2) q \cdot \epsilon(p',\lambda)$, PCAC relation, LSZ reduction formula and $\sum_{\lambda} \epsilon_\mu(k,\lambda) \epsilon_{\nu}^*(k,\lambda) = -g_{\mu\nu} + \frac{k_\mu k_\nu}{m^2}$:

$$g_{H_n^*H_m\pi} = \frac{2m_{H_n^*}A_0^{mn}(0)}{f_\pi}, A_0^{mn}(q^2) = -\sum_{\lambda} \frac{\langle H_m(p)|q_\mu \mathcal{A}^\mu|H_n^*(p',\lambda)\rangle}{2m_{H_n^*}q_i} \epsilon_i^*(p',\lambda)$$

Back to the *x* space: $A_0^{mn}(q^2 = 0) = -\frac{q_0}{q_i} \int d^3r f_{\gamma_0\gamma_5}^{(mn)}(\vec{r}) e^{i\vec{q}\cdot\vec{r}} + \int d^3r f_{\gamma_i\gamma_5}^{(mn)}(\vec{r}) e^{i\vec{q}\cdot\vec{r}}$

Axial density distributions $f^{mn}_{\gamma_{\mu}\gamma_{5}}(r)$ defined in terms of 2-pt and 3-pt HQET correlation functions

Density distributions

The concept is not new:

[C. Alexandrou, Ph. de Forcrand and A. Tsapalis, 03; J. Green and J. Negele, '10]

Application to B(L=0) states

Lattice set-up: O(a) improved Wilson-Clover (light quark), HYP2 (static quark)

	lattice	eta	$L^3 \times T$	$a[\mathrm{fm}]$	$m_{\pi}[\text{MeV}]$	Lm_{π}
CLS ased	A5	5.2	$32^3 \times 64$	0.075	330	4
	B6		$48^3 \times 96$		280	5.2
	D5	5.3	$24^3 \times 48$	0.065	450	3.6
	E5		$32^3 \times 64$		440	4.7
	F6		$48^3 \times 96$		310	5
	N6	5.5	$48^3 \times 96$	0.048	340	4
	Q1	6.2885	$24^3 \times 48$	0.06	-	-
	Q2	6.2885	$32^3 \times 64$	0.06	-	-

Basis of interpolating fields (4×4 matrix of correlators, Gaussian smearing) large enough to well isolate the ground state and the first excited state *via* GEVP.

Spatial component of the axial density distributions: systematics from excited states, finite-volume effects and cut-off effects taken into account

 $f_{\gamma_i\gamma_5}^{11}(r)$: positive everywhere; $f_{\gamma_i\gamma_5}^{12}(r)$: there is a node; $f_{\gamma_i\gamma_5}^{22}(r)$: almost positive, negative part interpreted by relativistic effects

Techniques employed also for the charge density distribution $f_{\gamma_0}^{mn}(r)$

Including Z_V , $\int dr r^2 f_{\gamma_0}^{11}(r)$ compatible with 1. $\int dr r^2 f_{\gamma_0}^{12}(r)$ compatible with 0.

There are also time components of density distributions.

Matrix elements obtained at q after a Fourier transform of the distributions to get $g_{B^{*'}B\pi}$

$$\mathcal{M}_{i}(q_{\max}^{2} - \vec{q}^{2}) = 4\pi \int_{0}^{\infty} dr \, r^{2} \, \frac{\sin(|\vec{q}|r)}{|\vec{q}|r} f_{\gamma_{i}\gamma_{5}}^{(12)}(\vec{r})$$

$$\frac{q_{0}}{q_{i}} \mathcal{M}_{0}(q_{\max}^{2} - \vec{q}^{2}) = -q_{0}4i\pi \int_{0}^{\infty} dr_{\parallel} \int_{0}^{\infty} dr_{\perp} \, r_{\perp} \, f_{\gamma_{0}\gamma_{5}}^{(12)}(r_{\parallel}, r_{\perp}) \, \frac{\sin(|\vec{q}|\,r_{\parallel})}{|\vec{q}|}$$

$$A_0^{12}(q^2) = -\frac{q_0}{q_i} \mathcal{M}_0(q_{\max}^2 - \vec{q}^2) + \mathcal{M}_i(q_{\max}^2 - \vec{q}^2)$$

Extrapolation of $A_0^{12}(q^2 = 0)$ to the physical point: $A_0^{12}(0, m_{\pi}^2) = D_0 + D_1 a^2 + D_2 m_{\pi}^2 / (8\pi f_{\pi}^2)$

Qualitative agreement between lattice and quark models: $q_0 \mathcal{M}_0/q_i$ dominates in $A_0^{12}(q^2)$ and explains why $A_0^{12}(q^2 = 0) < 0$.

Issue with multihadron states?

A possible unpleasant systematics of our results is an uncontrolled mixing between radial excitations $(B^{*'})$ and multihadron states $(B_1^*\pi \text{ in } S \text{ wave})$ close to threshold.

$\Delta_{12} = m_{B^{*'}} - m_{B}, \ o = m_{B_1^*} - m_{B_1^*}$					
lattice	$a\Sigma_{12}$	$a\delta + am_{\pi}$			
A5	0.253(7)	0.281(4)			
B6	0.235(8)	0.248(4)			
E5	0.225(10)	0.278(6)			
F6	0.213(11)	0.233(3)			
N6	0.166(9)	0.176(3)			

$$\Sigma_{12} = m_{B^{*\prime}} - m_B, \ \delta = m_{B_1^*} - m_B$$

lattice $a\Sigma_{12}$ $a\delta + am_{\pi}$

Comparison with quenched data: behaviour of $f_{\gamma_i\gamma_5}^{11}$ and $f_{\gamma_i\gamma_5}^{12}$ similar

At $N_f = 2$, position of the node of $f_{\gamma_i \gamma_5}^{12}$ weakly dependent of m_{π} in the range we have considered

lattice	$m_{\pi} [{ m MeV}]$	$r_n^{12}[\mathrm{fm}]$
A5	330	0.369(13)
B6	280	0.374(12)
E5	440	0.369(11)
F6	310	0.379(20)
N6	340	0.365(12)

Change observed when $\bar{q} \nabla_k h$ is included in addition to $\bar{q} \gamma_k h$ to couple to ${B^*}'$

A new state, not seen before, is present in the spectrum close to the first excited state.

A toy model with 5 states in the spectrum to understand this fact:

 $x \ll 1$: GEVP isolates states 1, 2, 4 and 5; $x \rightarrow 1$, GEVP isolates states 1, 2, 3 and 4

A GEVP can "miss" an intermediate state of the spectrum if, by accident, the coupling of the interpolating fields to that state is suppressed.

Our claim: using interpolating fields $\bar{q}\gamma_k h$, no chance to couple to multi-hadron states while inserting an operator $\bar{q}\nabla_k h$ may isolate the $B_1^*\pi$ two-particle state.

Clues come from density distributions obtained with that interpolating field.

Conservation of vector charge: not verified in the case of second excited state if the basis of interpolating fields incorporates $\bar{q}\nabla_k h$.

Including or not $\bar{q}\nabla_k h$ does not change the profile of $f_{\gamma_0}^{11}$ nor $f_{\gamma_0}^{22}$: it does in the case of $f_{\gamma_0}^{33}$.

Question addressed in the framework of the workshop

Can density distributions provide any relevant information about the nature of exotic charmonia or $\bar{b}b\bar{q}q$ hadrons (bound states, molecules)?

Broad "diquark" density distributions within $\bar{b}b\bar{q}q$ state: tetraquark bound state

Peaked "diquark" density distributions within $\bar{b}b\bar{q}q$ state: molecular state

Decay of states near thresholds

Heavy Meson Chiral Perturbation Theory is often used to extrapolate lattice data in the heavy-light sector.

Example on f_B :

$$f_B \sqrt{\frac{m_B}{2}}(y, a, \delta) = A \left[1 - \frac{3}{4} \frac{1 + 3\hat{g}^2}{2} (y \ln y - y^{\exp} \ln y^{\exp}) \right] + C(y - y^{\exp}) + D^{\delta} a^2$$

$$\mathcal{L}_{\mathrm{HM}\chi\mathrm{PT}} = \frac{f_{\pi}^{2}}{8} \mathrm{Tr}(\partial^{\mu}\Sigma\partial_{\mu}\Sigma^{\dagger}) + i\mathrm{Tr}(Hv\cdot\mathcal{D}\bar{H}) + i\mathrm{Tr}(Sv\cdot\mathcal{D}\bar{S}) + i\hat{g}\mathrm{Tr}(H\gamma_{\mu}\gamma_{5}\mathcal{A}^{\mu}\bar{H}) + i\tilde{g}\mathrm{Tr}(S\gamma_{\mu}\gamma_{5}\mathcal{A}^{\mu}\bar{S}) + ih\mathrm{Tr}(S\gamma_{\mu}\gamma_{5}\mathcal{A}^{\mu}\bar{H})$$

 $H: j^P = \frac{1}{2}^-$ heavy-light meson doublet $S: j^P = \frac{1}{2}^+$ heavy-light meson doublet

 B_0^*

 π

B

Extract *h* from the density distribution [D. Becirevic *et al*, '12]

$$A_{+}(\delta^{2} - q_{\pi}^{2}) = 4\pi \int_{0}^{\infty} r^{2} dr \frac{\sin(q_{\pi}r)}{q_{\pi}r} f_{PAS}(r)$$

$$\delta = m_{B_{0}^{*}} - m_{B} \quad f_{PAS}(r) = \langle B | [\bar{q}\gamma_{0}\gamma_{5}q](r) | B_{0}^{*} \rangle$$

$$\vec{q}_{\pi} = (0, 0, \delta)$$

We have followed another strategy, valid near thresholds [C. McNeile et al, '01; '03; '04]

We consider the ratio
$$C_{B_0^*B_\pi}^{(2)}(t)/\sqrt{C_{B_0^*B_0^*}^{(2)}(t)C_{B_\pi B_\pi}^{(2)}(t)}$$

 $\langle \pi^+(q_\pi)B^-(p)|B_0^{*0}(p')\rangle = g_{B_0^*B_\pi} = \sqrt{m_B m_{B_0^*}} \frac{m_{B_0^*}^2 - m_B^2}{m_{B_0^*}^2} \frac{h}{f_\pi}$
Fermi golden rule: $\Gamma(B_0^* \to B^-\pi^+) = 2\pi |\langle \pi^+(q_\pi)B^-(p)|B_0^{*0}(p')\rangle|^2 \rho$
 $\rho(E_\pi) = \frac{L^3}{(2\pi)^3} 4\pi \vec{q}_\pi^2 \frac{dq_\pi}{dE_\pi} = \frac{L^3}{2\pi^2} |\vec{q}_\pi|E_\pi$
 $\frac{\Gamma(B_0^* \to B^-\pi^+)}{q_\pi} = \frac{1}{\pi} \left(\frac{L}{a}\right)^3 (aE_\pi) |a\langle \pi^+(q_\pi)B^-(p)|B_0^{*0}(p')\rangle|^2$

$$C^{(2)}_{B_0^* B\pi}(t) = \sum_{t_1} \langle 0 | \mathcal{O}^{B_0^*} | B_0^* \rangle x \langle B\pi | \mathcal{O}^{B\pi} | 0 \rangle e^{-m_{B_0^*} t_1} e^{-E_{B\pi}(t-t_1)} + \mathcal{O}(x^3) + \text{excited states}$$

Assumption: small overlaps $\langle 0|\mathcal{O}^{B_0^*}|B\pi\rangle$ and $\langle 0|\mathcal{O}^{B\pi}|B_0^*\rangle$ $x = |a\langle \pi^+(q_\pi)B^-(p)|B_0^{*0}(p')\rangle| \quad \langle n|m\rangle = \delta_{mn}$

Close to the threshold $m_{B_0^*} \approx E_{B\pi}$:

 $C^{(2)}_{B_0^* B\pi}(t) = \langle 0 | \mathcal{O}^{B_0^*} | B_0^* \rangle x \langle B\pi | \mathcal{O}^{B\pi} | 0 \rangle \times t e^{-m_{B_0^*} t} + \mathcal{O}(x^3) + \text{excited states}$

$$R(t) = \frac{C_{B_0^* B\pi}^{(2)}(t)}{\left(C_{B_0^* B_0^*}^{(2)}(t)C_{B\pi B\pi}^{(2)}(t)\right)^{1/2}} \approx A + xt$$

Further away from the threshold, R(t) goes in $t \longrightarrow \frac{2}{\Delta} \sinh\left(\frac{\Delta}{2}t\right) = t + \frac{\Delta^2 t^3}{24} + \mathcal{O}(\Delta^4)$, $\Delta = m_{B_0^*} - E_{B\pi}$

Excited states are suppressed by solving a GEVP:

CIS	β	<i>a</i> [fm]	L/a	m_{π} [MeV]
	5.2	0.075	48	280
based	5.3	0.065	32	440
			48	310
	5.5	0.048	48	340

Several chiral extrapolations to get h, using $m_{B_0^*} - m_B = 399(17)(28)$ MeV

$$\begin{array}{|c|c|c|c|c|c|} \hline \text{formula} & & & & & & & & & \\ \hline h = C_{\text{ste}} & & & & & & & & \\ h = h_0 + \alpha m_\pi^2 & & & & & & & & \\ h = h_0 \left[1 - \frac{3}{4} \frac{3\hat{g}_0^2 + 3\tilde{g}_0^2 + 2\hat{g}_0 \tilde{g}_0}{(4\pi f_\pi)^2} m_\pi^2 \ln m_\pi^2 \right] + C_h m_\pi^2 & & & & & & & \\ h = h_0 \left[1 - \frac{3}{4} \frac{3\hat{g}_0^2 + 3\tilde{g}_0^2 + 2\hat{g}_0 \tilde{g}_0}{(4\pi f_\pi)^2} m_\pi^2 \ln(m_\pi^2) - \frac{h_0^2}{(4\pi f_\pi)^2} \frac{m_\pi^2}{2\delta^2} m_\pi^2 \ln(m_\pi^2) \right] + C'_h m_\pi^2 & & & & \\ h = 0.84(3)(2) & & & \\ \end{array}$$

Check of the analysis using the correlator $C_{B\pi B\pi}$, with $C_{\text{conn}}(t) = -\frac{3}{2}C_{\text{box}}(t) + \frac{1}{2}C_{\text{cross}}(t)$:

$$\widetilde{R}(t) = \frac{(v_{B\pi}(t), C_{\text{conn}}(t)v_{B\pi}(t))}{(v_{B\pi}(t), C_{B\pi B\pi}(t)v_{B\pi}(t))} = A' + \frac{1}{2}x^2t^2 + \mathcal{O}(t)$$

Collection of results

Different ways to get h: $\Gamma(D_0^*)$, phase shift in $D\pi$ scattering state (small $1/m_c$ corrections), QCD sum rules, density distribution, transition at the threshold $m_{B_0^*} \approx E_{B\pi}$

Adler-Weisberger sum rule: $\sum_{\delta} |X_{B\delta}|^2 = 1$ $\Gamma(\mathcal{I} \to \mathcal{F}\pi) = \frac{1}{1\pi f_{\pi}^2} \frac{|\vec{q}|^3}{2j_{\mathcal{I}}+1} |X_{\mathcal{I} \to \mathcal{F}}|^2$ With $\hat{g} \sim 0.5$, it is almost saturated by B^* and B_0^* .

h is pretty large, some care is required in the application of HM χ PT for pion masses close to $m_{B_0^*} - m_B \sim 400$ MeV: *B* meson orbital excitations degrees of freedom can not be neglected in chiral loops.

Question addressed in the framework of the workshop

Does it make sense to study broad resonant states by "imposing" kinematical configurations very near thresholds?

Example of K^* , $K^* \to K\pi$

 $K^*(s\bar{u}') \to K(s\bar{u})\pi'(u\bar{u}')$ where the quark u' is quenched

The threshold condition $E_{K\pi'} \sim E_{K^*}$ is set by imposing twisted BC on the u field in $O_{K\pi'}$. s and u' quenched \Longrightarrow no issue with isospin breaking effects [C. Sachrajda and G. Villadoro, '04]

Numerical advantage of twisted BC compared to moving frames: more efficient scan along the "Breit-Wigner"

Theoretical issue: is the extrapolation $m_{u'} \rightarrow m_u$ smooth? (cusp, large finite volume effects because of "shadow" isospin breaking)