TOWARDS A NEW PARADIGM FOR HEAVY-LIGHT MESON SPECTROSCOPY

from combining results from Lattice QCD, EFTs and Experiment

August 27, 2018 | Christoph Hanhart | IKP/IAS Forschungszentrum Jülich

EFFECTIVE FIELD THEORIES

- Precondition: separation of scales low vs. high energy dynamics
 - Iow-energy dynamics in terms of relevant dof's: E ~ p ~ Q
 - symmetries build in
 - high-energy dynamics not resolved → contact interactions
- Small parameter(s) & power counting
 - Standard QFT: trees + loops \rightarrow renormalization
 - Expansion in powers of Q over the large scale

 $M = \sum_{\nu} (Q/\Lambda)^{\nu} f(Q/\mu, C_i)$

 μ : regularization scale; C_i : low–energy constants ν bounded from below \rightarrow controlled expansion

Mass	heavy dof
	light dof

Weinberg 1979

LIMITING CASES OF QCD

$$\mathcal{L}_{ ext{QCD}} = \sum_{f} ar{q}_{f} \left(\gamma_{\mu} D^{\mu} - m_{f}
ight) q_{f} - rac{1}{4} \left(F^{\mu
u}_{a} F^{a}_{\mu
u}
ight)$$

Limit of massless Quarks

Weinberg/ Gasser, Leutwyler

$$\mathcal{L}_{ ext{QCD}} = ar{q}_L \left\{ i \partial \!\!\!/ + g A\!\!\!/^a t^a
ight\} q_L + ar{q}_R \left\{ i \partial \!\!\!/ + g A\!\!\!/^a t^a
ight\} q_R + \mathcal{O}(m_f / \Lambda_{ ext{QCD}})$$

L and R Quarks decouple + spontaneous symmetry breaking

→ Chiral Perturbation Theory (ChPT) with naturally energy–dependent vertices

Limit of infinitely Heavy Quarks

Isgur, Wise, Manohar, Caswell/Lepage

 $\mathcal{L}_{\rm QCD} = \bar{q}_f \left\{ i \boldsymbol{v} \cdot \partial + g \boldsymbol{v} \cdot \boldsymbol{A}^a t^a \right\} q_f + \mathcal{O}(\Lambda_{\rm QCD}/m_f)$

Independent of Heavy Quark Spin and Flavour

→ Heavy Quark Effective Field Theory (HQEFT)

UNITARIZATION

Unitarity relation: $Im(t) = \sigma |t|^2$ with $\sigma = \sqrt{1 - 4m_{\pi}^2/s}$

- Perturbative expansion consistent only to given order
- s-dependent terms quickly hit unitarity bound

Solution: Unitarization \rightarrow can produce poles

Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ...

Different methods used (dep. needs to be clarified);

→ universal picture emerges in many channels!

Example: Unitarized Chiral Perturbation Theory

Idea: write unitarity as

$$\mathsf{Im}(t^{-1}) = -\sigma \quad \longrightarrow t = \frac{1}{\mathsf{Re}(t^{-1}) - i\sigma}$$

use ChPT+HQEFT to fix $Re(t^{-1})$ to the accuracy needed for analysis

HADRONIC MOLECULES

- are few-hadron states, bound by the strong force
- do exist: light nuclei.
 - e.g. deuteron as pn & hypertriton as $\wedge d$ bound state
- are located typically close to relevant continuum threshold;
 - e.g., for $E_B = m_1 + m_2 M$ and $\gamma = \sqrt{2\mu E_B}$
- can be identified in observables (Weinberg compositeness):

$$rac{g_{ ext{eff}}^2}{4\pi} = rac{4M^2\gamma}{\mu}(1-\lambda^2) \ o \ a = -2\left(rac{1-\lambda^2}{2-\lambda^2}
ight)rac{1}{\gamma} \ ; \quad r = -\left(rac{\lambda^2}{1-\lambda^2}
ight)rac{1}{\gamma}$$

where $(1 - \lambda^2)$ =probability to find molecular component in bound state wave function

Are there mesonic molecules?

DISCLAIMERS

- The method presented is 'diagnostic' especially,
 - it does not allow for conclusions on the binding force
 - it allows one only to study individual states.

To go beyond we here use unitarized ChPT+HQEFT

 Quantitative interpretation gets lost when states get bound too deeply ('uncertainty' ~ Rγ) or become resonances; we propose to stick to 'the larger the coupling the more molecular the state'
 There are striking phenomenological implications from large couplings for they lead to

- relations between seemingly unrelated reactions
- rather specific, unusual line shapes.

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

These will be solved by combining unitarized EFTs and Lattice input. Strong support for the findings is provided from experiment.

HEAVY LIGHT SYSTEMS

- $\pi/K/\eta D/D_s$ scattering in ChPT to NLO unitarized (6 Parameter)
- controlled quark mass dependence
- fit LECs to lattice data for $a_{D,\phi}^{(S,I)}$ in selected channels

-0.051.0 -0.05 $a_{D\,\overline{K}}^{(-1,1)}$ [fm] $a_{D,K}^{(2,1/2)}$ [fm] $a_{D\,\overline{K}}^{(-1,0)}\,[{\rm fm}]$ -0.100.8 -0.10-0.150.6 -0.1504 -0.20-0.20-0.25-0.250.2 -0.300.0 -0.30100 200 300 400 500 600 í٥ 100 200 300 400 500 600 100 200 300 400 500 600 M_{π} [MeV] M_{π} [MeV] M_{π} [MeV] 0.00 0.04 -0.05 0.02 $n_{D\pi}^{(0,3/2)}$ [fm] $a_{D,\pi}^{(1,1)}$ [fm] -0.100.00 -0.15-0.02-0.20-0.25-0.04-0.30100 200 300 400 500 600 0 0 100 200 300 400 500 600 M_{π} [MeV] M_{π} [MeV]

• D_{s0}^* (2317) emerges as a pole with $M_{D_{s0}^*} = 2315_{-28}^{+18}$ MeV.

INTERPRETATION

EXP. TEST: HADRONIC DECAYS

Faessler et al. PRD76(2007)014005; Lutz, Soyeur NPA813(2008)14; Guo et al., PLB666 (2008)251

Isospin breaking (drives decay) via quark masses and charges

The same effective operators lead to

mass differences, e.g.

$$\begin{array}{ll} & m_{D^+} - m_{D^0} = \Delta m^{\text{q}} + \Delta m^{\text{e.m.}} = ((2.5 \pm 0.2) + (2.3 \pm 0.6)) \text{ MeV} \\ & \pi^0 - \eta \text{ mixing} & \longrightarrow \text{parameters fixed} \end{array}$$

- Isospin breaking scattering amplitude
 - e.g. $KD \rightarrow \pi^0 D_s$ predicted

HADRONIC WIDTH

F.K. Guo et al., PLB666(2008)251; L. Liu et al. PRD87(2013)014508; X.Y. Guo et al., PRD98(2018)014510 and, e.g., P. Colangelo and F. De Fazio, PLB570(2003)180

Measurement of width is decisive, if D_{s0}^* is molecular or not

Experiment needs very high resolution \rightarrow PANDA

... AND IN THE S = 0 SECTOR

Keeping parameters fixed one gets:

Poles for

Albaladejo et al., PLB767(2017)465; Lattice: Moir et al. [Had.Spec.Coll.] JHEP1610(2016)011

- *m*_π~391 MeV: (2264, 0) MeV [000] & (2468, 113) MeV [110]
- *m*_π=139 MeV: (2105, 102) MeV [100] & (2451, 134) MeV [110]

Questions $c\bar{q}$ nature of lowest lying 0⁺ D state, D_0^* (2400)

SU(3) STRUCTURE

$$m(x) = m^{\text{phy}} + x(m - m^{\text{phy}})$$

 $m_{\phi} = 0.49 \, \text{GeV}; M_D = 1.95 \, \text{GeV}$

Albaladejo et al., PLB767(2017)465 Multiplets: $[\overline{3}] \otimes [8] = [\overline{15}] \oplus [6] \oplus [\overline{3}]$ S = 2 S = 1S = 0

with [15] repulsive and [3] most attractive

- 3 poles give observable effect with SU(3)-breaking on
- At SU(3) symmetric point $m_{\phi} \simeq$ 490 MeV: 3 bound and 6 virtual states

S = -

- For $m_{\phi} \simeq 600$ MeV (SU(3) sym.): even [6]-states get bound
- Quark Model: $[\overline{3}] \otimes [1] = [\overline{3}]$ the [6] is absent

Lattice simulation should allow one to distinguish the scenarios

started in coll. with E. Berkowitz, F.-K. Guo and T. Luu

OBSERVABLE: $B^- \rightarrow D^+ \pi^- \pi^-$

With the ϕD amplitude fixed we can calc. production reactions:

Du et al., arXiv:1712.07957 [hep-ph]

$$\begin{split} \langle \boldsymbol{P}_0 \rangle \propto |\boldsymbol{\mathcal{A}}_0|^2 + |\boldsymbol{\mathcal{A}}_1|^2 + |\boldsymbol{\mathcal{A}}_2|^2 \,, \quad \langle \boldsymbol{P}_2 \rangle \propto \frac{2}{5} |\boldsymbol{\mathcal{A}}_1|^2 + \frac{2}{7} |\boldsymbol{\mathcal{A}}_2|^2 + \frac{2}{\sqrt{5}} |\boldsymbol{\mathcal{A}}_0| |\boldsymbol{\mathcal{A}}_2| \cos(\delta_2 - \delta_0) \\ \langle \boldsymbol{P}_{13} \rangle \equiv \langle \boldsymbol{P}_1 \rangle - \frac{14}{9} \langle \boldsymbol{P}_3 \rangle \propto \frac{2}{\sqrt{3}} |\boldsymbol{\mathcal{A}}_0| |\boldsymbol{\mathcal{A}}_1| \cos(\delta_1 - \delta_0) \end{split}$$

$D\pi$ S-WAVE FROM $B^- \rightarrow D^+ \pi^- \pi^-$

Effect of thresholds enhanced, by pole at $\sqrt{s_p} \sim (2451 - i134)$ MeV

on nearby unphysical sheet

CHARMED STATES

Puzzles solved:

- $M(D_{s1})\&M(D_{s0}^*) \text{ are } DK \text{ and } D^*K \text{ bound states}$
- 2 $M(D_{s1})-M(D_{s0}^*)$ $\simeq M(D^*)-M(D),$ since spin symmetry gives equal binding

3 States with strangeness heavier $M(D_0^*) = 2100 \text{ MeV}$ $M(D_{s0}^*) = 2317 \text{ MeV}$ $M(D_1) = 2247 \text{ MeV}$ $M(D_{s1}) = 2460 \text{ MeV}$

... with strong support from experiment

ROADMAP FOR FUTURE STUDIES

ROADMAP FOR FUTURE STUDIES

