Computing tetraquark resonances with two static quarks and two dynamical quarks

I – Lattice QCD computation of potentials

"Scattering Amplitudes and Resonance Properties from Lattice QCD", Mainz

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik

mwagner@th.physik.uni-frankfurt.de

 $http://th.physik.uni-frankfurt.de/{\sim}mwagner/$

in collaboration with Pedro Bicudo, Marco Cardoso, Krzystof Cichy, Antje Peters, Martin Pflaumer, Jonas Scheunert, Björn Wagenbach

August 28, 2018

Basic idea to study *bbqq* **tetraquarks (1)**

- Study heavy tetraquarks $\overline{bb}qq$ or $\overline{bb}\bar{q}q$ in two steps.
 - (1) Compute potentials of two static quarks $(\bar{b}\bar{b} \text{ or } \bar{b}b)$ in the presence of two lighter quarks (qq or $\bar{q}q$, $q \in \{u, d, s, c\}$) using lattice QCD. \rightarrow This talk.
 - (2) Explore, whether these potentials are sufficiently attractive to host bound states or resonances (→ tetraquarks) by using techniques from quantum mechanics and scattering theory.

 \rightarrow Next talk by Pedro Bicudo.

 $((1) + (2) \rightarrow$ Born-Oppenheimer approximation).

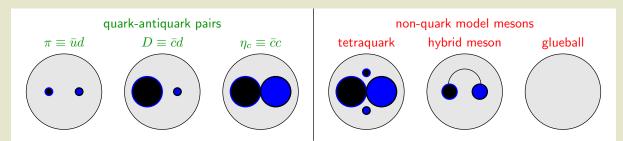
Basic idea to study *bbqq* **tetraquarks (2)**

• Both talks summarize

- [P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]
- [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
- [P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]
- [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]]
- [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., arXiv:1704.02383].
- For recent work from other groups using a similar approach cf. e.g.
 [W. Detmold, K. Orginos, M. J. Savage, Phys. Rev. D 76, 114503 (2007) [arXiv:hep-lat/0703009]]
 [G. Bali, M. Hetzenegger, PoS LATTICE2010, 142 (2010) [arXiv:1011.0571 [hep-lat]]
 [Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012) [arXiv:1210.1953 [hep-lat]]

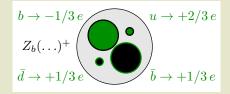
Why are such studies important? (1)

- **Meson**: system of quarks and gluons with integer total angular momentum J = 0, 1, 2, ...
- Most mesons seem to be **quark-antiquark pairs** $\bar{q}q$, e.q. $\pi \equiv \bar{u}d$, $D \equiv \bar{c}d$, $\eta_s \equiv \bar{c}c$ (quark-antiquark model calculations reproduce the majority of experimental results).
- Certain mesons are poorly understood (significant discrepancies between experimental results and quark model calculations), could have a more complicated structure, e.g.
 - 2 quarks and 2 antiquarks (tetraquark),
 - a quark-antiquark pair and gluons (hybrid meson),
 - only gluons (glueball).



Why are such studies important? (2)

- Indications for tetraquark structures:
 - Electrically charged mesons $Z_b(10610)^+$ and $Z_b(10650)^+$:
 - * Mass suggests a $b\bar{b}$ pair ...
 - $* \dots$ but $b\bar{b}$ is electrically neutral ...?
 - * Easy to understand, when assuming a tetraquark structure: $Z_b(\ldots)^+ \equiv b\bar{b}u\bar{d} \ (u \to +2/3 \ e, \ \bar{d} \to -1/3 \ e).$



- Electrically charged Z_c states:

* Similar to Z_b .

- Mass ordering of light scalar mesons:

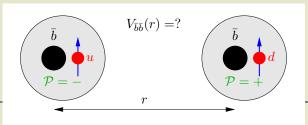
* E.g.
$$m_{\kappa} > m_{a_0(980)}$$
 ...?

Outline

- $\overline{b}\overline{b}qq$ / BB potentials.
- Lattice setup.
- $\overline{b}\overline{b}qq$ tetraquarks.
- Inclusion of heavy spin effects.
- $\bar{b}b\bar{q}q$ / $\bar{B}B$ potentials

$\overline{b}\overline{b}qq$ / BB potentials (1)

- From now on $\bar{b}\bar{b}qq$ ($\bar{b}b\bar{q}q$ technically more difficult, will be discussed at the end of this talk).
- Spins of static antiquarks $\overline{b}\overline{b}$ are irrelevant (they do not appear in the Hamiltonian).
- At large $\overline{b}\overline{b}$ separation r, the four quarks will form two static-light mesons $\overline{b}q$ and $\overline{b}q$.
- Consider only pseudoscalar/vector mesons $(j^P = (1/2)^-$, PDG: B, B^*) and scalar/pseudovector mesons $(j^P = (1/2)^+$, PDG: B_0^*, B_1^*), which are among the lightest static-light mesons (j: spin of the light degrees of freedom).
- Compute and study the dependence of $\bar{b}\bar{b}$ potentials in the presence of qq on
 - the "light" quark flavors $q \in \{u, d, s, c\}$ (isospin, flavor),
 - the "light" quark spin (the static quark spin is irrelevant),
 - the type of the meson B, B^* and/or B_0^* , B_1^* (parity).
 - \rightarrow Many different channels: attractive versus repulsive, different asymptotic values \ldots

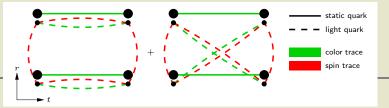


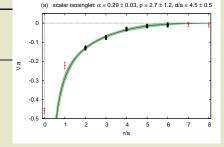
$\overline{b}\overline{b}qq$ / BB potentials (2)

- Rotational symmetry broken by static quarks $\overline{b}\overline{b}$.
- Remaining symmetries and quantum numbers:
 - Rotations around the separation axis (e.g. z axis), quantum number j_z .
 - *P*.
 - $-P_x$ (reflection along an axis perpendicular to the separation axis, e.g. x axis).
- To extract the potential(s) of a given sector $(I, I_z, |j_z|, P, P_x)$, compute the temporal correlation function of the trial state

$$\left(C\Gamma\right)_{AB}\left(C\tilde{\Gamma}\right)_{CD}\left(\bar{Q}_{C}(-\mathbf{r}/2)q_{A}^{(1)}(-\mathbf{r}/2)\right)\left(\bar{Q}_{D}(+\mathbf{r}/2)q_{B}^{(2)}(+\mathbf{r}/2)\right)|\Omega\rangle.$$

- $(-q^{(1)}q^{(2)} \in \{ud du, uu, dd, ud + du, ss, cc\}$ (isospin I, I_z , flavor).
- $-\Gamma$ is an arbitrary combination of γ matrices (spin $|j_z|$, parity P, P_x).
- $\tilde{\Gamma} \in \{(1 \gamma_0)\gamma_5, (1 \gamma_0)\gamma_j\}$ (irrelevant).



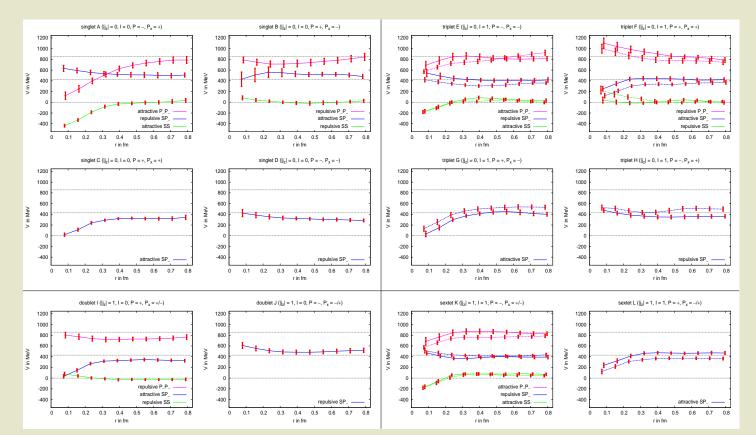


Lattice setup

- ETMC gauge link ensembles:
 - $N_f = 2$ dynamical quark flavors.
 - Lattice spacing $a \approx 0.079$ fm.
 - $-24^3 \times 48$, i.e. spatial lattice extent ≈ 1.9 fm.
 - Three different pion masses $m_{\pi} \approx 340 \text{ MeV}$, $m_{\pi} \approx 480 \text{ MeV}$, $m_{\pi} \approx 650 \text{ MeV}$.
 - [R. Baron et al. [ETM Collaboration], JHEP 1008, 097 (2010) [arXiv:0911.5061 [hep-lat]]

$\overline{b}\overline{b}qq$ / BB potentials (3)

• I = 0 (left) and I = 1 (right); $|j_z| = 0$ (top) and $|j_z| = 1$ (bottom).



$\overline{b}\overline{b}qq$ / BB potentials (4)

Why are there three different asymtotic values?

- Differences $\approx 400 \text{ MeV}$, approximately the mass difference of $B_{0,1}^*$ (P = +) and $B^{(*)}$ (P = -).
- Suggests that the three different asymtotic values correspond to $B^{(*)}B^{(*)}$ potentials, to $B^{(*)}B^{*}_{0,1}$ potentials and $B^{*}_{0,1}B^{*}_{0,1}$ potentials.
- Can be checked and confirmed, by rewriting the $\overline{b}\overline{b}qq$ creation operators in terms of meson-meson creation operators (Fierz transformation).
- Example: uu, $\Gamma = \gamma_3$ (attractive, lowest asymptotic value),

$$\begin{pmatrix} C\gamma_3 \end{pmatrix}_{AB} \Big(\bar{Q}_C(-\mathbf{r}/2) q_A^{(u)}(-\mathbf{r}/2) \Big) \Big(\bar{Q}_D(+\mathbf{r}/2) q_B^{(u)}(+\mathbf{r}/2) \Big) \propto \\ \propto (B^{(*)})_{\uparrow} (B^{(*)})_{\downarrow} + (B^{(*)})_{\downarrow} (B^{(*)})_{\uparrow} - (B^*_{0,1})_{\uparrow} (B^*_{0,1})_{\downarrow} - (B^*_{0,1})_{\downarrow} (B^*_{0,1})_{\uparrow}.$$

• Example: uu, $\Gamma = 1$ (repulsive, medium asymptotic value),

$$\begin{pmatrix} C1 \\ _{AB} \Big(\bar{Q}_C(-\mathbf{r}/2) q_A^{(u)}(-\mathbf{r}/2) \Big) \Big(\bar{Q}_D(+\mathbf{r}/2) q_B^{(u)}(+\mathbf{r}/2) \Big) & \propto \\ \propto & (B^{(*)})_{\uparrow} (B^*_{0,1})_{\downarrow} - (B^{(*)})_{\downarrow} (B^*_{0,1})_{\uparrow} + (B^*_{0,1})_{\uparrow} (B^{(*)})_{\downarrow} - (B^*_{0,1})_{\downarrow} (B^{(*)})_{\uparrow}.$$

$\overline{b}\overline{b}qq$ / BB potentials (5)

Why are certain channels attractive and others repulsive? (1)

- Fermionic wave function must be antisymmetric (Pauli principle); in quantum field theory/QCD automatically realized.
- qq isospin: I = 0 antisymmetric, I = 1 symmetric.
- qq angular momentum/spin: j = 0 antisymmetric, j = 1 symmetric.
- *qq* color:

- (I = 0, j = 0) and (I = 1, j = 1): must be antisymmetric, i.e., a triplet $\overline{3}$. - (I = 0, j = 1) and (I = 1, j = 0): must be symmetric, i.e., a sextet 6.

• The four quarks $\bar{b}\bar{b}qq$ must form a color singlet:

-qq in a color triplet $\overline{3} \rightarrow$ static quarks $\overline{b}\overline{b}$ also in a triplet 3. -qq in a color sextet $6 \rightarrow$ static quarks $\overline{b}\overline{b}$ also in a sextet $\overline{6}$.

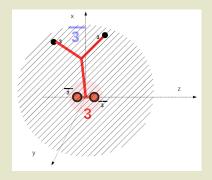
$\overline{b}\overline{b}qq$ / BB potentials (6)

Why are certain channels attractive and others repulsive? (2)

- Assumption: attractive/repulsive behavior of bb at small separations r is mainly due to 1-gluon exchange,
 - color triplet 3 is attractive, $V_{\bar{b}\bar{b}}(r)=-2\alpha_s/3r$,
 - color sextet $\overline{6}$ is repulsive, $V_{\overline{b}\overline{b}}(r) = +\alpha_s/3r$

(easy to calculate in LO perturbation theory).

- Summary:
 - (I = 0, j = 0) and $(I = 1, j = 1) \rightarrow \text{attractive } \overline{bb} \text{ potential } V_{\overline{bb}}(r).$
 - -(I=0, j=1) and $(I=1, j=0) \rightarrow$ repulsive \overline{bb} potential $V_{\overline{bb}}(r)$.
- Expectation consistent with the obtained lattice results.
- Pauli principle and assuming "1-gluon exchange" at small r explains, why certain channels are attractive and others repulsive.



$\overline{b}\overline{b}qq$ / BB potentials (7)

• Summary of $\bar{b}\bar{b}qq$ / BB potentials:

$B^{(*)}B^{(*)}$ potentials:	attractive:	$1 \oplus 3 \oplus 6$	(10 states).
	repulsive:	$1\oplus 3\oplus 2$	(6 states).
$B^{(*)}B^{*}_{0,1}$ potentials:	attractive:	$1\oplus 1\oplus 3\oplus 3\oplus 2\oplus 6$	(16 states).
,	repulsive:	$1\oplus 1\oplus 3\oplus 3\oplus 2\oplus 6$	(16 states).
$B_{0.1}^*B_{0.1}^*$ potentials:	attractive:	$1 \oplus 3 \oplus 6$	(10 states).
- / - /	repulsive:	$1\oplus 3\oplus 2$	(6 states).

- 2-fold degeneracy due to spin $j_z=\pm 1.$

- 3-fold degeneracy due to isospin I = 1, $I_z = -1, 0, +1$.

 $\rightarrow 24$ different $\bar{b}\bar{b}qq$ / BB potentials.

$\overline{b}\overline{b}qq$ / BB potentials (8)

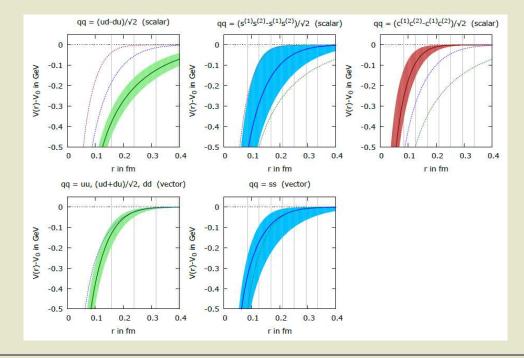
- Focus on the two attractive channels between B and B^* :
 - Scalar isosinglet ((I = 0, j = 0), more attractive): $qq = (ud - du)/\sqrt{2}, \Gamma = (1 + \gamma_0)\gamma_5.$
 - Vector isotriplet ((I = 1, j = 1), less attractive): $qq \in \{uu, (ud + du)/\sqrt{2}, dd\}, \Gamma = (1 + \gamma_0)\gamma_j.$
- Computations for $qq = ll, ss, cc \ (l \in \{u, d\})$ to study the mass dependence.
- Parameterize lattice potential results by continuus functions obtained by χ^2 minimizing fits of

$$V_{\overline{b}\overline{b}}(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right) + V_0:$$

- -1/r: 1-gluon exchange at small $\overline{b}\overline{b}$ separations.
- $-\exp(-(r/d)^p)$: color screening at large $\bar{b}\bar{b}$ separations due to meson formation.
- Fit parameters α , d and V_0 ; p = 2 from quark models.

$\overline{b}\overline{b}qq$ / BB potentials (9)

Potentials for qq = ll, l ∈ {u, d} are wider and deeper than potentials for qq = ss, cc.
 → Good candidates to find tetraquarks are systems of two very heavy and two very light quarks, i.e., bbll.

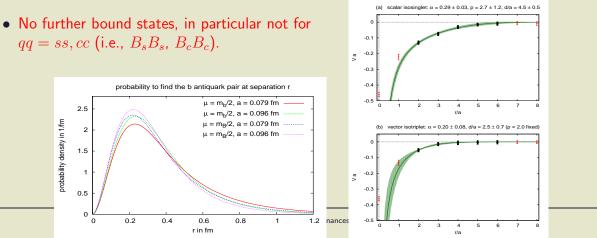


$\overline{b}\overline{b}qq$ tetraquarks (1)

• Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b}\bar{b}$ using the previously computed $\bar{b}\bar{b}qq$ / BB potentials,

$$\left(-\frac{1}{2\mu}\Delta + V_{\overline{b}\overline{b}}(r)\right)\psi(\mathbf{r}) = E\psi(\mathbf{r}) , \quad \mu = m_b/2.$$

- Possibly existing bound states, i.e., E < 0, indicate stable $\overline{bb}qq$ tetraquarks.
- There is a bound state for $qq = (ud du)/\sqrt{2}$ (i.e., the scalar isosinglet potential) and orbital angular momentum l = 0 of \overline{bb} , binding energy $E = -90^{+43}_{-36}$ MeV with respect to the $B + B^*$ threshold, i.e. confidence level $\approx 2 \sigma$.



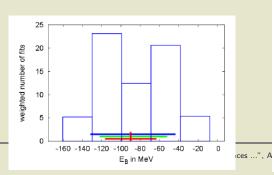
$qq = (ud-du)/\sqrt{2}$ qq = uu, $(ud+du)/\sqrt{2}$, dd

bbqq tetraquarks (2)

- Estimate the systematic error by varying input parameters:
 - the t fitting range to extract the potential from effective masses,
 - the r fitting range for

$$V_{\overline{b}\overline{b}}(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right) + V_0.$$

- Right: isoline plots of the binding energy E for l = 0.
- Bottom: histogram for the binding energy E for $qq = (ud - du)/\sqrt{2}$ and l = 0.



8

0.25

0.3 0.35

0.4

0

0.1

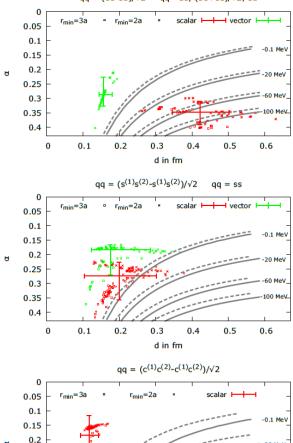
0.2

0.3

d in fm

0.4

0.5



100 Me\

0.6

$\overline{b}\overline{b}qq$ tetraquarks (3)

 To quantify "no binding", we list for each channel the factor, by which the reduced mass μ in the Schrödinger equation has to be multiplied, to obtain a tiny but negative energy E (again for l = 0).

qq	spin	factor
$(ud-du)/\sqrt{2}$	scalar	0.46
uu , $(ud + du)/\sqrt{2}$, dd	vector	1.49
$(s^{(1)}s^{(2)} - s^{(2)}s^{(1)})/\sqrt{2}$	scalar	1.20
ss	vector	2.01
$(c^{(1)}c^{(2)} - c^{(2)}c^{(1)})/\sqrt{2}$	scalar	2.57

- Factors $\ll 1$ indicate strongly bound states, while for values $\gg 1$ bound states are essentially excluded.
- Light quarks (u/d) are unphysically heavy (correspond to $m_{\pi} \approx 340 \text{ MeV}$); physically light u/d quarks yield similar results.
- Mass splitting $m(B^*) m(B) \approx 50$ MeV, neglected at the moment, is expected to weaken binding (will be discussed below).

$\overline{b}\overline{b}qq$ tetraquarks (4)

What are the quantum numbers of the predicted $\overline{b}\overline{b}qq$ tetraquark?

- $I(J^P) = 0(1^+).$
 - Light scalar isosinglet: $qq = (ud du)/\sqrt{2}$, I = 0, j = 0 in a color $\overline{3}$, \overline{bb} in a color 3 (antisymmetric) ... as discussed above.
 - Wave function of $\overline{b}\overline{b}$ must also be antisymmetric (Pauli principle).
 - * $\bar{b}\bar{b}$ is flavor symmetric.
 - * $\overline{b}\overline{b}$ spin must also be symmetric, i.e., $j_b = 1$.
 - \rightarrow The predicted $\overline{b}\overline{b}qq$ tetraquark has isospin I = 0, spin J = 1.
 - We study a state, which correspond for large $\overline{b}\overline{b}$ separations to a pair of $B^{(*)}$ mesons in a spatially symmetric s-wave.
 - \rightarrow **The predicted** $\overline{bb}qq$ **tetraquark has parity** P = + (the product of the parity quantum numbers of the two mesons, which are both negative).

Inclusion of heavy spin effects

- Heavy spin effects have been neglected so far, e.g. mass splitting $m_{B^*} m_B \approx 46 \text{ MeV}$.
- Mass splitting $m_{B^*} m_B$ is, however, of the same order of magnitude as the previously obtained binding energy $E = -90^{+43}_{-36} \text{ MeV}.$
- Moreover, two competing effects:
 - The attractive $\overline{b}\overline{b}ud$ channel corresponds to a linear combination of BB^* and/or B^*B^* .
 - The BB^* interaction is a superposition of attractive and repulsive \overline{bbud} potentials.
- Will there still be a bound state, when heavy spin effects are taken into account?
 - Yes.
 - We include heavy spin effects by solving a coupled channel Schrödinger equation.
 [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]]
 - Binding energy $E = -59^{+38}_{-30}$ MeV.
 - Tetraquark is approximately a 50%/50% superposition of BB^* and B^*B^* (strong attraction more important than light constituents).

$\bar{b}b\bar{q}q$ / $\bar{B}B$ potentials

- Exploring the existence of $\bar{b}b\bar{q}q$ tetraquarks in the same way is more difficult:
 - $-~ \bar{b}\bar{b}qq$ (discussed on pevious slides) can decay into:
 - * $\bar{B} + \bar{B}$.

"Easy" ... on the level of the Schrödinger equation for the relative coordinate of the two \bar{b} quarks (step (2) of the BO approximation).

- $\bar{b}b\bar{q}q$ can decay into:
 - * $\bar{B} + B$.

"Easy" ... on the level of the Schrödinger equation for the relative coordinate of the \bar{b} quark and the b quark (step (2) of the BO approximation).

* $\bar{b}b + \bar{q}q$ ("bottomonium + pion").

"Rather hard" ... on the level of lattice QCD, when computing the $\bar{b}b$ potentials in the presence of $\bar{q}q$ (step (1) of the BO approximation).

- · A potential can be relevant for a $\bar{b}b\bar{q}q$ tetraquark (if $\bar{q}q$ is close to $\bar{b}b$) ...
- \cdot ... or just a $\bar{b}b$ potential shifted by the mass of a $\bar{q}q$ meson.
- Work in progress.

[A. Peters, P. Bicudo, L. Leskovec, S. Meinel and M.W., PoS LATTICE 2016, 104 (2016) [arXiv:1609.00181]]

[A. Peters, P. Bicudo and M.W., EPJ Web Conf. 175, 14018 (2018) [arXiv:1709.03306]]

Summary and outlook

- Computation of 3×24 different $\overline{b}\overline{b}qq$ / BB potentials.
 - Factor 3: quark mass, u/d, s, c.
 - Factor 24: $(I, I_z, |j_z|, P, P_x)$.
- Prediction of a stable $\bar{b}\bar{b}qq$, $qq = (ud du)/\sqrt{2}$ tetraquark.
 - Quantum numbers $I(J^P) = 0(1^+)$.
 - Binding energy $E = -59^{+38}_{-30}$ MeV with respect to the $B + B^*$ threshold.
- $\bar{b}\bar{b}qq$ / BB potentials allow investigation of $\bar{b}\bar{b}qq$ tetraquark resonances.
 - Next talk be Pedro Bicudo.
- Future plans:
 - Explore $\bar{b}\bar{b}qq$ tetraquark resonances in detail.
 - Investigate the structure of the predicted $I(J^P) = 0(1^+)$ tetraquark ... is it a mesonic molecule or rather a diquark-antidiquark?
 - Study $\bar{b}b\bar{q}q / BB$, which is experimentally more relevant $(Z_b(10610)^+, Z_b(10650)^+, ...)$, but theoretically much harder.