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Basic idea to study bbqq tetraquarks (1)

• Study heavy tetraquarks b̄b̄qq or b̄bq̄q in two steps.

(1) Compute potentials of two static quarks (b̄b̄ or b̄b) in the presence of two
lighter quarks (qq or q̄q, q ∈ {u, d, s, c}) using lattice QCD.
→ This talk.

(2) Explore, whether these potentials are sufficiently attractive to host bound
states or resonances (→ tetraquarks) by using techniques from quantum
mechanics and scattering theory.
→ Next talk by Pedro Bicudo.

((1) + (2) → Born-Oppenheimer approximation).
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Basic idea to study bbqq tetraquarks (2)

• Both talks summarize
[P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]
[P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
[P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]
[P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]]
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., arXiv:1704.02383].

• For recent work from other groups using a similar approach cf. e.g.
[W. Detmold, K. Orginos, M. J. Savage, Phys. Rev. D 76, 114503 (2007) [arXiv:hep-lat/0703009]]
[G. Bali, M. Hetzenegger, PoS LATTICE2010, 142 (2010) [arXiv:1011.0571 [hep-lat]]
[Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012) [arXiv:1210.1953 [hep-lat]]
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Why are such studies important? (1)

• Meson: system of quarks and gluons with integer total angular momentum J = 0, 1, 2, . . .

• Most mesons seem to be quark-antiquark pairs q̄q, e.q. π ≡ ūd, D ≡ c̄d, ηs ≡ c̄c
(quark-antiquark model calculations reproduce the majority of experimental results).

• Certain mesons are poorly understood (significant discrepancies between experimental results
and quark model calculations), could have a more complicated structure, e.g.

– 2 quarks and 2 antiquarks (tetraquark),

– a quark-antiquark pair and gluons (hybrid meson),

– only gluons (glueball).
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π ≡ ūd ηc ≡ c̄c hybrid meson

quark-antiquark pairs non-quark model mesons

tetraquarkD ≡ c̄d glueball



Why are such studies important? (2)

• Indications for tetraquark structures:

– Electrically charged mesons Zb(10610)
+ and Zb(10650)

+:

∗ Mass suggests a bb̄ pair ...

∗ ... but bb̄ is electrically neutral ...?

∗ Easy to understand, when assuming a tetraquark structure:
Zb(. . .)

+ ≡ bb̄ud̄ (u→ +2/3 e, d̄→ −1/3 e).

– Electrically charged Zc states:

∗ Similar to Zb.

– Mass ordering of light scalar mesons:

∗ E.g. mκ > ma0(980) ...?
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b → −1/3 e u → +2/3 e

b̄ → +1/3 e

Zb(. . .)
+

d̄ → +1/3 e



Outline

• b̄b̄qq / BB potentials.

• Lattice setup.

• b̄b̄qq tetraquarks.

• Inclusion of heavy spin effects.

• b̄bq̄q / B̄B potentials
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b̄b̄qq / BB potentials (1)

• From now on b̄b̄qq (b̄bq̄q technically more difficult, will be discussed at the end of this talk).

• Spins of static antiquarks b̄b̄ are irrelevant (they do not appear in the Hamiltonian).

• At large b̄b̄ separation r, the four quarks will form two static-light mesons b̄q and b̄q.

• Consider only pseudoscalar/vector mesons (jP = (1/2)−, PDG: B, B∗) and
scalar/pseudovector mesons (jP = (1/2)+, PDG: B∗

0 , B
∗
1), which are among the lightest

static-light mesons (j: spin of the light degrees of freedom).

• Compute and study the dependence of b̄b̄ potentials in the presence of qq on

– the “light” quark flavors q ∈ {u, d, s, c} (isospin, flavor),

– the “light” quark spin (the static quark spin is irrelevant),

– the type of the meson B, B∗ and/or B∗
0 , B

∗
1 (parity).

→ Many different channels: attractive versus repulsive, different asymptotic values ...
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b̄b̄qq / BB potentials (2)

• Rotational symmetry broken by static quarks b̄b̄.

• Remaining symmetries and quantum numbers:

– Rotations around the separation axis (e.g. z axis), quantum number jz.

– P .

– Px (reflection along an axis perpendicular to the separation axis, e.g. x axis).

• To extract the potential(s) of a given sector (I, Iz, |jz|, P, Px), compute the temporal
correlation function of the trial state

(

CΓ
)

AB

(

CΓ̃
)

CD

(

Q̄C(−r/2)q
(1)
A (−r/2)

)(

Q̄D(+r/2)q
(2)
B (+r/2)

)

|Ω〉.

– q(1)q(2) ∈ {ud− du , uu , dd , ud+ du , ss , cc} (isospin I, Iz, flavor).

– Γ is an arbitrary combination of γ matrices (spin |jz|, parity P , Px).

– Γ̃ ∈ {(1− γ0)γ5 , (1− γ0)γj} (irrelevant).
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Lattice setup

• ETMC gauge link ensembles:

– Nf = 2 dynamical quark flavors.

– Lattice spacing a ≈ 0.079 fm.

– 243 × 48, i.e. spatial lattice extent ≈ 1.9 fm.

– Three different pion masses mπ ≈ 340MeV, mπ ≈ 480MeV, mπ ≈ 650MeV.

[R. Baron et al. [ETM Collaboration], JHEP 1008, 097 (2010) [arXiv:0911.5061 [hep-lat]]
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b̄b̄qq / BB potentials (3)

• I = 0 (left) and I = 1 (right); |jz| = 0 (top) and |jz| = 1 (bottom).
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b̄b̄qq / BB potentials (4)

Why are there three different asymtotic values?

• Differences ≈ 400MeV, approximately the mass difference of B∗
0,1 (P = +) and B(∗)

(P = −).

• Suggests that the three different asymtotic values correspond to B(∗)B(∗) potentials, to
B(∗)B∗

0,1 potentials and B∗
0,1B

∗
0,1 potentials.

• Can be checked and confirmed, by rewriting the b̄b̄qq creation operators in terms of
meson-meson creation operators (Fierz transformation).

• Example: uu, Γ = γ3 (attractive, lowest asymptotic value),

(

Cγ3

)

AB

(

Q̄C(−r/2)q
(u)
A (−r/2)

)(

Q̄D(+r/2)q
(u)
B (+r/2)

)

∝

∝ (B(∗))↑(B
(∗))↓ + (B(∗))↓(B

(∗))↑ − (B∗
0,1)↑(B

∗
0,1)↓ − (B∗

0,1)↓(B
∗
0,1)↑.

• Example: uu, Γ = 1 (repulsive, medium asymptotic value),

(

C1
)

AB

(

Q̄C(−r/2)q
(u)
A (−r/2)

)(

Q̄D(+r/2)q
(u)
B (+r/2)

)

∝

∝ (B(∗))↑(B
∗
0,1)↓ − (B(∗))↓(B

∗
0,1)↑ + (B∗

0,1)↑(B
(∗))↓ − (B∗

0,1)↓(B
(∗))↑.
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b̄b̄qq / BB potentials (5)

Why are certain channels attractive and others repulsive? (1)

• Fermionic wave function must be antisymmetric (Pauli principle); in quantum field
theory/QCD automatically realized.

• qq isospin: I = 0 antisymmetric, I = 1 symmetric.

• qq angular momentum/spin: j = 0 antisymmetric, j = 1 symmetric.

• qq color:

– (I = 0, j = 0) and (I = 1, j = 1): must be antisymmetric, i.e., a triplet 3̄.

– (I = 0, j = 1) and (I = 1, j = 0): must be symmetric, i.e., a sextet 6.

• The four quarks b̄b̄qq must form a color singlet:

– qq in a color triplet 3̄ → static quarks b̄b̄ also in a triplet 3.

– qq in a color sextet 6 → static quarks b̄b̄ also in a sextet 6̄.
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b̄b̄qq / BB potentials (6)

Why are certain channels attractive and others repulsive? (2)

• Assumption: attractive/repulsive behavior of b̄b̄ at small
separations r is mainly due to 1-gluon exchange,

– color triplet 3 is attractive, Vb̄b̄(r) = −2αs/3r,

– color sextet 6̄ is repulsive, Vb̄b̄(r) = +αs/3r

(easy to calculate in LO perturbation theory).

• Summary:

– (I = 0, j = 0) and (I = 1, j = 1) → attractive b̄b̄ potential Vb̄b̄(r).

– (I = 0, j = 1) and (I = 1, j = 0) → repulsive b̄b̄ potential Vb̄b̄(r).

• Expectation consistent with the obtained lattice results.

• Pauli principle and assuming “1-gluon exchange” at small r explains, why certain
channels are attractive and others repulsive.
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b̄b̄qq / BB potentials (7)

• Summary of b̄b̄qq / BB potentials:

B(∗)B(∗) potentials: attractive: 1⊕ 3⊕ 6 (10 states).
repulsive: 1⊕ 3⊕ 2 ( 6 states).

B(∗)B∗
0,1 potentials: attractive: 1⊕ 1⊕ 3⊕ 3⊕ 2⊕ 6 (16 states).

repulsive: 1⊕ 1⊕ 3⊕ 3⊕ 2⊕ 6 (16 states).

B∗
0,1B

∗
0,1 potentials: attractive: 1⊕ 3⊕ 6 (10 states).

repulsive: 1⊕ 3⊕ 2 ( 6 states).

– 2-fold degeneracy due to spin jz = ±1.

– 3-fold degeneracy due to isospin I = 1, Iz = −1, 0,+1.

→ 24 different b̄b̄qq / BB potentials.
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b̄b̄qq / BB potentials (8)

• Focus on the two attractive channels between B and B∗:

– Scalar isosinglet ((I = 0, j = 0), more attractive):
qq = (ud− du)/

√
2, Γ = (1 + γ0)γ5.

– Vector isotriplet ((I = 1, j = 1), less attractive):
qq ∈ {uu, (ud+ du)/

√
2, dd}, Γ = (1 + γ0)γj.

• Computations for qq = ll, ss, cc (l ∈ {u, d}) to study the mass dependence.

• Parameterize lattice potential results by contiuous functions obtained by χ2 minimizing fits of

Vb̄b̄(r) = −α
r
exp

(

−
(r

d

)p)

+ V0 :

– 1/r: 1-gluon exchange at small b̄b̄ separations.

– exp(−(r/d)p): color screening at large b̄b̄ separations due to meson formation.

– Fit parameters α, d and V0; p = 2 from quark models.
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b̄b̄qq / BB potentials (9)

• Potentials for qq = ll, l ∈ {u, d} are wider and deeper than potentials for qq = ss, cc.
→ Good candidates to find tetraquarks are systems of two very heavy and two

very light quarks, i.e., b̄b̄ll.
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b̄b̄qq tetraquarks (1)

• Solve the Schrödinger equation for the relative coordinate of the heavy quarks b̄b̄ using the
previously computed b̄b̄qq / BB potentials,

(

− 1

2µ
△+ Vb̄b̄(r)

)

ψ(r) = Eψ(r) , µ = mb/2.

• Possibly existing bound states, i.e., E < 0, indicate stable b̄b̄qq tetraquarks.

• There is a bound state for qq = (ud− du)/
√
2 (i.e., the scalar isosinglet potential) and

orbital angular momentum l = 0 of b̄b̄, binding energy E = −90+43
−36MeV with respect to the

B +B∗ threshold, i.e. confidence level ≈ 2 σ.

• No further bound states, in particular not for
qq = ss, cc (i.e., BsBs, BcBc).
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b̄b̄qq tetraquarks (2)

• Estimate the systematic error by varying
input parameters:

– the t fitting range to extract the
potential from effective masses,

– the r fitting range for

Vb̄b̄(r) = −α
r
exp

(

−
(r

d

)p)

+ V0.

• Right: isoline plots of the binding energy E for l = 0.

• Bottom: histogram for the binding energy E for
qq = (ud− du)/

√
2 and l = 0.

Marc Wagner, “Computing tetraquark resonances ...”, August 28, 2018



b̄b̄qq tetraquarks (3)

• To quantify “no binding”, we list for each channel the factor, by which the reduced mass µ
in the Schrödinger equation has to be multiplied, to obtain a tiny but negative energy E
(again for l = 0).

qq spin factor

(ud− du)/
√
2 scalar 0.46

uu, (ud+ du)/
√
2, dd vector 1.49

(s(1)s(2) − s(2)s(1))/
√
2 scalar 1.20

ss vector 2.01

(c(1)c(2) − c(2)c(1))/
√
2 scalar 2.57

– Factors ≪ 1 indicate strongly bound states, while for values ≫ 1 bound states are
essentially excluded.

– Light quarks (u/d) are unphysically heavy (correspond to mπ ≈ 340MeV); physically
light u/d quarks yield similar results.

– Mass splitting m(B∗)−m(B) ≈ 50MeV, neglected at the moment, is expected to
weaken binding (will be discussed below).
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b̄b̄qq tetraquarks (4)

What are the quantum numbers of the predicted b̄b̄qq tetraquark?

• I(JP ) = 0(1+).

– Light scalar isosinglet: qq = (ud− du)/
√
2, I = 0, j = 0 in a color 3̄, b̄b̄ in a color 3

(antisymmetric) ... as discussed above.

– Wave function of b̄b̄ must also be antisymmetric (Pauli principle).

∗ b̄b̄ is flavor symmetric.

∗ b̄b̄ spin must also be symmetric, i.e., jb = 1.

→ The predicted b̄b̄qq tetraquark has isospin I = 0, spin J = 1.

– We study a state, which correspond for large b̄b̄ separations to a pair of B(∗) mesons in
a spatially symmetric s-wave.

→ The predicted b̄b̄qq tetraquark has parity P = + (the product of the parity
quantum numbers of the two mesons, which are both negative).
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Inclusion of heavy spin effects

• Heavy spin effects have been neglected so far, e.g. mass splitting mB∗ −mB ≈ 46MeV.

• Mass splitting mB∗ −mB is, however, of the same order of magnitude as the previously
obtained binding energy E = −90+43

−36MeV.

• Moreover, two competing effects:

– The attractive b̄b̄ud channel corresponds to a linear combination of BB∗ and/or B∗B∗.

– The BB∗ interaction is a superposition of attractive and repulsive b̄b̄ud potentials.

• Will there still be a bound state, when heavy spin effects are taken into account?

– Yes.

– We include heavy spin effects by solving a coupled channel Schrödinger equation.
[P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]]

– Binding energy E = −59+38
−30 MeV.

– Tetraquark is approximately a 50%/50% superposition of BB∗ and B∗B∗ (strong
attraction more important than light constituents).
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b̄bq̄q / B̄B potentials

• Exploring the existence of b̄bq̄q tetraquarks in the same way is more difficult:

– b̄b̄qq (discussed on pevious slides) can decay into:

∗ B̄ + B̄.
“Easy” ... on the level of the Schrödinger equation for the relative coordinate of
the two b̄ quarks (step (2) of the BO approximation).

– b̄bq̄q can decay into:

∗ B̄ +B.
“Easy” ... on the level of the Schrödinger equation for the relative coordinate of
the b̄ quark and the b quark (step (2) of the BO approximation).

∗ b̄b+ q̄q (“bottomonium + pion”).
“Rather hard” ... on the level of lattice QCD, when computing the b̄b potentials in
the presence of q̄q (step (1) of the BO approximation).

· A potential can be relevant for a b̄bq̄q tetraquark (if q̄q is close to b̄b) ...

· ... or just a b̄b potential shifted by the mass of a q̄q meson.

• Work in progress.
[A. Peters, P. Bicudo, L. Leskovec, S. Meinel and M.W., PoS LATTICE 2016, 104 (2016)

[arXiv:1609.00181]]
[A. Peters, P. Bicudo and M.W., EPJ Web Conf. 175, 14018 (2018) [arXiv:1709.03306]]
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Summary and outlook

• Computation of 3× 24 different b̄b̄qq / BB potentials.

– Factor 3: quark mass, u/d, s, c.

– Factor 24: (I, Iz, |jz|, P, Px).

• Prediction of a stable b̄b̄qq, qq = (ud− du)/
√
2 tetraquark.

– Quantum numbers I(JP ) = 0(1+).

– Binding energy E = −59+38
−30 MeV with respect to the B +B∗ threshold.

• b̄b̄qq / BB potentials allow investigation of b̄b̄qq tetraquark resonances.

– Next talk be Pedro Bicudo.

• Future plans:

– Explore b̄b̄qq tetraquark resonances in detail.

– Investigate the structure of the predicted I(JP ) = 0(1+) tetraquark ... is it a mesonic
molecule or rather a diquark-antidiquark?

– Study b̄bq̄q / BB, which is experimentally more relevant (Zb(10610)
+, Zb(10650)

+,
...), but theoretically much harder.

Marc Wagner, “Computing tetraquark resonances ...”, August 28, 2018


