Two-photon exchange: What we know, and what we want to do next.

Jan C. Bernauer

Proton Radius Puzzle workshop - Mainz - July 2018

sachusetts Institute of Technology

At large Q^2 , we have a puzzle

Expected explanation: Two Photon Exchange

 $\sigma_{exp} \propto \left| M_{1\gamma} \right|^2$

Expected explanation: Two Photon Exchange

 $\sigma_{exp} \propto \left| \mathcal{M}_{1\gamma} \right|^2 \pm 2 \Re \left\{ \mathcal{M}_{1\gamma}^{\dagger} \mathcal{M}_{2\gamma} \right\} + \left| \mathcal{M}_{2\gamma} \right|^2$

Expected explanation: Two Photon Exchange

$$\sigma_{\text{exp}} \propto \left| \mathcal{M}_{1\gamma} \right|^2 \pm 2\Re \left\{ \mathcal{M}_{1\gamma}^{\dagger} \mathcal{M}_{2\gamma} \right\} + \left| \mathcal{M}_{2\gamma} \right|^2$$

Rosenbluth:

$$\sigma_{\exp} = \sigma_{1\gamma} \left(1 + \delta_{TPE} \right)$$

Negligible correction for polarization data

Extract TPE from existing data

We have a global fit of cross sections from unpolarized experiments

- c.s., so (anti)-correlation right
- new radiative corrections
- Good total and individual χ^2

Extract TPE from existing data

We have a global fit of cross sections from unpolarized experiments

- c.s., so (anti)-correlation right
- new radiative corrections
- Good total and individual χ^2

Add polarization data to Mainz global fit.

• bad χ^2 , better radiative corrections do not resolve discrepancy!

Extract TPE from existing data

We have a global fit of cross sections from unpolarized experiments

- c.s., so (anti)-correlation right
- new radiative corrections
- Good total and individual χ^2

Add polarization data to Mainz global fit.

• bad χ^2 , better radiative corrections do not resolve discrepancy!

Make ansatz for TPE correction:

 $\delta_{TPE} = \delta_{\text{Feshbach}} + \delta_{\text{model}}$

 $\delta_{\mathrm{Feshbach}}$ is known $Q^2
ightarrow 0$ limit

$$\delta_{\text{model}} = \boldsymbol{a} \cdot (1 - \varepsilon) \cdot \log(1 + \boldsymbol{b} \cdot \boldsymbol{Q}^2)$$

• Recover good χ^2 !

(See: Phys. Rev. C 90, 015206 (2014))

Fits for ratio

Direct measurements of TPE:

- Verify that TPE is the cause
- Instruct theory how to calculate hadronic part (QCD!)

How to measure?

• Mixed term changes sign with lepton charge sign

$$R_{2\gamma} = \frac{\sigma(e^+p)}{\sigma(e^-p)} = \frac{N_{exp}^{e^+}}{N_{exp}^{e^-}} / \frac{N_{MC}^{e^+}}{N_{MC}^{e^-}} = 1 - 2\delta_{TPE}$$

Direct measurement: Three modern experiments

CLAS

- e^- to γ to $e^{+/-}$ -beam
- Phys. Rev. C 95, 065201 (2017)
- PRL 114, 062003
 - VEPP-3
- 1.6/1 GeV beam
- no field
- Phys. Rev. Lett. 114, 062005 (2015)

<u>OL¥MPUS</u>

- DORIS @ DESY
- 2 GeV beam
- Phys. Rev. Lett. 118, 092501 (2017)

e

VEPP-3 results (I. A. Rachek et al., Phys. Rev. Lett 114, 062005)

VEPP-3 results (I. A. Rachek et al., Phys. Rev. Lett 114, 062005)

1.04		
1.03		1.03
2 2 2 2 1.02		
1.01		
1.00		1.00
0.99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0.99 \frac{1}{0.0} 0.2 0.4 \varepsilon 0.6 0.8 1.0$
	2 1.5 1 0.5 0 Q^2 , GeV ²	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Borisyuk and Kobushkin	1	2.14	
Blunden, et al.	1	2.94	
Bernauer, et al.	1	4.19	
Tomasi-Gustafsson, et al.	1	5.09	
Arrington and Sick	1	7.72	
Qattan, et al.	1	25.0	
No hard TPE ($R_{2\gamma} \equiv 1$)	1	7.97	

VEPP-3 results (I. A. Rachek et al., Phys. Rev. Lett 114, 062005)

	$R_{\rm a}^{\rm LNP}$ χ^2		$R_{2}^{\text{LNP}} = \frac{\chi^2}{2\gamma}$		χ^2
	$\kappa_{2\gamma}$	n _{d.f.}	Run-I	Run-II	n _{d.f.}
Borisyuk and Kobushkin	1	2.14	0.998	0.997	3.80
Blunden, et al.	1	2.94	0.998	0.997	4.75
Bernauer, et al.	1	4.19	0.997	0.995	1.00
Tomasi-Gustafsson, et al.	1	5.09	1.001	1.001	5.97
Arrington and Sick	1	7.72	1.000	1.000	8.18
Qattan, et al.	1	25.0	1.000	1.002	22.0
No hard TPE ($R_{2\gamma} \equiv 1$)	1	7.97	1	1	7.97

CLAS (D. Rimal et al., arXiv:1603.00315 , D. Adikaram et al., Phys. Rev. Lett 114, 062003)

CLAS (D. Rimal et al., arXiv:1603.00315 , D. Adikaram et al., Phys. Rev. Lett 114, 062003) (color adjusted)

Comparison with predictions:

- 12 nonoverlapping points from CLAS
- 4 Vepp-3 points

	$\frac{\chi^2}{n_{\rm d.f.}}$
Z & Y (N)	1.09
Ζ&Υ(N+Δ)	1.03
Blunden (N)	1.06
No TPE	2.10
Point-proton	6.96

OLYMPUS at DESY/DORIS

 Target chamber with target cell

- Target chamber with target cell
- Toroid magnet coils

- Target chamber with target cell
- Toroid magnet coils (half shown)

- Target chamber with target cell
- Toroid magnet coils (half shown)
- Orift chambers

- Target chamber with target cell
- Toroid magnet coils (half shown)
- Orift chambers
- Time of flight scintillators

- Target chamber with target cell
- Toroid magnet coils (half shown)
- Drift chambers
- Time of flight scintillators
- Dual luminosity monitors
 - 12°-detector
 - Symmetric Møller/Bhabha

OLYMPUS results (B. Henderson et al., Phys. Rev. Lett. 118, 092501 (2017))

OLYMPUS results re-binned

Difference of data to prediction: Blunden's hadronic calculation

Difference of data to prediction: Bernauer et al. phenomenological prediction

χ^2 of the world data set

	VEPP-3	CLAS		OLYMPUS		World
	$\frac{\chi^2}{n_{\rm d.f.}}$	$\frac{\chi^2}{n_{\rm d.f.}}$	N.	$\frac{\chi^2}{n_{\rm d.f.}}$	N.	$\frac{\chi^2}{n_{\rm d.f.}}$
No hard TPE	7.97	0.84	0.43 <i>σ</i>	0.65	0.75 <i>σ</i>	1.53
Blunden	4.01	0.70	1.23σ	0.73	2.14σ	1.088
Bernauer	1.95	0.58	-0.40 σ	0.49	0.45σ	0.679

- CLAS and OLYMPUS have too large errors
- Vepp-3 rules out no hard TPE
- Blunden et al get slope right, but large normalization shifts.

Probability for worse shift in same direction: < 0.4%

Phenomenological fit clearly prefered by all three experiments

• For the measured values, good agreement with phenomenological extraction.

- For the measured values, good agreement with phenomenological extraction.
- But not in good agreement with theory.

- For the measured values, good agreement with phenomenological extraction.
- But not in good agreement with theory.

Not clear how to calculate at higher Q^2

 \rightarrow Can not extract G_E and G_M from Rosenbluth exps!

Not clear if TPE is full effect

 \rightarrow Can not trust polarization based exps on G_E/G_M ?

- For the measured values, good agreement with phenomenological extraction.
- But not in good agreement with theory.

Not clear how to calculate at higher Q^2

 \rightarrow Can not extract G_E and G_M from Rosenbluth exps!

Not clear if TPE is full effect

 \rightarrow Can not trust polarization based exps on G_E/G_M ?

Need new measurements at relevant kinematics

Positron beams of the right energy and intensity are scarce.

- Short term: New test beam at DESY. Intensity limits $E_{Beam} \leq 3 \,\text{GeV}$
- Long term: JLab contemplates positron source. CLAS12 ideal. LOI for PAC46.

	<i>r_e</i> (fm)	<i>r_m</i> (fm)
(ours) McKinley/Feshbach	0.879	0.777
Borisyuk/Kobuskin	0.876	0.803
Arrington/Sick	0.875	0.769
Blunden et al.	0.875	0.799

"All" calculations very similar for forward scattering, small Q^2 . Feshbach limit. If current theory fails for large Q^2 , can we trust for small Q^2 . In other words: Is the Feshbach limit "mostly" correct. Two ways to test:

- Direct measurement. Needs positrons
- Observe non-linearities in Rosenbluth: needs many and extreme ε

Low-Q , small ε is hard

Question: Which planned experiments aim at low- Q^2 , small ε ?

Question: Which planned experiments aim at low- Q^2 , small ε ?

Answer: none

Question: Which planned experiments aim at also measure low- Q^2 , small ε ?

Answer: ...

$$Q^2 = 4\frac{E}{E}'\sin^2\frac{\theta}{2}$$

- Smaller scattering angle \rightarrow PRad $\rightarrow \epsilon \approx 1$
- Lower beam energy $\rightarrow MESA$
- Initial State Radiation

- Use initial state radiation to reduce effective beam energy
- Have to subtract FSR

- ISR \longrightarrow small $E \longrightarrow$ small Q^2
- Extract F.F. from radiative tail
- Or: test radiative tail description

- Radiative correction correct on the 1% level deep in the tail!
- Radius extraction not competitive in precision
- In principle: Could be redone at larger scattering angle
- But: rates small

500

Target dominant source of uncertainty

• For Mainz data, systematic errors dominate

Target dominant source of uncertainty

- For Mainz data, systematic errors dominate
 - Background from target walls
 - Acceptance correction for extended target

Target dominant source of uncertainty

- For Mainz data, systematic errors dominate
 - Background from target walls
 - Acceptance correction for extended target
- Eliminate with jet target
 - point-like
 - no walls
 - but less density
- Rinse, repeat with D,³He,⁴He, ...

Mainz future plans

- Repeat ISR with new target
- Use new target also for classic approach

Took first data in April! Full MAMI experiment next year, MESA 2021. See talk by Yimin.

MUSE - Muon Scattering Experiment at PSI

World's most powerful low-energy $e/\pi/\mu$ -beam:

Direct comparison of ep and $\mu p!$

- Beam of $e^+/\pi^+/\mu^+$ or $e^-/\pi^-/\mu^-$ on liquid H_2 target
 - Species separated by ToF, charge by magnet
- Absolute cross sections for ep and µp
- Ratio to cancel systematics
- Charge reversal: test TPE
- Momenta 115-210 MeV/c \Rightarrow Rosenbluth G_E, G_M

Experiment layout

R. Gilman et al., arXiv:1303.2160 (nucl-ex)

- Secondary beam \implies track beam particles
- Low flux (5 MHz) \Longrightarrow large acceptance
- Mixed beam \implies PID in trigger

MUSE projected errors (e^{\pm} only)

 ϵ

 $R_{2\gamma}$

52

MUSE projected errors (e^{\pm} only)

• Can test ϵ behavior important for electric radius

- Maybe test theory
- Cannot test ϵ behavior important for magnetic radius
- Low- ϵ experiment at PSI not feasible.

- Many ultra-low-Q² measurements for proton radius
- Active target (Hydrogen TPC)
 - Mainz
 - might be modified to look at back angles
 - COMPASS

ultra-high momentum muons

- Measure asymmetries A_{\perp} and A_{\parallel} to get ff ratio
- At high Q^2 : Measure c.s. $\rightarrow G_M$, + ratio gives G_E

- Measure asymmetries A_{\perp} and A_{\parallel} to get ff ratio
- At high Q^2 : Measure c.s. $\rightarrow G_M$, + ratio gives G_E
- At low Q^2 : Measure c.s. $\rightarrow G_E$, + ratio gives G_M

- Measure asymmetries A_{\perp} and A_{\parallel} to get ff ratio
- At high Q^2 : Measure c.s. $\rightarrow G_M$, + ratio gives G_E
- At low Q^2 : Measure c.s. $\rightarrow G_E$, + ratio gives G_M
- Two possibilities:
 - Classic: 1 spectrometer
 - Advanced: 2 spectrometer
 - measure A_{\perp} and A_{\parallel} at the same time

Polarization at MESA

Polarization at MESA

- Form factor ratio puzzle not 100% resolved.
- Low Q^2 TPE needs to be checked!
- Many experiments, but essentially all aim to measure proton radius
- Few will produce data useful for test of TPE (also: G_M), or could be extended to do so.
- Need a dedicated program. Need strong motivation to do so!