Precision Measurements and Fundamental Physics: The Proton Radius Puzzle and Beyond (PRP2018), Mainz, July 23-27, 2018

TREK/E36 @ J-PARC: Investigating lepton universality with stopped kaon decays

Michael Kohl <kohlm@jlab.org> *

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Presently supported by DOE DE-SC0013941, NSF HRD-1649909, PHY-1505934 and PHY-1436680

Lepton non-universality?

- TREK Program
 - E06: Search for Time Reversal Symmetry Violation
 - E36: Test of Lepton Universality
 - Search for Heavy Neutrinos
- Lower intensity

- Search for Light Bosons
- TREK Apparatus

Status

E36 data taking completed in 2015 !

http://trek.kek.jp

Present working group *

	NSF postdoc (Ishara Fernando: MUSE) shared / funded presently by NSF	Sri Lanka		
	NSF postdoc (Jessica Campbell: MUSE) to be funded by NSF from September 2018	Canada		
	DOE postdoc (Tongtong Cao: TREK/E36) funded presently by DOE	China		
	PhD student (Jesmin Nazeer: DarkLight, GEMs) funded presently by NSF	Sri Lanka		
	Master's student (Tanvi Patel: MUSE, GEMs) funded presently by NSF/EAGER	India / USA		
	PhD student (Bishoy Dongwi: TREK/E36) funded presently by DOE	Namibia		
	Undergraduate students Letrell Harris. HU sophomore: GEMs	USA		
	Sterlyn McCoy, HU freshman: GEMs Angel Christopher, HU freshman: GEMs	USA Nigeria		
	funded presently by DOE and NSF Lab Technician (Ameer Blake: GEMs)			
* Presen	funded presently by NSF tly supported by DOE DE-SC0013941, NSF HRD-1649909, PHY-1505934 a	USA and PHY-1436680		
* Presently supported by DOE DE-SC0013941, NSF HRD-1649909, PHY-1505934 and PHY-1436680				

Limits of lepton universality (LU)

- e, μ, and τ: Different masses, same gauge couplings, valid experimentally
- µ-e universality has been rather well established
- Recent summary by A. Pich, arXiv:1201.0537v1 [hep-ph] (2012)

	$\Gamma_{\tau \to \nu_\tau e \bar{\nu}_e} / \Gamma_{\mu \to \nu_\mu e \bar{\nu}_e}$	$\Gamma_{\tau \to \nu_{\tau} \pi} / \Gamma_{\pi \to \mu \bar{\nu}_{\mu}}$	$\Gamma_{\tau \to \nu_\tau K} / \Gamma_{K \to \mu \bar{\nu}_\mu}$	$\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to\mu\bar\nu_\mu}$
$ g_{ au}/g_{\mu} $	1.0007 ± 0.0022	0.992 ± 0.004	0.982 ± 0.008	1.032 ± 0.012
	$\Gamma_{\tau \to \nu_\tau \mu \bar{\nu}_\mu} / \Gamma_{\tau \to \nu_\tau e \bar{\nu}_e}$	$\Gamma_{\pi \to \mu \bar{\nu}_{\mu}} / \Gamma_{\pi \to e \bar{\nu}_{e}}$	$\Gamma_{K\to\mu\bar\nu_{\mu}}/\Gamma_{K\to e\bar\nu_{e}}$	$\Gamma_{K\to\pi\mu\bar\nu_\mu}/\Gamma_{K\to\pi e\bar\nu_e}$
$ g_{\mu}/g_{e} $	1.0018 ± 0.0014	1.0021 ± 0.0016	0.998 ± 0.002	1.001 ± 0.002
	$\Gamma_{W\to\mu\bar\nu_\mu}/\Gamma_{W\to e\bar\nu_e}$		$\Gamma_{\tau \to \nu_\tau \mu \bar{\nu}_\mu} / \Gamma_{\mu \to \nu_\mu e \bar{\nu}_e}$	$\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to e\bar\nu_e}$
$ g_{\mu}/g_{e} $	0.991 ± 0.009	$ g_{ au}/g_e $	1.0016 ± 0.0021	1.023 ± 0.011

Recent development of T spectroscopy

 T_{τ} , m_{τ} , $T_{\tau}/T_{\mu} = (m_{\tau}/m_{\mu})^5 (g_{\tau}/g_{\mu})^2$, couplings to W and Z⁰

- LEP-II [PDG 2010] $R_{\tau\ell}^W = \frac{2 \operatorname{BR} (W \to \tau \,\overline{\nu}_{\tau})}{\operatorname{BR} (W \to e \,\overline{\nu}_e) + \operatorname{BR} (W \to \mu \,\overline{\nu}_{\mu})} = 1.055(23)$ 2.4 σ dev.
- Belle, Babar, LHCb $\mathcal{R}(D^{(*)}) = \mathcal{B}(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{(*)}\ell^{-}\overline{\nu}_{\ell})$ 4.1 σ dev.
- LHCb [Phys. Rev. Lett. 113, 151601 (2014)] BR(B⁺→ K⁺µ⁺µ⁻) / BR(B⁺→ K⁺e⁺e⁻) = $0.745^{+0.090}_{-0.074} \pm 0.0036$
- Possible link to proton charge radius puzzle r_e (µH) = 0.84087 ± 0.00039 fm, r_e (CODATA2010) = 0.8775 ± 0.0051 fm

2.6σ dev.

5.6σ dev.

Lepton non-universality in B-decays (т-µ)

- $R(D^{(*)}) = \Gamma(B \rightarrow D^{(*)}\tau^+v) / \Gamma(B \rightarrow D^{(*)}\mu^+v)$
- HFLAV summer 2018 update (slightly reduced significance)
- R(D), R(D*) Individually at 2.3-3.0σ
 Combined at 3.6-3.8σ

Lepton non-universality in B-decays (T-µ)

- Charmed meson J/ ψ : R(J/ ψ) = $\Gamma(B^+ \rightarrow J/\psi \tau^+ v) / \Gamma(B^+ \rightarrow J/\psi \mu^+ v)$
- Different from SM at ~2σ
- Less straightforward than R(D^(*))

Lepton non-universality in B-decays (µ-e)

- LHCb: R(K^(*)) = Γ(B→K^(*) μ⁺μ⁻) / Γ(B → K^(*) e⁺e⁻)
- R(K^(*)) different from SM at the 2.5σ level; R(K) update awaited

R. Aaji et *al.*, arXiv:1406.6482 PRL 113, 151601 (2014) R. Aaji et *al.*, arXiv:1705.05802 JHEP 08 (2017) 055 7

The proton radius puzzle

The proton rms charge radius measured withelectrons:0.8751 ± 0.0061 fm (CODATA2014)muons:0.8409 ± 0.0004 fm

Possible resolutions to the puzzle

- The µp (spectroscopy) result is wrong Discussion about theory and proton structure for extracting the proton radius from muonic Lamb shift measurement
- The ep (spectroscopy) results are wrong Accuracy of individual Lamb shift measurements? Rydberg constant could be off by 5 sigma
- The ep (scattering) results are wrong
 Fit procedures not good enough
 Q² not low enough, structures in the form factors
- Proton structure issues in theory

Off-shell proton in two-photon exchange leading to enhanced effects differing between μ and e Hadronic effects different for μp and ep: e.g. proton polarizability (*effect* $\propto m_l^4$)

Physics beyond Standard Model differentiating µ and e Lepton universality violation, light massive gauge boson Constraints on new physics e.g. from kaon decays (TREK@J-PARC)

Possible resolutions to the puzzle

- The µp (spectroscopy) result is wrong Discussion about theory and proton structure for extracting the proton radius from muonic Lamb shift measurement
- The ep (spectroscopy) results are wrong Accuracy of individual Lamb shift measurements? Rydberg constant could be off by 5 sigma
- The ep (scattering) results are wrong
 Fit procedures not good enough
 Q² not low enough, structures in the form factors
- Proton structure issues in theory

Off-shell proton in two-photon exchange leading to enhanced effects differing between μ and e Hadronic effects different for μp and ep: e.g. proton polarizability (*effect* $\propto m_l^4$)

 Physics beyond Standard Model differentiating µ and e Lepton universality violation, light massive gauge boson Constraints on new physics e.g. from kaon decays (TREK@J-PARC)

Muon anomalous magnetic moment

Muon g-2 experiment disagrees with theory at the 3 sigma level. A heavy photon with m ~ 10-100 MeV and ε ~ 10⁻² – 10⁻³ could solve the problem!

Anomaly 'usually' explained by SUSY with large tanβ
-> no evidence
Anomaly can be explained with dark photon or light boson

A light boson and the proton radius puzzle

Jaeckel, Roy (arXiv:1008.3536)

 Hidden U(1) photon can decrease charge radius for muonic hydrogen, however even more so for regular hydrogen

Tucker-Smith, Yavin (arXiv:1011.4922) can solve proton radius puzzle

 MeV particle coupling to p and µ (not e) consistent with g_µ-2

Batell, McKeen, Pospelov (arXiv:1103.0721): can solve proton radius puzzle

- New e/µ differentiating force consistent with gµ-2, vector or scalar
- Resulting in large PV µp scattering
- Carlson, Rislow (arXiv:1310.2786): can solve proton radius puzzle
- New e/µ differentiating force, fine-tuned scalar/pseudoscalar or vector/axial gauge bosons

Liu, McKeen, Miller (arXiv:1605.04612): can solve proton radius puzzle

• Electrophobic scalar boson consistent with g_{μ} -2

Martens, Ralston (arXiv:1606.06209): can solve proton radius puzzle

Generic new particle along with global fit of fundamental constants

Barger, Chiang, Keung, Marfatia (arXiv:1109.6652):

- Light bosons constrained by $K \to \mu \nu$ decay

A light boson and the proton radius puzzle

Jaeckel, Roy (arXiv:1008.3536)

 Hidden U(1) photon can decrease charge radius for muonic hydrogen, however even more so for regular hydrogen

Tucker-Smith, Yavin (arXiv:1011.4922) can solve proton radius puzzle

 MeV particle coupling to p and µ (not e) consistent with g_µ-2

Batell, McKeen, Pospelov (arXiv:1103.0721): can solve proton radius puzzle

- New e/µ differentiating force consistent with gµ-2, vector or scalar
- Resulting in large PV µp scattering
- Carlson, Rislow (arXiv:1310.2786): can solve proton radius puzzle
- New e/µ differentiating force, fine-tuned scalar/pseudoscalar or vector/axial gauge bosons
- Liu, McKeen, Miller (arXiv:1605.04612): can solve proton radius puzzle
- Electrophobic scalar boson consistent with g_{μ} -2

Martens, Ralston (arXiv:1606.06209): can solve proton radius puzzle

Generic new particle along with global fit of fundamental constants

Barger, Chiang, Keung, Marfatia (arXiv:1109.6652):

• Light bosons constrained by $K \to \mu \nu$ decay

TREK/E36

will test

13

The TREK program

• E06

(Time Reversal Experiment with Kaons, TREK)

"Measurement of T-violating transverse muon polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ \nu$ decays "

Proposal to PAC 1 (2006) Stage-1 approved since July 2006 Spokespeople: Jun Imazato and M.K.

```
100-270 kW
```

 E36 (Test of Lepton Universality, Search for Heavy Neutrinos and Light Bosons)
 " Measurement of Γ(K⁺ → e⁺v) / Γ(K⁺ → μ⁺v) and search for heavy sterile neutrinos using the TREK detector system "
 Proposal to PACs 10 (2010), 11,13-18 30-50 kW Stage-1 approved since August 2012 Stage-2 approved since September 2013 Spokespeople: M.K. and Suguru Shimizu

Timeline of TREK

- 2006: E06 (T-violation) Proposal (PAC1)
- 2009: J-PARC PS and HF start operating
- 2010: E36 (LFU/HNS) Proposal (PAC10)
- 2011: E36 stage-1 recommended (PAC11)
- 2012: E36 stage-1 approved (PAC15)
- 2013: E36 stage-2 recommended (PAC17)
- 2014: E36 stage-2 approved (PAC18)
- Detector preparation November 2014 April 2015
- First commissioning run April 8 (24) May 7, 2015
- Second commissioning run June 3 26, 2015
- Implemented improvements in summer 2015
- Production run October 14 November 24, 2015
- Run extended until December 18, 2015
- 2016-18: Analysis in progress

Lepton universality in Standard Model K₁₂

Standard Model:

•
$$\Gamma(K_{l2}) = g_l^2 \frac{G^2}{8\pi} f_K^2 m_K m_l^2 \left(1 - \frac{m_l^2}{m_K^2}\right)^2$$

• In the ratio of $\Gamma(K_{e2})$ to $\Gamma(K_{\mu2})$, hadronic form factors are cancelled

$$R_{K}^{SM} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \frac{(1 + \delta_{r})}{(1 + \delta_{r})}$$

$$\frac{helicity \ suppression}{helicity \ suppression}$$

$$radiative \ correction \ (Internal Brems.)$$

- Strong helicity suppression of the electronic channel enhances sensitivity to effects beyond the SM
- Highly precise SM value
 RSM= (2.477±0.001) x 10⁻⁵ (with

 R_{K}^{SM} = (2.477±0.001) x 10⁻⁵ (with δ_{r} = -0.036); $\delta R_{K}/R_{K}$ =0.04% V. Cirigliano, I. Rosell, Phys. Rev. Lett. 99, 231801 (2007)

 $g_e = g_\mu?$

 $\nu e, \nu \mu$

W

 K^+

L

Experimental status of *R*_K

- In-flight-decay experiments: kinematics overlap
- E36 stopped K⁺: detector acceptance and target
- E36 complementary to in-flight experiments
- E36 goal: $\delta R_{\kappa}/R_{\kappa} = \pm 0.2\%$ (stat) $\pm 0.15\%$ (syst) [0.25% total]

Location of J-PARC

J-PARC Facility (KEK/JAEA) South to North

Hadron Exp.

Facility

Materials and Life Experimental Facility

Linac

nchrotron

50 GeV Synchrotron

Neutrino Beams

(to Kamioka)

Bird's eye photo in January of 2008

J-PARC Hadron Experimental Hall

K1.1BR beamline

- K1.1BR constructed in 2009/10, commissioned by TREK Coll. in Oct. 2010
- Re-aligned after 11/3/11 earthquake, re-commissioned in June 2012
- J-PARC Hadron Hall operations restarted in April 2015
 π/K ratio of ~1.3 observed, kaon flux within expectation (1.4x10⁶/spill @ 40kW)

The TREK apparatus for E36

The TREK apparatus for E36

0

Stopped K⁺

•K1.1BR beamline
•Fitch Cherenkov
•K⁺ stopping target

Tracking (π,μ,e) •MWPC (C2, C3, C4) •Spiral Fiber Tracker (SFT)

<u>**PID</u></u> •TOF1,2; TTC •Aerogel Che. (AC) •Pb glass (PGC)</u>**

<u>Gamma</u>

- •CsI(TI)
- •Gap veto

μ⁺/e⁺ identification

PID with:

- TOF
- Aerogel Č
- Lead glass

TOF

Aerogel Č c	ounter
lis-ID probability	7x 10 ⁻⁴
ime resolution	<100 ps
light length	250 cm

Radiator thickness Refraction index e⁺ efficiency Mis-ID probability

Lead glass (PGC)

MaterialSF6WRefraction index1.05e⁺ efficiency98%Mis-ID probability4%

 P_{mis} (total) = P_{mis} (TOF) x P_{mis} (AČ) x P_{mis} (LG) = 8 x 10⁻⁷ < O(10⁻⁶)

Scintillating-fiber kaon stopping target

- Built at TRIUMF (delivered to J-PARC in September 2014)
- 256 scintillating fibers (3x3 mm²), WLS fiber in groove
- MPPC readout

Target performance

6 8 10 12 14

Kaon beam profile

Spiraling fiber tracker (SFT)

- Double-layer fibers
 in 2 helicities wrapped around target bundle for near target vertex
- Using spare MPPC channels from fiber target
- V. Mineev et al., NIM A847, 13 (2017)

Track identification by central detector

Csl(Tl) calorimeter

Detection of e⁺, e⁻ from A' decay

TREK/E36 installation and commissioning

- Completed detector installation April 2015
- Electronics and DAQ set up and tested (area available only mid-January)
- Conditioning of MWPCs

- Commissioning of TGT+TOF1+SFT with cosmic rays
- Check-out of all detectors with beam
- Commissioning of toroidal magnet including cryogenics

Particle identification by AC, PGC, and TOF³¹

- Positrons are selected by AC, PGC and TOF
- PID performance by combining the three detectors is now being optimized
- Suppression of muon mis-identification below O(10⁻⁸) level achievable with refined analysis
- Refined analysis of PID performance in progress

Momentum determination

- Charged particle momentum from 4-point tracking (C2, C3, C4, and TGT)
- Events selected requiring track consistency with SFT
- Monochromatic peaks from K_{µ2} and K_{π2} observed
- Momentum resolution ~1.4% into the improved to 1% with optimized energy loss correction

Momentum determination

- Positron momentum spectrum (900 runs)
- PID applied with AC, PGC, TOF
- Decomposition of Ke2, Ke2y, Ke3 yields

Simulation and analysis

Team: Hampton (T. Cao, B. Dongwi, M.K.)

Accomplishments

- Geant4: Completed geometry, now including target, SFT, CsI
- Established, tested Kalman Filter for tracking, fully consistent with G4
- Kaon decay generator developed and implemented into Geant4

Plans

- Acceptance ratio for K_{I2}
- Simulation of DP signal and bkg processes for realistic reach
- DP analysis: Csl clustering

Diff. between tracking results and true values for the state vector at C2

Csl(TI) calorimeter analysis

- Energy and timing obtained by pulse shape data from FADC (VF48)
- Events from the K⁺ decays were selected
- K_{µ2} events with single crystal hit used for the energy calibration
- Deposited muon energy used for energy calibration of each crystal

Calibration data from early June

Preliminary

Combining spectrometer + calorimeter

Preliminary

- K_{π2} events selected by analyzing momentum and TOF (M²)
- π⁰ invariant mass reconstructed
 by selecting two-cluster events
- Large π⁺ / π⁰ opening angle observed to select K_{π2}
- Confirmed that the total
 E36 system works correctly and is consistent with E246

Possible A' decay channels in TREK/E36

K⁺ decays ~ 10¹⁰ Signal 1: $K^+ \to \pi^+ A'$, $A' \to e^+ e^-$ Background: BR($K^+ \to \pi^+ e^+ e^-$) ~ 2.9 x 10⁻⁷ ~ 2,900 ev.

Signal 2: $K^+ \rightarrow \mu^+ v A'$, $A' \rightarrow e^+e^-$ Background: BR($K^+ \rightarrow \mu^+ v e^+ e^-$) ~ 2.5 x 10⁻⁵ ~ 250,000 ev. Add. background from $K^+ \rightarrow \mu^+ v \pi^0 \rightarrow \mu^+ v e^+ e^-(\gamma)$

 π^{0} decays1) $3x10^{8}$ 2) $2x10^{9}$ π^{0} production: $K^{+} \rightarrow \mu^{+} \nu \pi^{0} (3.3\%)$ $K^{+} \rightarrow \pi^{+} \pi^{0} (21.1\%)$ Signal 3: $\pi^{0} \rightarrow \gamma A', A' \rightarrow e^{+}e^{-}$ Background: $BR(\pi^{0} \rightarrow \gamma e^{+}e^{-}) \sim 1.2\% \sim 0.3 (2.3) x10^{7} ev.$

The rare kaon decay $K^+ o \mu^+ v A' o \mu^+ v e^+ e^-$

Background: SM process with time-like (virtual) photon exchange

- Calculable in QED, BR(K⁺ → μ⁺ v e⁺ e⁻) = 2.49 x 10⁻⁵
 J. Bijnens et al., Nucl. Phys. B396, 81 (1993), hep-ph/9209261
- Measured for m_{ee} > 145 MeV/c²
 A. Poblaguev et al., Phys. Rev. Lett. 89, 061803 (2002), hep-ex/0204006

Search for a new particle in $K^+ \rightarrow \mu^+ \nu e^+ e^-$

Investigated for E36:

- Detect μ^+ in toroid, e^+e^- in CsI(TI)
- Simulate achievable resolution for invariant mass m_{ee}

- Simulate QED background (radiative decay $K^+ \rightarrow \mu^+ v \ e^+ e^-$)
- Sensitivity from QED background fluctuation
- \rightarrow Exclusion limits for ϵ^2 versus m_{ee}
- P. Monaghan, T. Cao, B. Dongwi (Hampton)

Dark photon / light neutral boson search

 Dark photons (universal coupling) well motivated by dark matter observations (astronomical, direct, positron excess) and g_µ-2 anomaly

40

E36: Light boson expected signal

- Light neutral bosons (selective coupling) for proton radius puzzle
- Search for visible decay mode of $A' \rightarrow e^+e^-$ in K⁺ decays Kaons: $K^+ \rightarrow \mu^+ v A'$; $K^+ \rightarrow \pi^+ A'$ (also invisible decay); Pions: $\pi^0 \rightarrow \gamma A'$, using $K^+ \rightarrow \pi^+ \pi^0$ (21.13%) and $K^+ \rightarrow \mu^+ v \pi^0$ (3.27%)

E36: Dark photon exclusion limit

Proton radius and New Physics

Expected signal BR's: C. Carlson and B. Rislow, PRD86, 035013 (2012) Exclusion limit TREK/E36: simulation by P. Monaghan, T. Cao, B. Dongwi (HU) Existing limit: C. Pang, R. Hildebrand, G. Cable, and R. Stiening, PRD8, 1989 (1973)

Search for light boson events

- Search for visible decay mode of $A' \rightarrow e^+e^-$ in K⁺ decays Kaons: $K^+ \rightarrow \mu^+ \nu A'$; $K^+ \rightarrow \pi^+ A'$ (also invisible decay); Pions: $\pi^0 \rightarrow \gamma A'$, from $K^+ \rightarrow \pi^+ \pi^0$ (21.13%), $K^+ \rightarrow \mu^+ \nu \pi^0$ (3.27%)
- DP trigger: 3+ TOF1 bars
- $K^+ \rightarrow \mu^+ e^+ e^- v$ decays recorded in E36 data with DP trigger
- Reconstruct K⁺ → µ⁺ e⁺ e⁻ v decays with µ⁺ track in toroid and e⁺e⁻ pair in the CsI(TI) calorimeter
- e⁺ and e⁻ are identified by the aerogel Cherenkov counters surrounding the K⁺ stopping target
- Main background: $K^+ \rightarrow \pi^+ \pi^o$ and $K^+ \rightarrow \mu^+ \pi^o v$, with $\pi^o \rightarrow e^+ e^- \gamma$
- [Can also use $\pi^{\circ} \rightarrow e^+ e^- \gamma$ as another signal channel!]

Search for light boson events

X mass in CsI(Tl)(MeV)

New Physics Search with the TREK/E36 experiment at J-PARC

Dr. Tongtong Cao, Bishoy Dongwi, Letrell Harris, Dr. Michael Kohl, Aruna Liyanaarachchi, Dr. Anusha Liyanage, Jesmin Nazeer for the TREK Collaboration Department of Physics, Hampton University, Hampton, VA, 23668, USA

December 2014

February - June 2015

September - December 2015

Physics run and data taking

· Installed detector components

• Completed installation of C3 & C4

· Cabling and detector maintenance

The E36 experiment was conducted at the Japan Proton Accelerator Research Complex (J-PARC) using the TREK detector system.

TREK/E36 EXPERIMENT AT J-PARC

Side view

0.5 1.0 m

E36 was successfully completed in the fall of 2015.

Determination of K⁺ stopping

Measurement of lepton emission

Development of target analysis algorithm is nearly completed

azimuthal angle to help determine

e_{ky}=2.25cn HU_Gap3

— e_{x,y} = 2.250 → HU_Gap3

position lepton track length

SFT-Z

TARGET TRACKING

GEANT4 VERIFICATION

"In the world of weak interactions do electrons and muons behave the same?" That is the question.

The Standard Model (SM) represents our best description of the subatomic world and has been very successful at explaining how elementary particles interact under the influence of the four fundamental forces. However the following questions still linger:

- what is dark matter?
- what happened to all the antimatter after the big bang?
- why do neutrinos have mass?

INTRODUCTION

Bishoy Dongwi - EINN2017 Poster Prize

New Physics Search with the TREK/E36 experiment at J-PARC

Dr. Tongtong Cao, <u>Bishoy Dongwi</u>, Letrell Harris, Dr. Michael Kohl, Aruna Liyanaarachchi, Dr. Anusha Liyanage, Jesmin Nazeer for the TREK Collaboration Department of Physics, Hampton University, Hampton, VA, 23668, USA

TREK (E36/E06) collaboration

~30 collaborators

Spokespeople: M.K., S. Shimizu

CANADA

University of British Columbia Department of Physics and Astronomy **TRIUMF**

USA

University of South Carolina Department of Physics and Astronomy

University of Iowa Department of Physics

Hampton University Department of Physics

JAPAN

Osaka University Department of Physics

Chiba University Department of Physics

Rikkyo University Department of Physics

High Energy Accelerator Research Organization (KEK) Institute of Particle and Nuclear Studies

RUSSIA Russian Academy of Sciences (RAS) Institute for Nuclear Research (INR)

Summary

- E36: Measure K_{e2}/K_{µ2} ratio test of lepton universality to 0.25% (beam power 30-40 kW)
- Searches for dark photon/light boson (and heavy sterile neutrino)
- Experiment has been fully commissioned in spring 2015
- Production running has been completed (Oct. 14 Dec. 18, 2015)
- TREK/E36 @ J-PARC analysis underway
- TREK/E06 (T-violation) planned at J-PARC Extended Hadron Facility

Summary

- Lepton universality is challenged (BaBar, Belle, LHCb)
- Non-universally coupled light bosons to explain a_µ and R_p puzzles
 - ➔ Rare kaon decays with TREK/E36 @ J-PARC
 - Data taken in 2015, under analysis
- Proton radius puzzle / lepton universality: MUSE @ PSI
 - **Size of TPE could be different for \mu^{\pm}p, e^{\pm}p**
 - → µp and ep interaction could be fundamentally different
 - → Running in 2018-2020 (stay tuned for the next talk!)

Backup